医疗废物和污泥共熔融
医疗废品分类与处理:2024版

医疗废品分类与处理:2024版1. 引言本文档旨在详细阐述2024版医疗废品的分类与处理方法。
医疗废物是指在医疗、预防、保健以及其他相关活动中产生的具有感染性、毒性、腐蚀性、化学性或者放射性等危害性的废物。
为了保障公共卫生安全,我国对医疗废物实行严格的管理制度。
2. 医疗废品的分类根据《医疗废物分类目录》(2024版),医疗废物分为以下五类:2.1 感染性废物感染性废物包括:- 医疗机构收治的隔离传染病病人或者疑似传染病病人的排泄物;- 医疗机构废弃的医学标本;- 医疗机构在进行诊疗活动过程中产生的废弃物,如手术刀片、注射器、输液器、针头等;- 医疗机构产生的污水。
2.2 毒性废物毒性废物包括:- 废弃的化学消毒剂;- 废弃的化学药品;- 废弃的农药;- 废弃的医学实验动物尸体。
2.3 腐蚀性废物腐蚀性废物包括:- 废弃的酸碱溶液;- 废弃的氧化剂;- 废弃的还原剂。
2.4 化学性废物化学性废物包括:- 废弃的消毒剂;- 废弃的消毒剂包装物;- 废弃的化学试剂;- 废弃的化学药品。
2.5 放射性废物放射性废物包括:- 废弃的放射性同位素;- 废弃的放射性药物;- 废弃的放射性核素;- 废弃的放射性检测器。
3. 医疗废品的处理根据《医疗废物处理技术规范》(2024版),医疗废品的处理应遵循无害化、减量化和资源化的原则。
具体处理方法如下:3.1 感染性废物处理感染性废物应采用高温蒸汽灭菌、化学消毒或其他方法进行无害化处理。
处理后的废物应符合我国相关排放标准。
3.2 毒性废物处理毒性废物应根据其化学性质,采用化学中和、固化/稳定化、焚烧等方法进行无害化处理。
处理后的废物应符合我国相关排放标准。
3.3 腐蚀性废物处理腐蚀性废物应采用中和、回收、固化/稳定化等方法进行无害化处理。
处理后的废物应符合我国相关排放标准。
3.4 化学性废物处理化学性废物应根据其化学性质,采用化学分解、焚烧、固化/稳定化等方法进行无害化处理。
医院污泥危废处理管理制度

一、总则为规范医院污泥危废处理工作,防止环境污染,保障人民身体健康,根据《中华人民共和国固体废物污染环境防治法》、《医疗废物管理条例》等法律法规,结合医院实际情况,制定本制度。
二、适用范围本制度适用于医院内所有污泥危废的产生、收集、贮存、运输、处置等环节。
三、职责分工1. 医院环境保护部门负责污泥危废处理的组织、协调、监督和管理工作。
2. 医院医疗废物管理部门负责污泥危废的日常管理工作,包括收集、贮存、运输和处置。
3. 各科室负责本科室产生的污泥危废的收集和暂时存放。
四、污泥危废产生与分类1. 医院污泥危废主要包括医疗废物处理过程中产生的污泥、污水处理站产生的污泥等。
2. 污泥危废根据其危险特性分为以下类别:(1)医疗废物类污泥;(2)污水处理站污泥。
五、污泥危废处理流程1. 收集:各科室产生的污泥危废按照类别分别收集,并使用专用容器盛装,容器上应标明污泥危废类别和警示标志。
2. 贮存:污泥危废应在专用贮存场所进行暂时存放,贮存场所应满足以下要求:(1)通风良好,避免阳光直射;(2)防雨、防渗漏;(3)有专人负责管理,定期清理。
3. 运输:污泥危废的运输应由具有危险废物运输资质的单位承担,运输过程中应采取防泄漏、防飞扬等措施,确保运输安全。
4. 处置:污泥危废的处置应委托具有危险废物处置资质的单位进行,处置过程中应遵循以下原则:(1)无害化处理;(2)资源化利用;(3)安全、环保。
六、监督管理1. 医院环境保护部门应定期对污泥危废处理工作进行监督检查,确保各项制度得到有效执行。
2. 医院医疗废物管理部门应建立健全污泥危废处理档案,记录污泥危废的产生、收集、贮存、运输、处置等情况。
3. 医院各科室应积极配合污泥危废处理工作,严格按照规定收集、贮存污泥危废。
七、奖惩措施1. 对在污泥危废处理工作中表现突出的单位和个人给予表彰和奖励。
2. 对违反本制度规定,造成环境污染事故的单位和个人依法予以处罚。
八、附则1. 本制度自发布之日起施行。
医疗废物污水处理方案

医疗废物污水处理方案一、引言医疗废物污水是指医院和其他医疗机构产生的含有病原体、有害化学物质和药物残留的废水。
这些废水对环境和人类健康造成潜在风险,因此需要采取适当的处理措施。
本文将介绍一种医疗废物污水处理方案,旨在高效、安全地处理医疗废物污水。
二、处理工艺1. 初级处理初级处理主要包括筛网和沉砂池。
筛网用于去除废水中的固体杂质,如纸张、绷带等。
沉砂池则用于沉淀重质悬浮物,如沙子、砂石等。
这些步骤能够有效减少废水中的固体颗粒,提高后续处理步骤的效果。
2. 生化处理生化处理是医疗废物污水处理的核心步骤。
常用的生化处理方法包括活性污泥法和厌氧消化法。
活性污泥法通过加入活性污泥来降解有机物质,使其转化为二氧化碳和水。
厌氧消化法则是利用厌氧菌将有机物质转化为甲烷等可再利用的气体。
这两种方法可以互补使用,提高处理效果。
3. 高级处理高级处理主要包括膜分离和紫外线消毒。
膜分离是一种物理过滤方法,通过特殊的膜材料将废水中的弱小颗粒和溶解物分离出来,从而获得更纯净的水。
紫外线消毒则是利用紫外线照射来杀灭废水中的病原体和细菌,确保废水的安全排放。
三、处理设备1. 筛网筛网是用于去除废水中固体杂质的设备。
常见的筛网材料有不锈钢和聚合物材料,具有耐腐蚀、耐磨损的特点。
筛网的孔径根据废水中颗粒的大小来选择,普通为0.5-2毫米。
2. 沉砂池沉砂池是用于去除废水中重质悬浮物的设备。
它通常由混凝池和沉淀池组成。
混凝池中加入混凝剂,使废水中的悬浮物凝结成较大的颗粒,然后进入沉淀池进行沉淀。
沉砂池的设计应考虑到废水的流量和悬浮物的浓度。
3. 活性污泥反应器活性污泥反应器是用于生化处理的关键设备。
它通常由进水池、好氧污泥池和二沉池组成。
进水池用于调节废水的流量和水质,好氧污泥池中加入活性污泥,通过好氧条件下的微生物代谢降解有机物质,二沉池用于沉淀污泥和分离澄清水。
4. 厌氧消化池厌氧消化池是用于进一步处理废水的设备。
它提供了无氧环境,利用厌氧菌将有机物质转化为甲烷等可再利用的气体。
医疗废弃物及污水的处理方案

医疗废弃物及污水的处理方案一、引言医疗废弃物及污水的处理是保障公共卫生和环境安全的重要环节。
针对医疗废弃物的处理,需要采取合适的方法,确保对人体和环境的影响最小化。
同时,医疗污水的处理也需要高效的技术手段,以减少对水资源的污染。
二、医疗废弃物处理方案1. 分类收集医疗废弃物应根据其性质进行分类收集,包括感染性废弃物、化学废弃物、药物废弃物等。
各类废弃物应放置在不同的容器中,以防交叉感染和环境污染。
2. 灭菌处理感染性废弃物应在专门的设施中进行灭菌处理,常用的方法包括高温高压灭菌和化学灭菌。
灭菌后的废弃物应符合国家相关标准,确保无菌化。
3. 包装和运输灭菌处理后的废弃物应进行密封包装,并标明相关信息,如废弃物类别、处理日期等。
运输过程中,应采取防止泄漏和交叉污染的措施。
4. 最终处理灭菌处理后的废弃物可进行最终处理,包括焚烧、填埋和化学处理等。
焚烧是一种常用的处理方法,可以有效地降低废弃物的体积和毒性。
填埋和化学处理则需要选择合适的场地和技术手段,以减少对土壤和地下水的污染。
三、医疗污水处理方案1. 初级处理医疗污水经过初级处理,主要去除固体悬浮物和大部分油脂。
常用的处理方法包括格栅、沉砂池和油水分离器等。
2. 生化处理初级处理后的医疗污水进入生化处理系统,通过微生物的作用,将有机物质降解为无机物质。
生化处理可以采用活性污泥法、固定床生物反应器等技术。
3. 深度处理生化处理后的医疗污水可进行深度处理,以进一步去除残余的有机物、氮、磷等。
常用的方法包括生物膜法、吸附法和化学沉淀法等。
4. 消毒处理深度处理后的医疗污水需要进行消毒处理,以杀灭病原微生物。
常用的消毒方法包括紫外线消毒、氯消毒和臭氧消毒等。
四、数据统计与监测为了确保医疗废弃物及污水处理方案的有效性,需要进行数据统计与监测。
相关数据包括废弃物的产生量、处理效果、污水的处理效果等。
监测可以通过定期取样和实验室分析来进行。
五、结论医疗废弃物及污水的处理方案需要综合考虑环境、经济和社会因素,确保对人体和环境的影响最小化。
医疗污水淤泥处置方案

医疗污水淤泥处置方案医疗污水淤泥处理是医疗垃圾处理的重要环节,对于保障公共卫生和环保具有重要意义。
淤泥处理方案的选择和执行对于防止二次污染、减少对环境的破坏和降低业务成本都有至关重要的作用。
本文将介绍医疗污水淤泥的产生、处理的方法以及具体实施方案。
医疗污水淤泥的产生医疗机构的废水主要来自医院各种检查设备的冲洗水、消毒剂的清洗水、手术室刷洗盘子、器具、废水等。
而这些废水经过沉淀、混合、厌氧处理等过程之后,会产生淤泥,这些淤泥主要包括了有机物质、细菌和病毒等物质。
淤泥含水量高,且具有不稳定性和强臭味等特点,对于处理方案的选择和执行都带来了挑战。
医疗污水淤泥的处理方法医疗机构的污水淤泥处理主要分为以下几种方法:厌氧消化法厌氧消化法是淤泥处理的一种常见方式,其工艺流程包括淤泥的沉淀和厌氧消化两个阶段。
在厌氧消化阶段,有机物质会被厌氧菌分解成少量固体物质和大量的气体。
这种消化方法工艺流程简单,操作方便,处理效果好,是一种比较成熟的处理方法。
热氧化法热氧化法主要利用高温和氧化物来对淤泥进行处理,其主要特点是高效、稳定性好,且能够有效地消除淤泥中的有机物质和细菌等物质。
该方法的主要劣势是能耗较高,对于环保要求较高的场合不适用。
生化处理法生化处理法是利用生物技术进行处理,可以通过生物体代谢作用进行去除淤泥中的有机物质和细菌。
该方法能够对淤泥进行良好的处理,操作简便,且能够达到良好的处理效果。
但是该方法对于实施条件较高,需要一定的技术支撑。
医疗污水淤泥处理实施方案基于以上三种淤泥处理方法,医疗机构淤泥的处理可采用以下两种方案:沉淀+厌氧消化处理方案该方案主要包括淤泥的沉淀和厌氧消化两个阶段。
基本流程包括:1.原水彻底预处理,去除杂质。
2.预处理后的水进入沉淀池,通过物理沉淀去除淤泥。
3.沉淀池中的淤泥进入厌氧反应池进行消化,产生甲烷和二氧化碳气体。
4.消化后的淤泥分离到污泥池中,再进行下一步的处理。
该方案的优点在于处理效果稳定,可以满足淤泥处理的要求,同时操作简单易行,具有一定的降低业务成本的作用。
医疗废弃物及污水的处理方案

医疗废弃物及污水的处理方案一、背景介绍医疗废弃物及污水的处理是医疗机构必须面对的重要问题。
医疗废弃物包括感染性废物、化学性废物、药物废物等,其不当处理会对环境和人类健康造成严重影响。
因此,制定合理的医疗废弃物及污水处理方案是保障公共卫生和环境安全的关键。
二、医疗废弃物处理方案1. 分类收集:将医疗废弃物按照不同的性质进行分类收集,如感染性废物、化学性废物、药物废物等。
分类收集可以有效降低废弃物的处理难度和风险。
2. 密封包装:对于感染性废物,应采取密封包装措施,以防止废弃物的传播和二次污染。
3. 临时存放:医疗机构应设置专门的临时存放区域,确保废弃物的安全存放,避免交叉感染和污染。
4. 定期转运:定期将存放的医疗废弃物进行转运,选择合格的专业处理机构进行处理。
转运过程中应注意严密封闭,防止废弃物外泄。
5. 合规处理:医疗废弃物处理机构应具备合法资质,并按照相关法律法规进行处理。
处理方法包括焚烧、消毒、化学处理等,确保废弃物的彻底无害化处理。
三、污水处理方案1. 前处理:医疗机构的污水通常含有高浓度的有机物和微生物,因此需要进行前处理。
前处理包括格栅、沉砂池、沉淀池等,用于去除污水中的悬浮物和沉淀物。
2. 生物处理:将经过前处理的污水引入生物处理系统,利用微生物的降解作用将有机物转化为无机物。
常用的生物处理方法包括活性污泥法、曝气法等。
3. 二次沉淀:经过生物处理的污水需要进行二次沉淀,以去除残留的悬浮物和微生物。
二次沉淀池通常采用静态沉淀或浮选等方法。
4. 消毒处理:经过二次沉淀的污水需要进行消毒处理,以杀灭其中的病原微生物。
常用的消毒方法包括紫外线消毒、臭氧消毒等。
5. 出水处理:经过前述处理步骤后,污水中的有机物、微生物和悬浮物已大幅降低,可以进行出水处理。
出水处理包括深度过滤、活性炭吸附等,以保证出水的水质达到排放标准。
四、数据统计与监测1. 废弃物产生量统计:医疗机构应建立废弃物产生量的统计系统,及时了解废弃物的产生情况,为后续的处理工作提供数据支持。
医疗废弃物及污水的处理方案
医疗废弃物及污水的处理方案一、引言医疗废弃物和污水的处理是医疗机构和医疗设施管理的重要环节。
正确处理医疗废弃物和污水可以有效防止疾病传播和环境污染,保护人民的生命安全和健康。
本文将针对医疗废弃物和污水的处理方案进行详细介绍。
二、医疗废弃物处理方案1. 分类采集医疗废弃物应根据其性质进行分类采集,分为感染性废物、化学性废物、放射性废物和普通性废物。
感染性废物应用特殊的容器进行采集,化学性废物应与其他废物分开采集,放射性废物应按照像关规定进行采集,普通性废物应放入普通垃圾容器。
2. 包装和封存医疗废弃物在分类采集后,应进行包装和封存。
感染性废物应用专用的红色医疗废物袋进行包装,并在包装袋上标明相关信息。
化学性废物应用密封的塑料袋进行包装,并在外包装上标明相关警示标志。
放射性废物应用特殊的铅罐进行包装,并进行密封和标识。
普通性废物可用普通垃圾袋进行包装。
3. 运输和处置医疗废弃物在包装和封存后,应通过特殊的运输工具进行运输。
运输过程中,应注意防止废物泄漏和传播,确保安全。
医疗废弃物的处置应根据其性质进行选择。
感染性废物应经过高温蒸汽消毒处理,化学性废物应交由专业的废物处理公司进行处理,放射性废物应交由专业机构进行处理,普通性废物可通过焚烧或者填埋等方式进行处理。
三、污水处理方案1. 预处理医疗机构产生的污水需要经过预处理,包括固体物质的过滤和沉淀。
通过合适的过滤器和沉淀池,可以去除污水中的悬浮物和沉淀物,减少对后续处理设备的影响。
2. 生化处理经过预处理后的污水,需要进行生化处理。
生化处理主要通过活性污泥法或者厌氧消化法来降解有机物质。
活性污泥法通过添加活性污泥来分解有机物质,厌氧消化法通过微生物的厌氧消化来降解有机物质。
生化处理可以有效去除污水中的有机物质和氮、磷等营养物质。
3. 深度处理生化处理后的污水,需要经过深度处理来去除残留的有机物质和微生物。
深度处理可以采用生物膜反应器、活性炭吸附等技术。
医疗废物焚烧炉渣熔融特征分析
医疗废物燃烧炉渣熔融特征分析医疗废物高温燃烧是医废处理领域的主流技术,燃烧将产生2%~3%飞灰和20%~25%炉渣。
医废燃烧炉渣不属于危急废物,具有资源化前景,燃烧飞灰含有重金属、二噁英类等,属于危急废物,一般承受安全填埋场填埋;医废燃烧灰渣资源化利用是亟待解决和制约环保产业可持续进展的难点[1]。
燃烧灰渣熔融玻璃化技术被认为是处理燃烧灰渣最为有效和彻底的途径。
胡明等通过转变添加剂含量和熔融温度,争论添加剂对危废灰渣等离子熔融重金属固化率的影响[2];争论添加剂配方、熔体冷却方式、飞灰预处理等对生活垃圾飞灰熔融玻璃化的影响[3]。
张楚等利用高温管式炉对生活垃圾燃烧飞灰在高温下的物质迁移和熔融玻璃体的浸出开展争论[4]。
然而,针对医废燃烧灰渣的形成特征性争论鲜有报道。
本争论针对医废燃烧炉渣,承受不同添加剂配方,探究物料熔融特性,为医废燃烧炉渣熔融工程化应用供给数据支持。
1试验与方法1.1试验材料医废燃烧炉渣样品取自上海市固体废物处置3#医废燃烧线,样品先在105℃温度烘干3h,再经行星球磨机磨粉,球磨罐和耐磨球为碳化钨材质,磨粉后的物料用于试验争论。
1.2试验方法物料成分承受台式X 荧光光谱仪〔SPECTROXEPOS〕分析。
承受灰熔点测试仪〔HR-8〕检测混料及炉渣原样熔点。
承受熔体物性测定仪〔RTW-2023〕检测不同配方熔体粘度、导电率、密度等。
承受高温管式炉〔GSL-1600X〕开展医废燃烧炉渣熔融试验。
称取肯定量医废炉渣置于刚玉坩埚中,添加不同比例的添加剂〔CaO、SiO2、CaCl2〕,在管式炉中梯度加热到1400℃,持续3h,加热完成后快速从管式炉中取出在空气中冷却,比照熔融前后物料变化。
2结果与争论2.1医废炉渣主要成分分析玻璃体的主要成分为CaO、Al2O3、SiO2,取不同时期的10 组医废炉渣样品进展成分分析,SiO2 含量在27.58%~48.36%,平均为40.04%;CaO 含量在17.42%~23.73%,平均为20.15%;Al2O3 的含量在7.96%~10.59%,平均为9.07%。
医疗废弃物及污水的处理方案
医疗废弃物及污水的处理方案一、引言医疗废弃物及污水的处理是医疗机构必须面对的重要问题。
医疗废弃物的不当处理可能对环境和人类健康造成严重威胁,污水的排放也会对水体造成污染。
因此,制定科学合理的处理方案对于保护环境和人类健康至关重要。
二、医疗废弃物的处理方案1. 分类收集医疗废弃物应按照不同的性质和处理要求进行分类收集,包括感染性废物、化学废物、放射性废物和一般废物。
分类收集能够方便后续的处理和处置过程。
2. 包装和贮存医疗废弃物应在符合规定的专用容器中进行包装,并在包装上标明相关的信息,如废物类型、来源、包装日期等。
贮存时应遵守相关的安全要求,确保废物不会对环境和人员造成危害。
3. 处理方法(1)感染性废物:感染性废物应采用高温高压的方式进行处理,如高温蒸汽灭菌或高压高温焚烧。
处理后的废物应符合相关的无菌标准,确保不会再次对环境和人员造成感染风险。
(2)化学废物:化学废物应根据其性质选择不同的处理方法,如中和、稀释、沉淀等。
处理过程中应注意防止废物的进一步污染和泄漏。
(3)放射性废物:放射性废物应采用专门的处理设施进行处理,如放射性废物贮存和处理中心。
处理过程中应严格遵守相关的辐射安全标准,确保不会对人员和环境造成辐射危害。
(4)一般废物:一般废物应进行分类收集后,采用合适的方式进行处理,如焚烧、填埋或回收利用等。
处理过程中应遵守相关的环境保护要求,确保不会对环境造成污染。
三、污水的处理方案1. 收集和预处理医疗机构的污水应通过合适的管道进行收集,并进行初步的预处理。
预处理包括固液分离、沉淀、调节pH值等,以去除悬浮物、沉淀物和有机物。
2. 生物处理经过预处理的污水应进一步进行生物处理,主要采用活性污泥法或生物膜法。
生物处理过程中,通过微生物的代谢作用,将有机物转化为无机物,达到去除有机物和氮、磷等污染物的目的。
3. 二次沉淀和消毒经过生物处理的污水应进行二次沉淀,以去除残留的悬浮物和沉淀物。
随后,对污水进行消毒处理,常用的消毒方法包括紫外线消毒和氯消毒。
医院污泥处置情况汇报材料
医院污泥处置情况汇报材料尊敬的领导:我是某某医院环卫部门的负责人,我在此向您汇报我院医院污泥的处置情况。
首先,我院医院污泥的来源主要包括医疗废物处理产生的污泥以及医院日常生活污水处理产生的污泥。
这些污泥的处置问题一直是我们环卫部门的重点工作之一。
针对医疗废物处理产生的污泥,我们采取了严格的分类和包装措施,确保污泥在产生、储存和运输过程中不会对环境造成污染。
同时,我们与专业的医疗废物处理公司合作,将医疗废物中的污泥进行专业处理,确保其得到安全、合规的处置。
对于医院日常生活污水处理产生的污泥,我们建立了完善的污泥处理系统。
首先,我们对医院日常生活污水进行严格的预处理,确保污泥的含水率和污染物含量得到控制。
然后,我们利用污泥脱水设备将污泥进行脱水处理,减少污泥的体积和重量,方便后续的处置和运输。
最后,我们将脱水后的污泥运送至指定的污泥处理场地,进行安全、环保的处置,确保不会对周边环境和居民造成影响。
除此之外,我们还在污泥处置过程中加强了对污泥处理场地的监管和管理,确保污泥处置过程合规、安全。
同时,我们加强了对医院内部各相关部门的污泥产生和处置的宣传和培训工作,提高了全院职工对污泥处理工作的重视和合规性。
总的来看,我院医院污泥的处置工作取得了较好的效果,得到了相关部门和居民的认可。
但是我们也清醒地意识到,医院污泥处置工作仍然存在一些问题和挑战,比如污泥处理设备的更新和维护、污泥处置成本的控制等。
我们将进一步加强对医院污泥处置工作的监管和管理,努力做好医院污泥处置工作,为医院的环境保护和可持续发展贡献我们的力量。
感谢领导对我们工作的关心和支持!环卫部门负责人,XXX。
日期,XXXX年XX月XX日。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Original ArticlePredicting the co-melting temperaturesof municipal solid waste incinerator flyash and sewage sludge ash using greymodel and neural networkTzu-Yi Pai1,Kae-Long Lin2,Je-Lung Shie2,Tien-Chin Chang3andBor-Yann Chen4AbstractA grey model(GM)and an artificial neural network(ANN)were employed to predict co-melting temperature of municipal solid waste incinerator(MSWI)fly ash and sewage sludge ash(SSA)during formation of modified slag.The results indicated that in the aspect of model prediction,the mean absolute percentage error(MAPEs)were between1.69and13.20%when adopting seven different GM(1,N)models.The MAPE were1.59and1.31%when GM(1,1)and rolling grey model(RGM (1,1))were adopted.The MAPEs fell within the range of0.04and0.50%using different types of ANN.In GMs,the MAPE of1.31%was found to be the lowest when using RGM(1,1)to predict co-melting temperature.This value was higher than those of ANN2-1to ANN8-1by1.27,1.25,1.24,1.18,1.16,1.14and0.81%,respectively.GM only required a small amount of data(at least four data).Therefore,GM could be applied successfully in predicting the co-melting temperature of MSWI fly ash and SSA when no sufficient information is available.It also indicates that both the composition of MSWI fly ash and SSA could be applied on the prediction of co-melting temperature.KeywordsMunicipal solid waste incinerator,sewage sludge ash,co-melting temperatures,grey model,artificial neural networkDate received:5September2009;accepted:3March2010IntroductionAccording to the Republic of China(R.O.C.)EPA (Environmental Protection Administration)statistics,by the year2010,there will be more than1000000tons per year of incinerator residues(including bottom ash,fly ash, and scrubber ash)discharged from municipal solid waste incinerators(MSWI)island wide in Taiwan.As the amount of sewage sludge generated from municipal wastewater treat-ment plants(MWWTPs)is steadily increasing year by year with the expansion of population,treatment and utilization of MSWIfly ash and sewage sludge become more important in Taiwan.In past decades,the more acceptable sewage sludge treatment process was landfilling,but this process faced serious challenges because the available space for land-filling became less and less.Scrubber ash,the largest component(about80%by weight)in MSWIfly ash(a mixture of boiler ash,scrubber ash and cyclone ash),makes it difficult to melt MSWIfly ash alone due to the high pouring point(2570 C)of the scrubber ash component CaO(11–35%by weight).Therefore,it is necessary to modify the alkalinity of the main components of the MSWIfly ash and itsfluxes by mixingfly ash with sludge ash from sewage treatment plants.Under this situa-tion,reuse technologies for MSWIfly ash and sewage sludge treatment,such as the melting process,are proposed to con-quer these problems.The principal advantages of the sludge melting process are that most hazardous materials,such as heavy metals,are tightlyfixed in a solid phase,and the slag1Department of Environmental Engineering and Management, Chaoyang University of Technology,Wufeng,Taichung,Taiwan,R.O.C. 2Department of Environmental Engineering,National Ilan University, Ilan,Ilan,Taiwan,R.O.C.3Institute of Environmental Engineering and Management,National Taipei University of Technology,Taipei,Taiwan,R.O.C.4Department of Chemical and Materials Engineering,National Ilan University,Ilan,Ilan,Taiwan,R.O.C.Corresponding author:Kae-Long Lin,Department of Environmental Engineering,National Ilan University,Ilan,Ilan,26047,Taiwan,R.O.C.Email:kllin@.twWaste Management&Research29(3)284–293!The Author(s)2010Reprints and permissions:/journalsPermissions.navDOI:10.1177/0734242X10367862generated by this process can be used as construction mate-rial(Sakai et al.,1990).However,the alkalinity of MSWIfly ash may be modified by mixing it with sludge ash from sewage treatment plants.This step is necessary to reduce the pouring point of MSWIfly ash during co-melting(Lin, 2006).Glassy slag can be generated by melting waste at tem-peratures exceeding1300 C,after which the molten ash is water-quenched or air-cooled.The volume of the resulting slag can be reduced and the slag stabilized such that heavy metals become immobilized in a glassy Si–O matrix;thus, leaching behaviour is improved.The melting process is oper-ated at high temperature and in a rapid quenched rate, obtaining a product consisting of very irregularly shaped granules of which the main merits are their high durability against chemical erosion and high volume reduction effect. Against this,one of the main disadvantages of the co-melting process is its energy consumption.MSWIfly ash and sewage sludge ash(SSA)composition could affect the co-melting temperatures of slag,particularly the high alkalinity of MSWIfly ash.If the relationship between this composition and the co-melting temperatures could be established,the co-melting temperatures could be predicted and controlled accurately.Thus,energy conservation could be achieved.For model-based predictive control,models should be kept simple and identifiable from measured data. Some soft computation techniques,such as artificial neural network(ANN),in which the reaction mechanisms can be ignored are available presently.Although ANN can predict co-melting temperatures,many data is required for further calculation.In order to gain consistent results from the inves-tigation data and predict co-melting temperatures with few data,the grey system theory(GST)is a suitable method.The GST proposed by Deng(1989)can solve the problem of incomplete data and has been applied in several studies (Pai et al.,2007a,b,2008a,b;Pai,2008).GST focuses on the relational analysis,model construction,and prediction of the indefinite and incomplete information.It requires only a small amount of data and the better prediction results can be obtained.There are several methods in GST including grey model (GM).GM can be used to establish the relationship between many sequences of data and their coefficients can be used to evaluate which sequence of data affects the system significantly.Pai et al.(2007b)used GM to predict the efflu-ent quality from several wastewater treatment plants and obtained accurate results.However,it is difficult to use MSWIfly ash and SSA composition in co-melting tempera-ture modelling.If the relationship between the composition of MSWIfly ash and SSA and co-melting temperatures can be modelled,a better control strategy could be sought.The melting process is operated at high temperature and in a rapid quenched rate,obtaining a product consisting of very irregularly shaped granules of which the main merits are their high durability against chemical erosion and high volume reduction effect but one of the main disadvantages of the co-melting process is its energy consumption.The objectives of this study were:(1)to use GM(0,N)to calcu-late the weight andfind out the composition of MSWIfly ash and SSA which affect co-melting temperatures significantly;(2)to use GM(1,N),GM(1,1),and RGM(1,1)to establish the composition characteristics of MSWIfly ash and SSA for predicting the co-melting temperatures;and(3)to use ANN for comparison purposes to predict the co-melting temperatures in this study.Materials and methodsSewage sludge ash and MSWI flyash preparationThefly ash used in this study was collected from the cyclone of a mass-burning incinerator located in the northern part of Taiwan.The incinerator,capable of processing1350tonnes of local municipal solid waste per day,is equipped with air pollution control devices(APCD)consisting of a cyclone,a semi-dry scrubber system and a fabric bag-housefilter.The incinerator was constructed in1995.The plant includes three Martin stoker units,each with incineration capacity of450 tonnes day–1and three boiler units,each capable of generat-ing39.15tonnes h–1steam at40bar and400 C with super-heaters.In total,200kg offly ash was obtained from the incineration plant.Then,thefly ash was homogenized, oven dried at105 C for24h,and desiccated before testing.A dewatered sludge cake sample was heated in a brick-firing kiln at a temperature of900 C for1h.The properties of the four types of sewage sludge used are outlined in Table1.The MSWIfly ash and the sewage sludge ashesTable1.Properties of sewage sludgeType ofsludge ash Sewer system Wastewatertreatment process Digestion process Conditioning processBL-Ash Combined sewer system Primary treatment–Polymer conditioned sludge JJ-Ash Combined sewer system Primary treatment Anaerobic digestion Polymer conditioned sludge SC-Ash Separated sewer system Secondary treatment Anaerobic digestion Polymer conditioned sludge NH-Ash Separated sewer system Secondary treatment Aerobic digestion Polymer conditioned sludgeand lime stabilityPai et al.285were homogenized,oven dried at105 C for24h,after which the chemical composition was characterized.Preparation of slag from MSWI fly ash and sludge ashes by co-melting treatmentMSWIfly ash was mixed with various amounts of sewage sludge ash.In this study,MSWIfly ash and sewage sludge ashes werefirst ground,then varying composite fractions were well mixed to obtain the test samples.The different proportions used in the melting process are shown in Table2.During the formation of slag,the softening,melting and pouring points were observed and recorded.The molten slag was then water-quenched to produce afine slag,which was further pulverized in a ball mill until the particles could pass through a#200mesh sieve(0.074mm).The resultant pulverized slag had a specific surface area(on Blaine)of approximately300–350m2kg–1,with a specific gravity of 2.7–2.9.The resultant pulverized slag was desiccated before being tested.AnalysesChemical composition and physical analyses of thefly ash, sludge ash and synthetic slags were determined by X-rayflu-orescence(XRF).XRF was performed with an automated RIX2000spectrometer.The samples were prepared for XRF analysis by mixing0.4g of the sample and4g of100 Spectroflux,at a dilution ratio of1:10.Homogenized mix-tures were placed in Pt–Au crucibles,and treated for1h at 1000 C in an electrical furnace.The homogeneous melted sample was recast into glass beads2mm thick and32mm in diameter.The softening,melting and pouring points of the fly ash and sludge ash mixtures were determined by the ASTM D1857method.Grey modelling processIn a situation where information is lacking,using fewer(at least4)system information,one can create a GM to describe the behaviour of the few outputs.By means of an accumu-lated generating operation(AGO),the disorderly and the unsystematic data may become exponentially behaved such that afirst-order differential equation can be used to charac-terize the system behaviour.Solving the differential equation will yield a time response solution for prediction.Through an inverse accumulated generating operation(IAGO),the fore-cast can be transformed back to the sequence of original series.A grey modelling process is described in the following manner(Figure1).Assume that the original series of data with n samples is expressed as:X f0g¼ðxð0Þð1Þ,xð0Þð2Þ,...,xð0ÞðnÞÞ,where the superscription(0)of X(0)represents the original series.Let X(1)be thefirst-order AGO of X(0),whose elements are generated from X(0):Xð1Þ¼ðxð1Þð1Þ,xð1Þð2Þ,...,xð1ÞðnÞÞ, where xð1ÞðkÞ¼P ki¼1xð0ÞðiÞ,for k¼1,2,...,n.Further oper-ation of the AGO can be conducted to reach the r-order AGO series,X(r):X f r g¼ðxðrÞð1Þ,xðrÞð2Þ,...,xðrÞðnÞÞ,where xðrÞðkÞ¼P ki¼1xðrÀ1ÞðiÞ,for k¼1,2,...,n.The IAGO is the inverse operation of AGO.It transforms the AGO-operational series back to the one with a lower order. The operation of IAGO for thefirst-order series is defined as follows:xð0Þð1Þ¼xð1Þð1Þand xð0ÞðkÞ¼xð1ÞðkÞÀxð1ÞðkÀ1Þfor k¼2,3,...,n.After extending this represen-tation to the IAGO of r-order series,we have xðrÀ1ÞðkÞ¼x rðkÞÀx rðkÀ1Þfor k¼2,3,...,n.The tendency of AGO can be approximated by an exponential function.Its dynamic behaviour is like a form of differential equation.The grey model GM(h,N)thus adopts an n-order differential equa-tion tofit the AGO-operational series.The parameters h and N in GM(h,N)denotes the order and the number of vari-ables concerned in the differential equation,respectively.The GM(h,N)can be generally expressed as(Equation(1))X hi¼0a idðiÞxð1Þ1d t¼X Nj¼2b j xð1Þj kðÞð1Þwhere the parameter a is the developing coefficient and b is the grey input.In this study,four different types of GM were adopted,i.e.GM(1,N),GM(1,1)and rolling GM(1,1) (RGM(1,1)).GM(1,N).According to the definition of GM(h,N),GM (1,N)is that the order in the grey differential equation is equal to1and defined as indicated in Equation(2):xð0Þ1ðkÞþazð1Þ1kðÞ¼X Nj¼2b j xð1Þj kðÞ¼b2xð1Þ2ðkÞþb3xð1Þ3ðkÞþÁÁÁþb N xð1ÞNðkÞð2ÞTable2.Proportions of raw materials used for slag preparationSynthetic slagBL3BL4BL5BL6JJ3JJ4JJ5JJ6SC25SC3SC4SC5NH35NH4NH5NH6 Fly ash70%60%50%40%70%60%50%40%75%70%60%50%75%60%50%40%Sludge ash 30%40%50%60%30%40%50%60%25%30%40%50%35%40%50%60%286Waste Management&Research29(3)where zð1Þ1kðÞ¼0:5xð1Þ1ðkÀ1Þþ0:5xð1Þ1ðkÞfor k¼2,3,4,...,n.Expanding Equation(2),we have Equation(3):xð0Þ1ð2Þþazð1Þ12ðÞ¼b2xð1Þ22ðÞþÁÁÁþb N xð1ÞN2ðÞxð0Þ1ð3Þþazð1Þ13ðÞ¼b2xð1Þ23ðÞþÁÁÁþb N xð1ÞN3ðÞ...xð0Þ1ðnÞþazð1Þ1nðÞ¼b2xð1Þ2nðÞþÁÁÁþb N xð1ÞNnðÞð3ÞTransforming Equation(3)into matrix form,we have Equation(4):xð0Þ1ð2Þxð0Þ1ð3Þ...xð0Þ1ðnÞ2 66 66 66 437777775¼Àzð1Þ1ð2Þxð1Þ2ð2ÞÁÁÁxð1ÞNð2ÞÀzð1Þ1ð3Þxð1Þ2ð3ÞÁÁÁxð1ÞNð3Þ......Àzð1Þ1ðnÞxð1Þ2ðnÞÁÁÁxð1ÞNðnÞ2666666437777775ab2...b N26666643777775ð4ÞThen the coefficients can be estimated by solving matrix, h¼ðB T BÞÀ1B T Y,whereh¼ab2...b N2666666437777775Y¼xð0Þ1ð2Þxð0Þ1ð3Þ...xð0Þ1ðnÞ266666664377777775B¼Àzð1Þ1ð2Þxð1Þ2ð2ÞÁÁÁxð1ÞNð2ÞÀzð1Þ1ð3Þxð1Þ2ð3ÞÁÁÁxð1ÞNð3Þ......Àzð1Þ1ðnÞxð1Þ2ðnÞÁÁÁxð1ÞNðnÞ266666664377777775:The h values represent the weight of comparative series to the referential series.Additionally,the GM(1,N)model could be used for prediction and described as (Equation(5)):^xð0Þ1ðkÞ¼X Nj¼2b j xð1ÞjðkÞÀazð1Þ1ðkÞð5ÞWhen adopting GM(1,N),2,3,4,5,6,7and8parameters with higher weights(GM1N2-1,GM1N3-1,GM1N4-1, GM1N5-1,GM1N6-1,GM1N7-1,GM1N8-1)were taken as the comparative series,respectively.Thus N was equal to3,4,5,6,7,8and9,respectively.The GM(1,N)con-structed in this study represented the relationship between MSWIfly ash and SSA composition and melting tempera-tures with different replacement levels.GM(0,N).According to the definition of GM(h,N),GM (0,N)is that the order in grey differential equation is equal to 0and defined as follows(Equation(6)):azð1Þ1kðÞ¼X Nj¼2b j xð1Þj kðÞ¼b2xð1Þ2ðkÞþb3xð1Þ3ðkÞþÁÁÁþb N xð1ÞNðkÞð6ÞExpanding Equation(6),we have Equation(7):azð1Þ12ðÞ¼b2xð1Þ22ðÞþÁÁÁþb N xð1ÞN2ðÞazð1Þ13ðÞ¼b2xð1Þ23ðÞþÁÁÁþb N xð1ÞN3ðÞ...azð1Þ1nðÞ¼b2xð1Þ2nðÞþÁÁÁþb N xð1ÞNnðÞð7ÞFigure1.The structure diagram of GM.Pai et al.287Transforming Equation(7)into a matrix form,we have Equation(8):zð1Þ1ð2Þzð1Þ1ð3Þ...zð1Þ1ðnÞ2 66 66 4377775¼xð1Þ2ð2ÞÁÁÁxð1ÞNð2Þxð1Þ2ð3ÞÁÁÁxð1ÞNð3Þ.........xð1Þ2ðnÞÁÁÁxð1ÞNðnÞ26666643777775b2=ab3=a...b N=a2666437775ð8ÞThen the coefficients can be estimated by solving matrix, ^h¼ð^B T^BÞÀ1^B T^Y,where^h¼b2=ab3=a...b N=a26666643777775^Y¼zð1Þ1ð2Þzð1Þ1ð3Þ...zð1Þ1ðnÞ2666666437777775^B¼xð1Þ2ð2ÞÁÁÁxð1ÞNð2Þxð1Þ2ð3ÞÁÁÁxð1ÞNð3Þ.........xð1Þ2ðnÞÁÁÁxð1ÞNðnÞ2666666437777775:The^h values represent the weight of comparative series to the referential series.GM(1,1).If the numbers of comparative series were reduced further,the model was GM(1,1).All time series values of melting temperature were used to establish GM(1,1). Then the constructed GM(1,1)was used for prediction.RGM(1,1).In GM(1,1),all time series values of melting temperature were used to establish GM(1,1).Whereas in RGM(1,1),traditionally the time series data of melting temperature used to construct the model were the4data before the point which was considered to be predicted. That is,the model had to be constructed every time step and only4data were used for model construction.In both GM(1,1)and RGM(1,1),the compositions of MSWIfly ash and SSA were ignored.ANNThe ANN modelling approach in which the important oper-ation features of human nervous system is simulated attempts to solve problems by using information gained from past experience to new problems.In order to operate analogous to a human brain,many simple computational elements called artificial neurons that are connected by vari-able weights are used in the ANN.With the hierarchical structure of a network of interconnected neurons,an ANN is capable of performing complex computations,although each neuron,alone,can only perform simple work.The multi-layer perceptron structure is commonly used for pre-diction among the many different types of structures.A typ-ical neural network model consists of three independent layers:input,hidden,and output layers(Figure2).Each layer is comprised of several operating neurons.Input neu-rons receive the values of input parameters that are fed to the network and store the scaled input values,while the calculated results in output layer are assigned by the output neurons.The hidden layer performs an interface to fully interconnect input and output layers.The pattern of hidden layer to be applied in the hierarchical network can be either multiple layers or a single layer.Each neuron is connected to every neuron in adjacent layers before being introduced as input to the neuron in the next layer by a connection weight,which deter-mines the strength of the relationship between two connected neurons.Each neuron sums all of the inputs that it receives and the sum is converted to an output value based on aFigure2.The structure diagram of ANN.288Waste Management&Research29(3)predefined activation,or transfer,function.For prediction problems,a supervised learning algorithm is often adopted for training the network to relate input data to output data. In recent years,the back-propagation algorithm has been widely used for teaching multi-layer neural networks. Traditionally,the algorithm uses a gradient search technique (the steepest gradient descent method)to minimize a function equal to the mean square difference between the desired and the actual network outputs.In this study,the ANN consisted of three independent layers:input,hidden,and output layers.To compare with GM,2,3,4,5,6,7and8,parameters with higher weights (ANN2-1,ANN3-1,ANN4-1,ANN5-1,ANN6-1,ANN7-1, ANN8-1)were taken as the input layer variables,respectively. Meanwhile the melting temperature was the single output layer variable.The hidden layer was comprised of10operating neurons.The calculation was carried out using MATLAB.Error analysisIn order to evaluate the prediction accuracy of GM and ANN,the mean absolute percentage error(MAPE)was employed,given by Equation(10):MAPE¼1NX xð0ÞðkÞÀ^xð0ÞðkÞxð0ÞðkÞÂ100%ð10Þwhere xð0ÞðkÞis the investigation value,^xð0ÞðkÞis the predic-tion value.Results and discussionCharacterization of sewage sludgeashes and MSWI fly ashTable3lists the chemical composition of sludge ashes.The major components of the sludge ashes were SiO2(44.6–76.5%),Fe2O3(4.6–8.1%),and Al2O3(10.3–17.2).Other important components were CaO(0.5–6.8%),P2O5(0.8–10.2)and Na2O(0.01–0.92%).According to XRF ana-lysis,the major components in the MSWIfly ash were CaO(38.4%),Na2O(5.9%)and SO3(4.7%).The CaO existed inlarge amounts in MSWIfly ash due to the injection of a limesolution to remove acidic gases.Other important compo-nents were Fe2O3(0.6%),SiO2(2.3%)and K2O(4.4%).Variation of composition of MSWI fly ashand SSA and co-melting temperaturesThe numbers of data investigated were totally48,asshown in Figure3.Among the total numbers of data,thenumbers for training and testing(predicting)were40and8,respectively.Table3.Chemical analyses of raw materialsSample SiO2(%)Al2O3(%)Fe2O3(%)CaO(%)MgO(%)SO3(%)K2O(%)Na2O(%)P2O5(%)Fly ash 2.330.010.5838.43 1.58 4.65 4.35 5.890.41BL-ash55.0117.207.59 3.87 1.64 1.39 2.670.86 1.45JJ-ash50.0116.238.06 4.75 1.68 3.33 2.610.92 1.03SC-ash76.4610.30 4.570.490.800.24 1.910.010.82NH-ash44.5915.57 6.04 6.83 1.980.56 2.950.9210.21 BL,Ba-Li Sewage Treatment Plant;JJ,Chung-Chou Sewage Treatment Plant;SC,Chung-Hsing-Hsin-Tsun Sewage Treatment Plant a; NH,Nei-Hu Sewage Treatment Plant.Figure3.Variation of composition of MSWI fly ash and SSA and melting temperatures.Pai et al.289Weights of operation parametersAccording to Equation(8),the weights(^h)between the melting temperatures and different composition were calculated.The weights were in the following order: MgO(1914.30)>K2O(650.01)>SO3(321.11)>Al2O3 (141.05)>Fe2O3(127.34)>CaO(71.75)>P2O5(55.697) >SiO2(38.125).Based on the results of GM(0,N),the selected input variables in seven types of GM(1,N)and in seven types of ANN are shown in Table4.SimulationFigure4and5depict the prediction results using different GM and ANN,respectively.The1st to40th values were used for model construction,while the41st to48th values were used for evaluation offitness.Table5shows the results of error analysis.As shown in Table4,in the aspect of model construction,MAPEs between the predicted and investigated values of melting temperature were between1.42and14.41% using GM1N2-1to GM1N8-1.The values were2.07and 1.31%when using RGM(1,1)and GM(1,1),respectively. The MAPEs fell in the range of0.07and0.26%using ANN2-1to ANN8-1.In the aspect of model prediction,the MAPEs were between 1.69and13.20%when adopting seven different GM(1,N)models.The MAPE were1.59and1.31%when GM(1,1)and RGM(1,1)were adopted.The MAPEs fell within the range of0.04and0.50%using different types of ANN.When the number of variables involved GM models increased,the MAPE decreased.Contrarily,the MAPE increased when the number of variables involved in ANN models increased.According to the structure of GM,the more variables were adopted,the more the weight of different variables could be calculated for prediction.It resulted in lower MAPE when more variables were adopted.More vari-ables in ANN would result in the possibility of getting trapped in local minimum.Therefore the MAPE increased when more variables were adopted.In GMs,the MAPE of1.31%was found to be the lowest when using RGM(1,1)to predict melting temperature.This value was higher than those of ANN2-1to ANN8-1by1.27, 1.25,1.24,1.18,1.16,1.14%,and0.81%,respectively.Although a goodfitness could be achieved using ANN too,they required a large quantity of data for con-structing model.Contrarily,GM only required a small amount of data(at least4data).Therefore,GM could be applied successfully in predicting melting temperature of MSWIfly ash and SSA when the information was not suffi-cient.It also indicated that the composition could be applied on the prediction of co-melting temperature of MSWIfly ash and SSA.ConclusionsNine types of GM including GM1N2-1,GM1N3-1, GM1N4-1,GM1N5-1,GM1N6-1,GM1N7-1,GM1N8-1, GM(1,1),and RGM(1,1)were used to predict the co-melting temperature of MSWIfly ash and SSA.The ANN was adopted for comparison purposes.The simulation results can be summarized in the following manner..The major components of the sludge ashes were SiO2(44.6–76.5%),Fe2O3(4.6–8.1%),and Al2O3(10.3–17.2).Other important components were CaO(0.5–6.8%),P2O5(0.8–10.2)and Na2O(0.01–0.92%).According to XRFanalysis,the major components in MSWIfly ash were CaO(38.4%),Na2O(5.9%)and SO3(4.7%)..In the aspect of model prediction,the MAPEs were between1.69and13.20%when adopting seven different GM(1,N)models.The MAPE were1.59and1.31%when GM(1,1)and RGM(1,1)were adopted.The MAPEs fell within the range of0.04and0.50%using different types of ANN.Since a correlation between the composition of MSWIfly ash and SSA and co-melting temperatures was constructed,the constructed GM or ANN could be used in the objective function including linear program-ming or other optimization tools for achieving the best co-melting temperature in future studies..In GMs,the MAPE of1.31%was found to be the lowest when using RGM(1,1)to predict melting temperature.This value was higher than those of ANN2-1to ANN8-1 by 1.27, 1.25, 1.24, 1.18, 1.16, 1.14,and0.81%, respectively..GM only required a small amount of data(at least4data).Therefore,GM could be applied successfully in predicting co-melting temperature of MSWIfly ash and SSA whenTable4.Selected input variables in GM and ANNGM ANN Input variablesGM1N2-1ANN2-1MgO,K2OGM1N3-1ANN3-1MgO,K2O,SO3GM1N4-1ANN4-1MgO,K2O,SO3,Al2O3GM1N5-1ANN5-1MgO,K2O,SO3,Al2O3,Fe2O3GM1N6-1ANN6-1MgO,K2O,SO3,Al2O3,Fe2O3,CaOGM1N7-1ANN7-1MgO,K2O,SO3,Al2O3,Fe2O3,CaO,P2O5GM1N8-1ANN8-1MgO,K2O,SO3,Al2O3,Fe2O3,CaO,P2O5,SiO2GM(1,1)All melting temperature data fortrainingRGM(1,1)Previous4melting temperaturebefore predicted point290Waste Management&Research29(3)。