鲁教版初中数学八年级上册期末测试题
鲁教版八年级数学上册期末考试试题(附答案)

八年级数学上册期末考试试题(附答案)姓名:__________ 班级:__________考号:__________一、单选题(共12题;共36分)1.某班抽取6名同学参加体能测试,成绩如下:80,90,75,75,80,80.下列表述错误的是()A. 平均数是80B. 极差是15C. 中位数是80D. 标准差是252.已知方程组,则|x-y|的值()A. 5B. -1C. 0D. 13.在“经典诵读”比赛活动中,某校10名学生参赛成绩如图所示,对于这10名学生的参赛成绩,下列说法正确的是()A. 众数是90分B. 中位数是95分C. 平均数是95分D. 方差是154.下列是方程组的解的是( )A. B. C. D.5.设,a在两个相邻整数之间,则这两个整数是()A. 1和2B. 2和3C. 3和4D. 4和56.点P(﹣2,3)关于y轴的对称点的坐标是()A. (2,3 )B. (﹣2,﹣3)C. (﹣2,3)D. (﹣3,2)7.为了庆祝国庆,八年级(1)班的同学做了许多拉花装饰教室,小玲抬来一架2.5米长的梯子,准备将梯子架到2.4米高的墙上,则梯脚与墙角的距离是()A. 0.6米B. 0.7米C. 0.8米D. 0.9米8.已知一次函数y=kx+b和y=x+a的图象交于点A,则关于x,y的二元一次方程组的解为()A. B. C. D.9.如图,AB∥CD,BC平分∠ABE, ∠C=34°,则∠BED的度数等于()A. B. C. D.10.如图,由下列条件不能得到AB∥CD的是()A. ∠B+∠BCD=180°B. ∠1=∠2C. ∠3=∠4D. ∠B=∠511.如图,已知A(4,0)、B(0,4),从点P(2,0)射出的光线经直线AB反向后再射到直线OB上,最后经直线OB反射后又回到P点,则光线所经过的路程是()A. B. 6 C. D.12.如图,直线a∥b,直线l与直线a、b分别相交于A、B两点,过点A作直线l的垂线交直线b于点C,若∠2=40°,则∠1的度数为()A. 20°B. 30°C. 40°D. 50°二、填空题(共6题;共24分)13.若一组数据的平均数为6,众数为5,则这组数据的方差为________.14.如图,l是四边形ABCD的对称轴,如果AD∥BC,有下列结论:①AB∥CD;②AB=BC;③AB⊥BC;④AO=OC,其中正确的结论是________(把你认为正确的结论的序号都填上).15.若和都是关于x、y的二元一次方程ax﹣y=b的解,则ab=________.16.如图,已知⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,则AB=________.17.如图,在△ABC中,∠A=20°,∠ABC与∠ACB的平分线交于点D1,∠ABD1与∠ACD1的平分线交于点D2,以此类推,∠ABD2与∠ACD2的平分线交于点D,则∠BDC的度数是________.(16题)(17题)18.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x小时,两车之间的距离y千米,图中的折线表示y与x之间的函数关系,则出发6小时的时候,甲、乙两车相距________千米.三、计算题(共6题;共60分)19.为了求1+2+22+23+…+22008的值,可令S=1=2+22+23+…+22008,则2S=2+22+23+24+…+22009,因此2S ﹣S=22009﹣1,所以1+2+22+23+…+22008=22009﹣1仿照以上推理,计算1+5+52+53+…+52009的值.20.已知和是关于x,y的二元一次方程y = kx+b的解,求k,b的值.21.甲、乙两人分别在六次射击中的成绩如下表:(单位:环)第1次第2次第3次第4次第5次第6次甲 6 7 7 8 6 8乙 5 9 6 8 5 9分别算出两人射击的平均数和方差.这六次射击中成绩发挥比较稳定的是谁?22.长方体的长为20cm,宽为10cm,高为15cm,点B离点C5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点B去吃一滴蜜糖,需要爬行的最短距离是多少?23.某农机租赁公司共有50台收割机,其中甲型20台,乙型30台,现将这50台联合收割机派往A,B两地区收割水稻,其中30台派往 A地区,20台派往 B地区,两地区与该农机公司商定的每天租赁价格如表:每台甲型收割机的租金每台乙型收割机的租金A地区 1800元1600元B地区 1600元1200元(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y元,求y关于x的函数关系式;(2)若使农机租赁公司这50台收割机一天所获租金不低于79600元,试写出满足条件的所有分派方案;(3)农机租赁公司拟出一个分派方案,使该公司50台收割机每天获得租金最高,并说明理由.24.设a、b是任意两个实数,用max{a,b}表示a、b两数中较大者,例如:max{﹣1,﹣1}=﹣1,max{1,2}=2,max{4,3}=4,参照上面的材料,解答下列问题:(1)max{5,2}=________,max{0,3}=________;(2)若max{3x+1,﹣x+1}=﹣x+1,求x的取值范围;(3)求函数y=x2﹣2x﹣4与y=﹣x+2的图象的交点坐标,函数y=x2﹣2x﹣4的图象如图所示,请你在图中作出函数y=﹣x+2的图象,并根据图象直接写出max{﹣x+2,x2﹣2x﹣4}的最小值.答案一、单选题1.D2. D3.A4. D5. B6. A7.B8.B9. D 10.B 11. A 12. D二、填空题13. 14.①、②、④ 15. 10 16.17. 40°18.450三、计算题19. 解:令S=1+5+52+53+ (52009)则5S=5+52+53+ (52010)5S﹣S=﹣1+52010,4S=52010﹣1,则S=.20.解:根据题意,得解得:21.解:∵甲= (6+7+7+8+6+8)=7,乙= (5+9+6+8+5+9)=7;∴S2甲= [(6﹣7)2+(7﹣7)2+(7﹣7)2+(8﹣7)2+(6﹣7)2+(8﹣7)2]= ,S2乙= [(5﹣7)2+(9﹣7)2+(6﹣7)2+(8﹣7)2+(5﹣7)2+(9﹣7)2]=3;∴S2甲<S2乙,∴甲在射击中成绩发挥比较稳定22. 解:将长方体沿CF、FG、GH剪开,向右翻折,使面FCHG和面ADCH在同一个平面内,连接AB,如图1,由题意可得:BD=BC+CD=5+10=15cm,AD=CH=15cm,在Rt△ABD中,根据勾股定理得:将长方体沿DE、EF、FC剪开,向上翻折,使面DEFC和面ADCH在同一个平面内,连接AB,如图2,由题意得:BH=BC+CH=5+15=20cm,AH=10cm,在Rt△ABH中,根据勾股定理得:则需要爬行的最短距离是15 cm.连接AB,如图3,由题意可得:BB′=B′E+BE=15+10=25cm,AB′=BC=5cm,在Rt△AB′B中,根据勾股定理得:∵∴则需要爬行的最短距离是23.(1)解:由于派往A地乙型收割机x台,则派往B地乙型收割机为(30-x)台,派往A,B地区的甲型收割机分别为(30-x)台和(x-10)台,∴y=1600x+1200(30-x)+1800(30-x)+1600(x-10)=200x+74000(10≤x≤30且x为整数)(2)解:由题意得200x+74000≥79600,解得x≥28,∵28≤x≤30,x是正整数,∴x=28,29,30,∴有3种不同分派方案:①当x=28时,派往A地区的甲型收割机2台,乙型收割机28台,余者全部派往B地区;②当x=29时,派往A地区的甲型收割机1台,乙型收割机29台,余者全部派往B地区;③当x=30时,即30台乙型收割机全部派往A地区,20台甲型收割机全部派往B地区(3)解:∵y=200x+74000中y随x的增大而增大,∴当x=30时,y取得最大值,此时,y=200×30+74000=80000, 建议农机租赁公司将30台乙型收割机全部派往A地区,20台甲型收割机全部派往B地区,这样公司每天获得租金最高,最高租金为80000元24. (1)5;3(2)解:∵max{3x+1,﹣x+1}=﹣x+1,∴3x+1≤﹣x+1,解得:x≤0.(3)解:联立两函数解析式成方程组,,解得:,,∴交点坐标为(﹣2,4)和(3,﹣1).画出直线y=﹣x+2,如图所示,观察函数图象可知:当x=3时,max{﹣x+2,x2﹣2x﹣4}取最小值﹣1.。
(word版)鲁教版八年级数学上期末试题

2021-2021年度鲁教版八年级数学上期末模拟试题姓名班级成绩一、选择题:〔每题3分,共39分〕1、以下标志既是轴对称图形又是中心对称图形的是〔〕A. B. C.D.2、以下从左到右边的变形,是因式分解的是〔〕A.〔3﹣x〕〔3+x〕=9﹣x2B.〔y+1〕〔y﹣3〕=﹣〔3﹣y〕〔y+1〕C.4yz﹣2y2z+z=2y〔2z﹣yz〕+z D.﹣8x2+8x﹣2=﹣2〔2x﹣1〕23、以下各式不能用公式法分解因式的是〔〕A.a2﹣4B.9a2b2﹣9ab+1C.〔a+b〕2﹣〔a﹣b〕2D.a4+2a2+14、假设分式的值为零,那么x的值是〔〕A.0B.±2C.4D.﹣45、化简的结果为〔〕A.B.C.D.﹣b6、一个多边形的内角和是外角和的A.8 B.6C.5D7、数据0,1,1,x,3,4的平均数是3倍,那么这个多边形的边数是〔.32,那么这组数据的中位数是〔〕〕A.1B.3C.D.28、甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表:班级参赛人数中位数方差平均数甲55149191135乙55151110135某同学分析上表后得出如下结论:〔1〕甲、乙两班学生成绩平均水平相同;〔2〕乙班优秀的人数多于甲班优秀的人数〔每分钟输入汉字≥150个为优秀〕;〔3〕甲班成绩的波动比乙班大,上述结论正确的选项是〔〕A〔1〕〔2〕〔3〕B〔1〕〔2〕C〔1〕〔3〕D〔2〕〔3〕9、如图,将△AOB绕点O逆时针旋转90°,得到△A′OB′.假设点A的坐标为〔a,b〕,那么点A′的坐标为〔〕A.〔﹣a,﹣b〕B.〔b,a〕C.〔﹣b,a〕D.〔b,﹣a〕10、在?ABCD中,CE平分∠BCD交AD于点E,假设AD=6,AE=2,那么AB的长为〔〕A.5B.4C.3D.211、如图,在四边形ABCD中,对角线AC、BD相交于点O,以下条件不能判定四边形ABCD为平行四边形的是〔〕A.AB∥CD,AD∥BC B.OA=OC,OB=ODC.AD=BC,AB∥CD D.AB=CD,AD=BC12.A,B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,水流速度为4千米/时,假设设该轮船在静水中的速度为x千米/时,那么可列方程〔〕A.B.C.+4=9D.13、如图,∠ACB=90°,D为AB的中点,连接DC并延长到E,使CE=CD,过点B作BF∥DE,与AE的延长线交于点F.假设AB=6,那么BF的长为〔〕A.6B.7C.8D.10二、填空题:〔每题3分,共21分〕2214、假设x﹣y=5,xy=6,那么xy﹣xy=.15、假设关于x的方程﹣2=的解为非负数,那么m的取值范围是.16、在某公益活动中,小明对本班同学的捐款情况进行了统计,绘制成如图不完整的统计图.其中捐100元的人数占全班总人数的25%,那么本次捐款的中位数是元.17.如图,?ABCD的两条对角线AC、BD相交于点O,假设,AC=3,BD=4,那么四边形ABCD的周长为.18、假设多项式4x2﹣kxy+y2是完全平方式,那么k的值是19、假设分式方程:有增根,那么k=_________20、假设ABCD的周长为40cm,ABC的周长为27cm,那么AC的长是三、解答题:共60分20、分解因式:〔每题3分共6分〕〔1〕﹣a2+ab﹣b2(2)〔a 2+b2〕2﹣4a2b221、先化简,再求值+〔a﹣〕,其中a=+1,b=﹣1.〔5分〕22、解以下分式方程:〔8分〕〔1〕=〔2〕4x2.x 2111x23、作图题:〔6分〕如图,△ABC三个顶点坐标分别是A〔1,3〕,B〔4,1〕,C〔4,4〕.①画出△ABC向左平移5个单位长度后得到的△A1B1C1,并写出各点坐标。
【鲁教版】八年级数学上期末试题(附答案)

一、选择题1.小明和小亮在研究一道数学题,如图EF AB ⊥,CD AB ⊥,垂足分别为E 、D ,G 在AC 上.小明说:“如果CDG BFE ∠=∠,则能得到AGD ACB ∠=∠”; 小亮说:“连接FG ,如果//FG AB ,则能得到GFC ADG ∠=∠”. 则下列判断正确的是( )A .小明说法正确,小亮说法错误B .小明说法正确,小亮说法正确C .小明说法错误,小亮说法正确D .小明说法错误,小亮说法错误2.下列命题中,假命题是( )A .在同一平面内,垂直于同一条直线的两直线平行B .到线段两端点距离相等的点在这条线段的垂直平分线上C .一条直角边和另一条直角边上的中线对应相等的两个直角三角形全等D .一边长相等的两个等腰直角三角形全等3.如图,//AB EF ,C 点在EF 上,EAC ECA ∠=∠,BC 平分DCF ∠,且AC BC ⊥.下列结论:①AC 平分DCE ∠;②//AE CD ;③190B ∠+∠=︒;④BDC 21∠=∠.其中结论正确的个数有( )A .1个B .2个C .3个D .4个4.如图,一次函数162y x =-+的图象分别交x 、y 轴于点A 、B ,与正比例函数y x =的图象交于第一象限内的点C ,则OBC 的面积为( )A .12B .24C .27D .485.下列各组数中①22x y =⎧⎨=⎩; ②21x y =⎧⎨=⎩;③22x y =⎧⎨=-⎩;④16x y ⎧⎨⎩==是方程410x y +=的解的有( ) A .1个B .2个C .3个D .4个6.一次函数y mx n =-+的图象经过第二、三、四象限,则化简22()m n n -+所得的结果是( ) A .mB .m -C .2m n -D .2m n -7.若某正比例函数过(2,3)-,则关于此函数的叙述不.正确的是( ). A .函数值随自变量x 的增大而增大 B .函数值随自变量x 的增大而减小 C .函数图象关于原点对称 D .函数图象过二、四象限8.同一平面直角坐标系中,一次函数y mx n =+与y nx m =+(,m n 为常数)的图象可能是A .B .C .D .9.将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方案有( ) A .4种B .5种C .6种D .7种10.若点()23,P m m --在第四象限,则m 的取值范围是( ) A .302m <<B .0m >C .32m >D .0m <11.下列实数227,3π,3.14159,9-39-0.1010010001…….(每两个1之间依次多1个0)中无理数有( ) A .1个 B .2个 C .3个 D .4个 12.以下列各组数为长度的线段,不能构成直角三角形的是( )A .2,3,4B .3,4,5C .1,12D .6,8,10二、填空题13.某机器零件的横截面如图所示,按要求线段AB 和DC 的延长线相交成直角才算合格.一工人测得23A ∠=︒,31D ∠=︒,143AED ∠=∠︒,请你帮他判断该零件是否合格_______(填“合格”或“不合格”).14.数学课上,同学提出如下问题:老师说这个证明可以用反证法完成,思路及过程如下: 如图1,我们想要证明“如果直线AB ,CD 被直线所截EF ,AB ∥CD ,那么∠EOB=EO D '∠.” 如图2,假设∠EOB≠EO D '∠,过点O 作直线A'B',使EOB '∠=EO D '∠,可得A B ''∥CD .这样过点O 就有两条直线AB ,A B ''都平行于直线CD ,这与基本事实_________矛盾,说明∠EOB≠EO D '∠的假设是不对的,于是有∠EOB=∠EO D '∠.小贴士反证法不是直接从命题的已知得出结论,而是假设命题的结论不成立,由此经过推理得出矛盾,由矛盾断定所作假设不正确,从而得到原命题成立.在某些情形下,反证法是很有效的证明方法.请补充上述证明过程中的基本事实:_________________________15.若方程x |m|-2+(m+3)y 2m-n =6是关于x 、y 的二元一次方程,则m+n=_____ 16.方程组6293x yx y a=-⎧⎨-=-⎩的解x 、y 互为相反数,则a =_____.17.已知Q 在直线4y x =-+上,且点Q 到两坐标轴的距离相等,那么点Q 的坐标为__________.18.在平面直角坐标系中,点()3,4A -到x 轴的距离为________. 19.材料:一般地,n 个相同因数a 相乘:n a a a a a ⋅⋅⋅⋅⋅个记为n a .如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=).那么3log 9=_____,()2231log 16log 813+=_____.20.直角三角形的两边长分别为5和3,该三角形的第三边的长为________.三、解答题21.填空:(将下面的推理过程及依据补充完整)如图,已知:CD 平分ACB ∠,//AC DE ,//CD EF ,求证:EF 平分DEB ∠.证明:∵CD 平分ACB ∠(已知),DCA DCE ∴∠=∠(角平分线的定义),//AC DE (已知),DCA ∴∠=____(两直线平行,内错角相等) DCA CDE ∴∠==∠(等量代换), //CD EF (已知),∴_____CDE =∠(_________);DCE BEF ∠=∠(__________),∴__________=__________(等量代换),EF ∴平分DEB ∠(______________).22.平面直角坐标系中,已知直线1l 经过原点与点(),2P m m ,直线2l :23y mx m =+-(0)m ≠; (1)求证:点(23)--,在直线2l 上; (2)当2m =时,请判断直线1l 与2l 是否相交?23.一辆货车从甲地开往乙地,一辆客车从乙地开往甲地,两车同时出发,设货车离甲地的距离为1km y ,客车离甲地的距离为2km y ,两车行驶的时间为h x ,12,y y 与x 之间的关系如图所示.(1)分别求出1y 、2y 与x 之间的关系式;(2)甲、乙两地间有A ,B 两个加油站,且两个加油站相距150km ,当货车进人入A 加油站时,客车恰好进入B 加油站,求A 加油站离甲地的距离.24.如图所示,ABC 在正方形网格中,若点A 的坐标为(0,3),点C 的坐标为(1,1)按要求回答下列问题: (1)在图中建立正确的平面直角坐标系; (2)根据所建立的坐标系,写出点B 的坐标; (3)作出ABC 关于x 轴的对称图形'''A B C .25.计算:20116(2019)|527|32π-⎛⎫⨯+---- ⎪⎝⎭. 26.综合与探究在学习了轴对称变换后,我们经常会遇到三角形中的“折叠”问题,在解答这种问题时,通常会考虑到折叠前与折叠后的图形全等,并利用全等图形的性质,即对应角相等,对应边相等来研究解决数学中的“折叠”问题,每个小组剪了一些如图1所示的Rt ABC △纸片(90B ∠=︒,6AB =,8BC =)并进行探究:(1)如图2,“奋斗”小组将Rt ABC △纸片沿DE 折叠,使点C 落在ABC 外部的'C 处 ①若140∠=︒,37C ∠=︒,则2∠的度数为 . ②1∠,2∠,C ∠之间的数量关系为 .(2)如图3,“勤奋”小组将ABC 沿DE 折叠,使点C 与点A 重合,求BD 的长; (3)如图4,“雄鹰”小组将ABC 沿AD 折叠,使点B 落在点E 处,连接CE ,当CDE △为直角三角形时,求BD 的长.【参考答案】***试卷处理标记,请不要删除1.A解析:A【分析】由EF⊥AB,CD⊥AB,知CD∥EF,然后根据平行线的性质与判定即可得出答案.【详解】解:∵EF⊥AB,CD⊥AB,∴CD∥EF,若∠CDG=∠BFE,∵∠BCD=∠BFE,∴∠BCD=∠CDG,∴DG∥BC,∴∠AGD=∠ACB,故小明说法正确;∵FG∥AB,∴∠B=∠GFC,故得不到∠GFC=∠ADG,故小亮说法错误,故选:A.【点睛】本题考查了平行线的判定与性质,属于基础题,关键是掌握平行线的性质与判定.2.D解析:D【分析】根据垂线的性质,线段垂直平分线的判定,全等三角形的判定对各选项分析判断后利用排除法求解.【详解】A、同一平面内,垂直于同一条直线的两直线互相平行,真命题,本选项不符合题意;B、到线段两端点距离相等的点在这条线段的垂直平分线上,真命题,本选项不符合题意;C、一条直角边和另一条直角边上的中线对应相等的两个直角三角形,首先根据“HL”定理,可判断两个小直角三角形全等,可得另一条直角边相等,然后,根据“SAS”,可判断两个直角三角形全等,真命题,本选项不符合题意;D、有一边相等的两个等腰直角三角形不一定全等,如:一个等腰直角三角形的直角边与另一个等腰直角三角形的斜边相等,这两个等腰直角三角形并不全等,假命题,本选项符合题意.【点睛】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.3.D解析:D 【分析】根据平行线的性质及角度的计算,等腰三角形的性质即可进行一一求解判断. 【详解】根据//AB EF , BC 平分DCF ∠,且AC BC ⊥可得∠1+∠BCD=90°,∠BCD=12∠DCF , 又∠DCF+∠ECD=180°,∴∠1=12∠ECD ,故AC 平分DCE ∠,①正确; ∵AC 平分DCE ∠,∴∠1=∠ECA,∵EAC ECA ∠=∠ ∴EAC ∠=∠1,∴//AE CD ,②正确; ∵EF ∥AB ,∴∠FCB=∠B ,∴∠B=∠DCB , ∵∠1+∠DCB=90°,∴190B ∠+∠=︒,③正确; ∵EF ∥AB ,∴∠ECA=∠CAD ,∵∠1=∠ECA ∴∠1=∠CAD∵∠CDB 是△ACD 的一个外角,∴∠CAD=∠1+∠CAD=2∠1,④正确; 故选D 【点睛】此题主要考查平行线的角度计算,解题的关键是根据图像的特点进行求解.4.A解析:A 【分析】 因直线162y x =-+交y 轴于点B ,故可求得点B 的坐标,从而可得OB 的长,又直线162y x =-+与直线y x =相交,故可求得点C 的坐标,从而可得△OBC 的边OB 上的高,因此可求得△OBC 的面积. 【详解】 对于直线162y x =-+,令0x =,得:6y = ∴6OB =解方程组162y xy x =⎧⎪⎨=-+⎪⎩,得:44x y =⎧⎨=⎩ 即点C 的坐标为(4,4)∴点C 到y 轴的距离为4 ∴14122OBCSOB =⨯⨯= 故选:A 【点睛】本题主要考查了求两直线交点坐标、平面直角坐标系中求直线围成的三角形面积,关键分别求得点B 、点C 的坐标,而求两直线的交点坐标体现了数形结合的思想.5.B解析:B 【详解】解:把①22x y ==⎧⎨⎩代入得左边=10=右边;把②2{1x y ==代入得左边=9≠10;把③2{2x y ==-代入得左边=6≠10; 把④1{6x y ==代入得左边=10=右边;所以方程4x +y =10的解有①④2个. 故选B .6.D解析:D 【分析】根据题意可得﹣m <0,n <0,再进行化简即可. 【详解】∵一次函数y =﹣mx +n 的图象经过第二、三、四象限, ∴﹣m <0,n <0, 即m >0,n <0,∴=|m ﹣n |+|n | =m ﹣n ﹣n =m ﹣2n , 故选D . 【点睛】本题考查了二次根式的性质与化简以及一次函数的图象与系数的关系,熟练掌握一次函数的图象与性质是解题的关键.7.A解析:A【详解】解:设正比例函数解析式(0)y kx k =≠, ∵正比例函数过(2,3)-, ∴32k -=, ∴32k =-, ∴正比例函数解析式为32y x =-, ∵302k =-<, ∴图象过二、四象限,函数值随自变量x 增大而减小,图象关于原点对称, ∴四个选项中,只有A 选项中的不正确,其余三个选项中的结论都是正确的. 故选A .8.B解析:B 【分析】根据一次函数的图像即可求解判断. 【详解】由A,C 图像可得函数y=mx+n 过一,二,三象限,故m >0,n >0, 故y=nx+m 也过一,二,三象限,故A,C 错误;由B,D 图像可得函数y=mx+n 过一三四象限,故m >0,n <0, 故y=nx+m 过一,二,四象限,故B 正确,D 错误; 故选B. 【点睛】此题主要考查一次函数的图像,解题的关键是熟知一次函数的性质.第II 卷(非选择题)请点击修改第II 卷的文字说明9.C解析:C 【分析】设兑换成10元x 张,20元的零钱y 元,根据题意可得等量关系:10x 张+20y 张=100元,根据等量关系列出方程求整数解即可. 【详解】解:设兑换成10元x 张,20元的零钱y 元,由题意得: 10x+20y=100, 整理得:x+2y=10, 方程的整数解为:方程的整数解为:246810x 0,,,,,,432105x x x x x y y y y y y ======⎧⎧⎧⎧⎧⎧⎨⎨⎨⎨⎨⎨======⎩⎩⎩⎩⎩⎩ 因此兑换方案有6种, 故选C . 【点睛】此题主要考查了二元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.10.C解析:C 【分析】先根据第四象限内点的坐标符号特点列出关于m 的不等式组,再求解可得. 【详解】解:根据题意,得:230?0? m m -⎧⎨-⎩>①<②,解不等式①,得:m >32,解不等式②,得:m >0,∴不等式组的解集为m >32,故选:C . 【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.11.C解析:C 【分析】根据无理数的概念即可判断. 【详解】解:, 无理数有:3π,-0.1010010001…….(每两个1之间依次多1个0),共有3个.故选:C . 【点睛】本题考查了无理数.解题的关键是熟练掌握无理数的概念.12.A解析:A 【分析】由勾股定理的逆定理逐一分析各选项即可得到答案.【详解】解:2222349134,+=+=≠∴以 2,3,4为边的三角形不是直角三角形,故A 符合题意,2223491625=5,+=+=∴以 3,4,5为边的三角形是直角三角形,故B 不符合题意, ()2221122,+== ∴以1,1,2为边的三角形是直角三角形,故C 不符合题意,222683664100=10,+=+=∴以6,8,10为边的三角形是直角三角形,故D 不符合题意,故选:.A【点睛】本题考查的是勾股定理的逆定理的应用,掌握勾股定理的逆定理是解题的关键.二、填空题13.不合格【解析】试题分析:延长ABDC 相交F 连接FE 并延长至G 根据三角形的外角的性质可得(∠A+∠AFG )+(∠D+∠DFG )=∠AEG+∠DEG 再根据∠AFD=∠AFG+∠DFG=∠AED-∠A-∠解析:不合格【解析】试题分析:延长AB 、DC 相交F ,连接F 、E 并延长至G .根据三角形的外角的性质可得(∠A+∠AFG )+(∠D+∠DFG )=∠AEG+∠DEG ,再根据∠AFD=∠AFG+∠DFG=∠AED-∠A-∠D 即可作出判断.延长AB 、DC 相交F ,连接F 、E 并延长至G .则有(∠A+∠AFG )+(∠D+∠DFG )=∠AEG+∠DEG=∠AED=143°;∵∠A=23°,∠D=31°,∴∠AFD=∠AFG+∠DFG=∠AED-∠A-∠D=143°-23°-31°=89°≠90°.所以零件不合格.考点:三角形的外角的性质点评:解题的关键是熟练掌握三角形的外角的性质:三角形的任何一个外角等于和它不相邻的两个内角的和.14.经过直线外一点有且只有一条直线与已知直线平行经过直线外一点有且只有一条直线与已知直线平行【分析】直接利用反证法的基本步骤以及结合平行线的性质分析得出答案【详解】解:假设∠EOB≠∠EOD过点O作直线解析:经过直线外一点,有且只有一条直线与已知直线平行,经过直线外一点,有且只有一条直线与已知直线平行.【分析】直接利用反证法的基本步骤以及结合平行线的性质分析得出答案.【详解】解:假设∠EOB≠∠EO'D,过点O作直线A'B',使∠EOB'=∠EO'D,依据基本事实同位角相等,两直线平行,可得A'B'∥CD.这样过点O就有两条直线AB,A′B′都平行于直线CD,这与基本事实:经过直线外一点,有且只有一条直线与已知直线平行矛盾,说明∠EOB≠∠EO'D的假设是不对的,于是有∠EOB=∠EO'D.故答案为:经过直线外一点,有且只有一条直线与已知直线平行;经过直线外一点,有且只有一条直线与已知直线平行.【点睛】本题考查了反证法,正确掌握反证法的基本步骤是解题的关键.15.8【分析】根据二元一次方程满足的条件:含有2个未知数未知数的项的次数是1的整式方程可得|m|-2=12m-n=1解出mn的值可得答案【详解】解:由题意知|m|-2=12m-n=1且m+3≠0解得m=解析:8【分析】根据二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程可得|m|-2=1,2m-n=1,解出m、n的值可得答案.【详解】解:由题意,知|m|-2=1,2m-n=1且m+3≠0.解得m=3,n=5.所以m+n=3+5=8.故答案是:8.【点睛】主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.16.7【分析】由x与y互为相反数得到y=﹣x代入方程组求出a的值即可【详解】解:由xy互为相反数得到x+y=0即y=﹣x代入方程组得:解得:故答案为:7【点睛】本题考查相反数的性质二元一次方程组的解法熟解析:7【分析】由x与y互为相反数得到y=﹣x,代入方程组求出a的值即可.【详解】解:由x、y互为相反数,得到x+y=0,即y=﹣x,代入方程组6293x yx y a=-⎧⎨-=-⎩得:6293x xx x a=+⎧⎨+=-⎩,解得:x=-6 a=7⎧⎨⎩,故答案为:7.【点睛】本题考查相反数的性质,二元一次方程组的解法,熟练掌握基础知识是关键.17.【分析】根据题意分点Q的坐标是(aa)和点Q的坐标是(b-b)两种情况然后根据点Q在直线y=-x+4上分别求出点Q的坐标是多少即可【详解】解:(1)当点Q的坐标是(aa)时a=-a+4解得a=2∴点解析:()2,2【分析】根据题意,分点Q的坐标是(a,a)和点Q的坐标是(b,-b)两种情况,然后根据点Q在直线y=-x+4上,分别求出点Q的坐标是多少即可.【详解】解:(1)当点Q的坐标是(a,a)时,a=-a+4,解得a=2,∴点Q的坐标是(2,2);(2)当点Q的坐标是(b,-b)时,-b=-b+4,此方程无解.∴点Q的坐标是(2,2).故答案为:(2,2).【点睛】此题主要考查了一次函数图象上点的坐标特征.注意考虑两种情况.18.4【分析】根据点的坐标表示方法得到点A(3-4)到x轴的距离是纵坐标的绝对值即|-4|然后去绝对值即可【详解】解:点A(3-4)到x轴的距离为|-4|=4故答案为4【点睛】本题考查了点的坐标:在平面解析:4【分析】根据点的坐标表示方法得到点A(3,-4)到x轴的距离是纵坐标的绝对值即|-4|,然后去绝对值即可.【详解】解:点A(3,-4)到x轴的距离为|-4|=4.故答案为4.【点睛】本题考查了点的坐标:在平面直角坐标系中,过一个点分别作x 轴和y 轴的垂线,用垂足在x 轴和y 轴上的坐标分别表示这个点的横纵坐标.19.3;【分析】由可求出由可分别求出继而可计算出结果【详解】解:(1)由题意可知:则(2)由题意可知:则∴故答案为:3;【点睛】本题主要考查定义新运算读懂题意掌握运算方法是解题关键解析:3; 1173. 【分析】由239=可求出2log 93=,由4216=,43=81可分别求出2log 164=,3log 814=,继而可计算出结果.【详解】解:(1)由题意可知:239=,则2log 93=,(2)由题意可知: 4216=,43=81,则2log 164=,3log 814=, ∴223141(log 16)log 811617333+=+=, 故答案为:3;1173. 【点睛】本题主要考查定义新运算,读懂题意,掌握运算方法是解题关键.20.或【分析】本题已知直角三角形的两边长但未明确这两条边是直角边还是斜边因此两条边中的较长边5既可以是直角边也可以是斜边所以求第三边的长必须分类讨论即5是斜边或直角边的两种情况然后利用勾股定理求解【详解解析:4【分析】本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边5既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即5是斜边或直角边的两种情况,然后利用勾股定理求解.【详解】设第三边为x ,①若5是直角边,则第三边x 是斜边,由勾股定理得:②若5是斜边,则第三边x 为直角边,由勾股定理得:所以第三边的长为4故答案为:4【点睛】本题考查勾股定理,熟练掌握勾股定理,并且分情况讨论是解题关键.三、解答题21.∠CDE ;∠DEF ;两直线平行,内错角相等;两直线平行,同位角相等;∠DEF ;∠FEB ;角平分线的定义.【分析】根据平行线的性质和平行线的判定及等量代换等来完成解答即可.【详解】解:证明:∵CD 平分∠ACB (已知),∴∠DCA=∠DCE (角平分线的定义),∵AC ∥DE (已知),∴∠DCA=∠CDE (两直线平行,内错角相等),∴∠DCE=∠CDE ( 等量代换),∵CD ∥EF ( 已知 ),∴∠DEF=∠CDE (两直线平行,内错角相等),∠DCE=∠FEB (两直线平行,同位角相等),∴∠DEF=∠FEB (等量代换),∴EF 平分∠DEB ( 角平分线的定义 ).故答案为:∠CDE ;∠DEF ;两直线平行,内错角相等;两直线平行,同位角相等;∠DEF ;∠FEB ;角平分线的定义.【点睛】本题考查了平行线的性质和平行线的判定在几何证明中的应用,明确相关性质及定理是解题的关键.22.(1)见详解;(2)1l 与2l 不相交;【分析】(1)将点的横坐标代入直线2l ,求得y 的值;如果y 的值恰好等于点的纵坐标,则点在直线2l 上;否则点不在直线2l 上;(2)通过1l 过原点和P 点,可求解直线1l 的解析式;把2m =代入2l 中,求解2l 的解析式;两直线是否相交,通过判断对应的方程组是否有解.【详解】(1)将点(2,3)--的横坐标2x =-代入直线2l :23y mx m =+-(0)m ≠;可得:3y =-;3y =-恰等于点(2,3)--的纵坐标;∴点(2,3)--在直线2l 上;(2)由题知:设直线1l 的解析式为:y kx b =+(0)k ≠;又1l 过原点(0,0)和(),2P m m 点,将点代入:y kx b =+(0)k ≠,可得:2k =,0b =;∴ 直线1l 的解析式为:2y x =;把2m =代入2l 中,∴ 直线2l 的解析式为:21y x =+;∴把两直线组成方程组:221y x y x =⎧⎨=+⎩⇒221x x =+⇒01=,显然不成立;所以方程组无解,∴ 直线1l 与2l 不相交;∴ 直线1l 与2l 不相交.【点睛】本题主要考查点与直线及直线与直线之间的关系;重点在于熟练应用直线是否相交,通过对应方程组是否有解进行判断,有解则相交,无解则不相交.23.(1)1y =60x (0≤x≤15),2y =﹣90x+900(0≤x≤10);(2)A 加油站到甲地距离为300km 或420km .【分析】(1)直接运用待定系数法就可以求出1y 、2y 关于x 的函数图关系式;(2)分A 加油站在甲地与B 加油站之间,B 加油站在甲地与A 加油站之间两种情况列出方程求解即可.【详解】(1)设1y =1k x ,由图可知,函数图象经过点(15,900),∴151k =900,解得:1k =60,∴1y =60x (0≤x≤15),设2y =2k x+b ,由图可知,函数图象经过点(0,900),(10,0),则290010k b 0b =⎧⎨+=⎩, 解得:2k 90b 900=-⎧⎨=⎩, ∴2y =﹣90x+900(0≤x≤10);(2)由题意,得①当A 加油站在甲地与B 加油站之间时,(﹣90x+900)﹣60x =150,解得x =5,此时,A 加油站距离甲地:60×5=300km ,②当B 加油站在甲地与A 加油站之间时,60x ﹣(﹣90x+900)=150,解得x =7,此时,A 加油站距离甲地:60×7=420km ,综上所述,A 加油站到甲地距离为300km 或420km .【点睛】本题考查了一次函数的应用,一次函数解析式的确定;熟练运用待定系数法求一次函数解析式,根据图象准确获取信息是解题的关键.24.(1)见解析;(2)B (−3,−1);(3)见解析.【分析】(1)根据点A 的坐标(0,3),即可建立正确的坐标系;(2)根据所作平面直角坐标系确定点B 的位置,即可得到点B 的坐标;(3)分别作出点A 、B 、C 关于x 轴的对称点,再顺次连接即可.【详解】解:(1)所建立的平面直角坐标系如图所示:(2)点B 的坐标为:(−3,−1).(3)所作△A'B'C'如下图所示:【点睛】本题考查了平面直角坐标系与轴对称变换,掌握平面直角坐标系中点的坐标特点并根据轴对称变换规律作出变换后的对应点是解题的关键.25.23【分析】实数的混合运算,注意先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】解:2116(2019)|52732π-⎛⎫--- ⎪⎝⎭=361|5334+---2315334=+-23=【点睛】本题考查实数的混合运算、二次根式的性质和负整数指数幂的运算等知识,掌握运算顺序和计算法则正确计算是解题关键.26.(1)①114°;②∠2=∠1+2∠C;(2)74;(3)3或6【分析】(1)①根据三角形外角的性质求得∠DFC的度数,然后再次利用三角形外角的性质求得∠2的度数;②利用三角形外角的性质推理计算;(2)设BD=x,根据折叠的性质结合勾股定理列方程求解;(3)在Rt△ABC中,∠ABC=90°,AB=6,BC=8,根据勾股定理求得AC=10,根据翻折的性质得AE=AB=6,DE=BD,∠AED=∠B=90°,然后分∠DEC=90°和∠EDC=90°两种情况,结合勾股定理求解.【详解】解:(1)①由折叠性质可得∠C=∠C′=37°∴∠DFC=∠1+∠C′=77°∴∠2=∠DFC+∠C=77+37=114°故答案为:114°②由折叠性质可得∠C=∠C′∴∠DFC=∠1+∠C′∴∠2=∠DFC+∠C=∠1+∠C′+∠C=∠1+2∠C故答案为:∠2=∠1+2∠C(2)∵90B ∠=︒,6AB =,8BC =设BD=x ,则CD=AD=8-x∴在Rt △ABD 中,2226(8)x x +=-,解得:74x =∴BD 的长为74(3)在Rt △ABC 中,∠ABC=90°,AB=6,BC=8,∴AC=22AB BC +=10,∵△AED 是△ABD 以AD 为折痕翻折得到的,∴AE=AB=6,DE=BD ,∠AED=∠B=90°.当△DEC 为直角三角形,①如图,当∠DEC=90°时,∵∠AED+∠DEC=180°,∴点E 在线段AC 上,设BD=DE=x ,则CD=8-x ,∴CE=AC-AE=4,∴DE 2+CE 2=CD 2,即x 2+42=(8-x )2,解得:x=3,即BD=3;②如图,当∠EDC=90°,∴∠BDE=90°,∵∠BDA=∠ADE,∴∠BDA=∠ADE=45°,∴∠BAD=45°,∴AB=BD=6.综上所述:当△DEC为直角三角形时,BD的长为3或6.【点睛】本题考查了三角形外角的性质及折叠问题,勾股定理,等腰直角三角形的判定和性质,分类讨论思想的应用是解题的关键.解题时设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.。
【鲁教版】八年级数学上期末试卷(附答案)

一、选择题1.下列命题的逆命题是真命题的是( ).A .3的平方根是3B .5是无理数C .1的立方根是1D .全等三角形的周长相等2.如图,在ABC 中,100ACB ∠=︒,20A ∠=︒,D 是AB 上一点,将ABC 沿CD 折叠,使点B 落在AC 边上的B '处,则ADB '∠等于( )A .25°B .30°C .40°D .55°3.如图,A B C D E F ∠+∠+∠+∠+∠+∠则等于( )A .90︒B .180︒C .270︒D .360︒4.对于一次函数24y x =-+,下列结论错误的是( )A .函数的图象与x 轴的交点坐标是()0,4B .函数值随自变量的增大而减小C .函数的图象不经过第三象限D .函数的图象向下平移4个单位长度得到2y x =-的图象5.一次函数y =-3x -2的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限 6.在平面直角坐标系xOy 中,点P 在由直线y=-x+3,直线y=4和直线x=1所围成的区域内或其边界上,点Q 在x 轴上,若点R 的坐标为R (2,2),则QP+QR 的最小值为( ) A 17B 5C .5D .47.已知1,2x y =⎧⎨=⎩是二元一次方程24x ay +=的一组解,则a 的值为( ) A .2 B .2- C .1 D .1-8.《九章算术》中记载:“今有共买鸡,人出八,盈三;人出七,不足四.问人数、鸡价各几何?”译文:“今天有几个人共同买鸡,每人出8钱,多余3钱,每人出7钱,还缺4钱.问人数和鸡的价钱各是多少?”设人数有x 人,鸡的价钱是y 钱,可列方程组为( ).A .7384x y x y -=⎧⎨+=⎩B .7384x y x y +=⎧⎨-=⎩C .8374x y x y -=⎧⎨+=⎩D .8374x y x y +=⎧⎨-=⎩ 9.将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方案有( ) A .4种 B .5种 C .6种 D .7种10.一个点在第一象限及x 轴正半轴、y 轴正半轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动:(0,0)→(0,1)→(1,1)→(1,0)→……,且每秒移动一个单位,那么第47秒时,这个点所在位置的坐标是( )A .(1,7)B .(7,1)C .(6,1)D .(1,6) 11.与数轴上的点一—对应的数是( ) A .分数或整数B .无理数C .有理数D .有理数或无理数 12.用梯子登上20m 高的建筑物,为了安全要使梯子的底面距离建筑物15m ,至少需要( )m 长的梯子.A .20B .25C .15D .5二、填空题13.若△ABC 中,AD 是BC 边上的高线,AE 平分∠BAC ,∠B =40°,∠C =50°,则∠EAD=_____°.14.如图所示,已知∠1=22°,∠2=28°,∠A=56°,则∠BOC 的度数是___________.15.如图,函数20y x =和40y ax =-的图象相交于点P ,点P 的纵坐标为40,则关于x ,y 的方程组20040x y ax y -=⎧⎨-=⎩的解是______.16.如图,把一张纸条先沿EF 折叠至图①,再沿EI 折叠至图②,把图②标上字母得到图③,若最后纸条的一边EL 与AB 重合,如果∠HIK ﹣∠GEA =12∠EFH ,则∠IEB 的度数为__.17.一次函数y=kx+2(k≠0)的图象与x 轴交于点A (n ,0),当n >0时,k 的取值范围是_____.18.已知点(,)P m n 在y 轴的左侧,(,)P m n 到x 轴的距离是5,到y 轴的距离是3,则Р点坐标是________________.19.如图,已知圆柱体底面圆的半径为a,高为2,AB CD 、分别是两底面的直径,,AD BC 是母线.若一只蚂蚁从A 点出发,从侧面爬行到C 点,则蚂蚁爬行的最短路线的长度是_____.(结果保留根式)20.直角三角形纸片的两直角边长分别为6,8.现将ABC 如图那样折叠,使点A 与点B 重合,折痕为DE .则CE CB的值是__________.三、解答题21.如图所示,在Rt ABC 中,90ACB ∠=︒,AD 平分BAC ∠交BC 于点D ,BP 平分ABC ∠交AD 于点P .(1)求APB ∠的度数.(2)若56ADC ∠=︒,求ABP ∠的度数.22.在平面直角坐标系xOy 中,()1,1A t -与点B 关于过点(),0t 且垂直于x 轴的直线对称.以AB 为底边作等腰三角形ABC ,(1)当2t =时,求点B 的坐标;(2)当0.5=t 且直线AC 经过原点O 时,点C 与x 轴的距离;(3)若ABC 上所有点到y 轴的距离都不小于1,求t 的取值范围.23.定义:在平面直角坐标系中,对于任意两点(),A a b ,(,)B c d ,若点(),T x y 满足3a c x +=,3b d y +=,那么称点T 是点A ,B 的融合点.例如:()()1,8,4,2A B --,当点(),T x y 满足148(2)1,233x y -++-====时,则点()1,2T 是点A ,B 的融合点.(1)已知点()()()1,5,7,7,2,4A B C -,请说明其中一个点是另外两个点的融合点. (2)如图,点()3,0D ,点(),23E t t +是直线l 上任意一点,点(),T x y 是点D ,E 的融合点.①试确定y 与x 的关系式.②若直线ET 交x 轴于点H ,当DTH 是以DH 为非斜边的直角三角形时,求点E 的坐标.24.如图,在边长为1的正方形组成的网格中,ABC ∆的顶点均在格点上,A (-3,2),B (-4,-3),C (﹣1,﹣1).(1)画出ABC ∆关于y 轴对称的图形A B C '''∆;(2)写出A '、B '、C '的坐标(直接写出答案)A ' ;B ' ;C ' ;(3)写出A B C '''∆的面积为 .(直接写出答案)(4)在y 轴上求作一点 P ,使得点P 到点A 与点C 的距离之和最小.25.计算:(1)()233812-+-+- (2) 1560353+- 26.如图,一艘渔船正以30海里/小时的速度由西向东赶鱼群,在A 处看风小岛C 在船的北偏东60°.40分钟后,渔船行至B 处,此时看见小岛C 在船的北偏东30°.已知以小岛C 为中心周围10海里以内为我军导弹部队军事演习的着弹危险区,问这艘渔船继续向东追赶鱼群,是否有进入危险区的可能.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据把一个命题的条件和结论互换就得到它的逆命题,先得出逆命题,再进行判断即可.【详解】A 33的逆命题是:33B 55C 、1的立方根是1的逆命题是:1是1的立方根,是真命题;D 、全等三角形的周长相等的逆命题是:周长相等的三角形全等,是假命题;故选:C .【点睛】此题考查了命题的真假判断及互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题,其中一个命题称为另一个命题的逆命题,判断命题的真假关键是要熟悉各知识点的性质定理.2.C解析:C【分析】先求出60B ∠=︒,由折叠得60CB D B '∠=∠=︒,得出ADB '∠=40CB D A '∠-∠=︒.【详解】∵100ACB ∠=︒,20A ∠=︒,∴60B ∠=︒,由折叠得60CB D B '∠=∠=︒,∴ADB '∠=40CB D A '∠-∠=︒,故选:C .【点睛】此题考查三角形内角和定理,折叠的性质,三角形的外角性质,熟练掌握折叠的性质是解题的关键.3.D解析:D【分析】这个图形可以看成是两个三角形叠放在一起的,根据三角形内角和定理可得出结论.【详解】解:180A E C ∠+∠+∠=︒,180D B F ∠+∠+∠=︒,360A B C D E F ∴∠+∠+∠+∠+∠+∠=︒.故选:D .【点睛】本题考查的是三角形内角和定理,熟知三角形内角和是180︒是解答此题的关键. 4.A解析:A【分析】分别根据一次函数的性质及函数图象平移的法则进行解答即可.【详解】A 、令y=0,则x=2,因此函数的图象与x 轴的交点坐标是(2,0),故A 选项错误;B 、因为一次函数y=-2x+4中k=-2<0,因此函数值随x 的增大而减小,故C 选项正确;C、因为一次函数y=-2x+4中k=-2<0,b=4>0,因此此函数的图象经过一、二、四象限,不经过第三象限,故C选项正确;D、由“上加下减”的原则可知,函数的图象向下平移4个单位长度得y=-2x的图象,故D选项正确.故选A.【点睛】本题考查的是一次函数的性质及一次函数的图象与几何变换,熟知一次函数的性质及函数图象平移的法则是解答此题的关键.5.A解析:A【分析】根据一次函数的性质,当k<0,b<0时,图象经过第二、三、四象限解答.【详解】解:∵k=-3<0,∴函数经过第二、四象限,∵b=﹣2<0,∴函数与y轴负半轴相交,∴图象不经过第一象限.故选A【点睛】本题考查一次函数的性质,利用数形结合思想解题是关键.6.A解析:A【解析】试题分析:本题需先根据题意画出图形,再确定出使QP+QR最小时点Q所在的位置,然后求出QP+QR的值即可.试题当点P在直线y=-x+3和x=1的交点上时,作P关于x轴的对称点P′,连接P′R,交x轴于点Q,此时PQ+QR最小,连接PR,∵PR=1,PP′=4∴=∴PQ+QR故选A .考点:一次函数综合题.7.C解析:C【分析】把x 与y 的值代入方程计算即可求出a 的值.【详解】把1,2x y =⎧⎨=⎩代入方程24x ay +=,得224a +=, 解得1a =.故选C.【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值. 8.C解析:C【分析】设人数有x 人,鸡的价钱是y 钱,依据题意列方程组,即可完成求解.【详解】设人数有x 人,鸡的价钱是y 钱依据题意得:8374x y x y -=⎧⎨+=⎩即8374x y x y -=⎧⎨+=⎩故选:C .【点睛】本题考查了二元一次方程组的知识;解题的关键是熟练掌握二元一次方程组的性质,从而完成求解.9.C解析:C【分析】设兑换成10元x 张,20元的零钱y 元,根据题意可得等量关系:10x 张+20y 张=100元,根据等量关系列出方程求整数解即可.【详解】解:设兑换成10元x张,20元的零钱y元,由题意得:10x+20y=100,整理得:x+2y=10,方程的整数解为:方程的整数解为:246810x0,,,,,,432105 x x x x xy y y y y y======⎧⎧⎧⎧⎧⎧⎨⎨⎨⎨⎨⎨======⎩⎩⎩⎩⎩⎩因此兑换方案有6种,故选C.【点睛】此题主要考查了二元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.10.D解析:D【分析】先判断出走到坐标轴上的点所用的时间以及相对应的坐标,可发现走完一个正方形所用的时间分别为3秒,5秒,7秒,9秒…此时点在坐标轴上,进而得到规律,问题得解.【详解】解:这个点3秒时到了(1,0);8秒时到了(0,2);15秒时到了(3,0);24秒到了(0,4);35秒到了(5,0);48秒到了(0,6);∵(0,6)之前经过的点的坐标为(1,6),∴第47秒后点所在位置的坐标是(1,6).故选:D.【点睛】本题考查了平面直角坐标系内规律型点的坐标,数形结合并发现点运动的坐标规律是解题的关键.11.D解析:D【分析】实数与数轴上的点一一对应,实数包括有理数和无理数.【详解】A. 分数或整数,只是有理数,不是数轴上所有点,故此项不正确;B. 只是无理数,不是数轴上所有点,故此项不正确;C. 只是有理数,不是数轴上所有点,故此项不正确;D. 有理数和无理数是实数的组成,实数与数轴上的点一一对应,故此项正确;故选D.【点睛】此题考查了实数的意义,能掌握实数与数轴的关系是解答此题的关键.12.B解析:B【分析】可依据题意作出简单的图形,结合图形利用勾股定理进行求解,即可.【详解】解:如图所示:∵AC =20m ,BC =15m ,∴在Rt △ABC 中,22152025+m ,故选:B .【点睛】此题主要考查了勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.二、填空题13.5【分析】由三角形的高得出求出由三角形内角和定理求出由角平分线求出即可得出的度数【详解】解:中是边上的高平分故答案为:5【点睛】本题考查了三角形内角和定理角平分线的定义角的和差计算;熟练掌握三角形内 解析:5【分析】由三角形的高得出90ADC ∠=︒,求出DAC ∠,由三角形内角和定理求出 BAC ∠,由角平分线求出EAC ∠,即可得出EAD ∠的度数.【详解】解:ABC ∆中,AD 是BC 边上的高,90ADC ∴∠=︒, 90905040DAC C , 180180405090BACB C , AE ∵平分BAC ∠, 11904522EAC BAC ,45405EAD EAC DAC .故答案为:5.【点睛】本题考查了三角形内角和定理、角平分线的定义、角的和差计算;熟练掌握三角形内角和定理,并能进行推理计算是解决问题的关键.14.106°【分析】利用了三角形中一个外角等于与它不相邻的两个内角和即可求解【详解】如图连接AO 延长AO 交BC 于点D 根据三角形中一个外角等于与它不相邻的两个内角和可得:∠BOD=∠1+∠BAO ∠DOC=解析:106°【分析】利用了三角形中一个外角等于与它不相邻的两个内角和即可求解.【详解】如图,连接AO ,延长AO 交BC 于点D .根据三角形中一个外角等于与它不相邻的两个内角和,可得:∠BOD=∠1+∠BAO ,∠DOC=∠2+∠OAC ,∵∠BAO+∠CAO=∠BAC=56°,∠BOD+∠COD=∠BOC ,∴∠BOC=∠1+∠2+∠BAC=22°+28°+56°=106°.故答案为:106°.【点睛】本题考查了三角形的内角和定理,三角形的外角的性质,关键是利用了三角形中一个外角等于与它不相邻的两个内角和求解.15.【分析】先把点的纵坐标为40代入得出x =2则两个一次函数的交点P 的坐标为(240);那么交点坐标同时满足两个函数的解析式而所求的方程组正好是由两个函数的解析式所构成因此两函数的交点坐标即为方程组的解解析:240x y =⎧⎨=⎩【分析】先把点P 的纵坐标为40代入20y x =,得出x =2,则两个一次函数的交点P 的坐标为(2,40);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解;【详解】解:把y =40代入20y x =,得出x =2,函数20y x =和40y ax =-的图象交于点P (2,40),即x =2,y =40同时满足两个一次函数的解析式.所以关于x ,y 的方程组20040x y ax y -=⎧⎨-=⎩的解是240x y =⎧⎨=⎩. 故答案为:240x y =⎧⎨=⎩. 【点睛】此题考查了一次函数与二元一次方程组的联系,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.16.50°【分析】设∠IEB =x ∠EFH =y 由折叠的性质及平行线的性质得出x+y =90°①由题意得出4x+y =240°②由①②组成方程组解方程组即可得出答案【详解】解:设∠IEB =x ∠EFH =y 由折叠可解析:50°【分析】设∠IEB =x ,∠EFH =y ,由折叠的性质及平行线的性质得出x +y =90°①,由题意得出4x +y =240°②,由①、②组成方程组,解方程组即可得出答案.【详解】解:设∠IEB =x ,∠EFH =y ,由折叠可知∠GEI =∠IEB =x ,∵IK ∥BE ,∴∠HIK =∠HJB ,∵HJ ∥GE ,∴∠HJB =∠GEB =2x ,由图①可知∠AEF +∠EFC =180°,∠AEF =∠GEF ,∵AB ∥CD ,∴∠EFC =∠JEF =y ,∴2x +y +y =180°,即x +y =90°①,∵∠HIK ﹣∠GEA =12∠EFH , ∴2x ﹣[360°﹣2(2x +y )]=12y , 整理得4x +y =240°②,由①②可得904240x y x y +=︒⎧⎨+=︒⎩,解得5040xy=︒⎧⎨=︒⎩,∴∠IEB=50°.故答案为:50°.【点睛】本题主要考查了与平行线有关的折叠问题,准确根据题意列出方程组是解题的关键.17.k<0【解析】分析:根据题意可以用含k的式子表示n从而可以得出k的取值范围详解:∵一次函数y=kx+2(k≠0)的图象与x轴交于点A(n0)∴n=﹣∴当n>0时﹣>0解得k<0故答案为k<0点睛:本解析:k<0【解析】分析:根据题意可以用含k的式子表示n,从而可以得出k的取值范围.详解:∵一次函数y=kx+2(k≠0)的图象与x轴交于点A(n,0),∴n=﹣2k,∴当n>0时,﹣2k>0,解得,k<0,故答案为k<0.点睛:本题考查一次函数图象与系数的关系,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.18.(-35)或(-3-5)【分析】根据点到x轴的距离等于纵坐标的长度到y轴的距离等于横坐标的长度解答【详解】∵点P(mn)在y轴的左侧∴m<0∵到x轴的距离是5∴点P的纵坐标为±5∵到y轴的距离是3∴解析:(-3,5)或(-3,-5)【分析】根据点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.【详解】∵点P(m,n)在y轴的左侧,∴m<0,∵到x轴的距离是5,∴点P的纵坐标为±5,∵到y轴的距离是3,∴点P的横坐标是-3,∴点P的坐标为:(-3,5)或(-3,-5),故答案为:(-3,5)或(-3,-5).【点睛】本题考查了各象限内点的坐标的符号特征,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-),熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度也很重要.19.【分析】要求一只蚂蚁从A点出发从侧面爬行到C点蚂蚁爬行的最短路线利用在圆柱侧面展开图中线段AC的长度即为所求【详解】解:圆柱的展开图如下在圆柱侧面展开图中线段AC的长度即为所求在Rt△ABC中AB=解析:2+4a【分析】要求一只蚂蚁从A点出发,从侧面爬行到C点,蚂蚁爬行的最短路线,利用在圆柱侧面展开图中,线段AC的长度即为所求.【详解】解:圆柱的展开图如下,在圆柱侧面展开图中,线段AC的长度即为所求,在Rt△ABC中,AB=π•aπ=a,BC=2,则:2222=+=4AC AB BC a+,所以2+4a2+4a2+4a【点睛】本题以圆柱为载体,考查旋转表面上的最短距离,解题的关键是利用圆柱侧面展开图.20.【分析】先设CE=x再根据图形翻折变换的性质得出AE=BE=8-x再根据勾股定理求出x的值进而可得出的值【详解】解:设CE=x则AE=8-x∵△BDE是△ADE翻折而成∴AE=BE=8-x在Rt△B解析:7 24【分析】先设CE=x,再根据图形翻折变换的性质得出AE=BE=8-x,再根据勾股定理求出x的值,进而可得出CECB的值.【详解】解:设CE=x,则AE=8-x,∵△BDE是△ADE翻折而成,∴AE=BE=8-x,在Rt △BCE 中,BE 2=BC 2+CE 2,即(8-x )2=62+x 2,解得x =74, ∴CE CB =746=724, 故答案为:724. 【点睛】本题考查的是图形翻折变换的性质及勾股定理,熟知“折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等”的知识是解答此题的关键.三、解答题21.(1)135︒;(2)11︒【分析】(1)根据角平分线性质可得∠PAB +∠PBA =45°,即可解题;(2)由(1)可知135APB ∠=︒,可得45BPD ∠=︒,然后根据三角形外角性质得出PBD BPD ADC ∠+∠=∠,即可求解;【详解】解:(1)∵90ACB ∠=︒且180ACB ABC CAB ∠+∠+∠=︒,∴90ABC CAB ∠+∠=︒,∵AD 、BP 分别平分CAB ∠、ABC ∠,∴()1452PBA PAB ABC CAB ∠+∠=∠+∠=︒ ∵180PBA PAB APB ∠+∠+∠=︒∴135APB ∠=︒(2)∵180BPD APB ∠+∠=︒,135APB ∠=︒∴45BPD ∠=︒∵56ADC ∠=︒,且PBD BPD ADC ∠+∠=∠∴564511PBD ∠=︒-︒=︒∵BP 分别平分ABC ∠,∴PBD ABP ∠=∠即11ABP ∠=︒【点睛】本题考查了三角形内角和定理及推论,角平分线的定义及三角形外角的性质,难度适中. 22.(1)点B 的坐标为(3,1);(2)点C 到x 轴的距离为1;(3)t≥2或t≤-2.【分析】(1)根据A ,B 关于直线x=2对称解决问题即可;(2)求出直线OA 与直线x=0.5的交点C 的坐标即可判断;(3)由题意A (t-1,1),B (t+1,1),根据△ABC 上所有点到y 轴的距离都不小于1,构建不等式即可解决问题.【详解】解:(1)如图1中,由题意点A 的坐标为(1,1),且A 、B 关于直线x=2对称,∴点B 的坐标为(3,1);(2)如图2中,由题意点A 的坐标为(-0.5,1),直线l :x=0.5,设直线AC 的解析式为y kx =,则10.5k =-,∴2k =-,∴直线AC 的解析式为2y x =-,当x=0.5,1y =-,∴C (0.5,-1),∴点C 到x 轴的距离为1;(3)由题意A (t-1,1),B (t+1,1),∵△ABC 上所有点到y 轴的距离都不小于1,∴t-1≥1或t+1≤-1,解得t≥2或t≤-2.【点睛】本题属于一次函数综合题,考查了一次函数的性质,轴对称,等腰三角形的性质等知识,解题的关键是理解题意,学会利用参数根据不等式解决问题,属于中考压轴题.23.(1)见解析;(2)①21y x =-;②3(2E ,6),(6,15)E 【分析】(1)1(17)23x =-+=,1(57)43y =+=,即可求解; (2)①由题意得:1(3)3x t =+,1(23)3y t =+,即可求解; ②分90DHT ∠=︒、90TDH ∠=︒两种情况,分别求解即可.【详解】解:(1)1(17)23x =-+=,1(57)43y =+=, 故点C 是点A 、B 的融合点; (2)①由题意得:1(3)3x t =+,1(23)3y t =+, 则33t x =-,则1(663)213y x x =-+=-; ②当90DHT ∠=︒时,如图1所示,点(,23)E t t +,则(,21)T t t -,则点(3,0)D ,由点T 是点D ,E 的融合点得:33t t +=,23213t t +-=, 解得:32t =,即点3(2E ,6);当90TDH ∠=︒时,如图2所示,则点(3,5)T ,由点T 是点D ,E 的融合点得:点(6,15)E ; 故点3(2E ,6)或(6,15). 【点睛】本题是一次函数综合运用题,涉及到直角三角形的运用,此类新定义题目,通常按照题设顺序,逐次求解.24.(1)作图见解析;(2)(3,2),(4,-3),(1,-1);(3)6.5;(4)作图见解析.【分析】(1)根据轴对称的性质,对应点之间的连线被对称轴垂直平分,描出对应点,依次连接即可;(2)根据点的位置写出坐标即可;(3)用矩形面积减去三个小三角形面积即可;(4)连接AC′交y 轴于点P ,连接PC ,根据轴对称的性质,对应线段相等和两点之间线段最短点P 即为所求.【详解】解:(1)如图,△A'B'C'即为所求.(2)A′(3,2),B′(4,-3),C′(1,-1).故答案为(3,2),(4,-3),(1,-1);(3)113515223 6.522A B CS'''∆=⨯-⨯⨯-⨯⨯⨯=;(4)如图,点P即为所求.【点睛】本题考查作图-轴对称变换,三角形的面积等知识,解题的关键是理解题意,灵活运用所学知识解决问题.25.(12)0【分析】(1)直接利用立方根的性质、绝对值的性质、二次根式的性质分别进行化简即可;(2)直接利用二次根式的性质化简即可.【详解】解:(1)原式=3-21(20=.【点睛】本题考查实数的运算、二次根式的运算,熟练掌握运算法则是解题的关键.26.不可能.【分析】根据题意实质是比较C点到AB的距离与10的大小.因此作CD⊥AB于D点,求CD的长.【详解】解:作CD⊥AB于D,根据题意,AB=30×23=20,∠CAD=30°,∠CBD=60°,在Rt△ACD中,AD=CDtan30︒,在Rt△BCD中,BD=CDtan60︒CD,∵AB=AD﹣BD,∴,CD=10,所以不可能.【点睛】本题考查解直角三角形的应用-方向角问题.。
【推荐】鲁教版八年级上数学期末试卷

鲁教版八年级上册数学期末试卷一.选择题21.把多项式m﹣9m 分解因式,结果正确的是()A.m(m﹣9)B.(m+3)(m﹣3)C.m(m+3)(m﹣3)D.( m﹣3)22.下列各式从左边到右边的变形是因式分解的是()A.(a+1)(a﹣1)=a2﹣1 B.a2﹣6a+9=(a﹣3)2C.x2+2x+1=x(x+2x)+1 D.﹣18x4y3 =﹣6x2y2?3x2y3 2 2 2 33.多项式15mn +5mn﹣20mn 的公因式是()2 2 2 2A.5mn B.5mn C.5mn D.5mn4.如果多项式x2﹣mx+6 分解因式的结果是(x﹣3)(x+n),那么m,n 的值分别是()A.m=﹣2,n=5 B.m=2,n=5 C.m=5,n=﹣2 D.m=﹣5,n=25.在中,分式的个数是()A.2 B.3 C.4 D.56.若分式有意义,则x 的取值范围是()A.x>3 B.x<3 C.x≠3 D.x=37.若分式的值为零,则x 等于()A.2 B.﹣2 C.±2 D.08.若x,y 的值均扩大为原的 2 倍,则下列分式的值保持不变的是()A. B .C.D.9.化简分式:(1﹣)÷的结果为()A.B.C.D.10.下列调查中,适宜采用全面调查(普查)方式的是()A.了解我国民众对乐天集团“萨德事件”的看法B.了解《人民的名义》反腐剧的收视率C.调查我校某班学生喜欢上数学课的情况D.调查某类烟花爆竹燃放的安全情况11.如图,在平行四边形ABCD 中,对角线AC 的垂直平分线分别交AD,BC 于点E,F,连接CE,若△CED 的周长为6,则?ABCD 的周长为()A.6 B.12 C.18 D.2412.如图,△ABC 中,D 是AB 的中点,E 在AC 上,且∠AED=90°+ ∠C,则BC+2AE 等于()A.AB B.AC C.ABD.AC二.填空题13.某校组织学生参加植树活动,活动结束后,统计了九年级甲班50 名学生每人植树的情况,绘制了如下的统计表:植树棵数 3 4 5 6人数20 15 10 5那么这50 名学生平均每人植树棵.14.如图,在Rt △ABC 中,∠C=90°,AC=4,将△ABC 沿CB 方向平移得到△DEF,若四边形ABED 的面积等于8,则平移的距离为.15.如图,A,B 两点被池塘隔开,不能直接测量其距离.于是,小明在岸边选一点C,连接CA,CB,分别延长到点M,N,使AM=AC,BN=BC,测得MN=200m,则A,B 间的距离为m.16.因式分解:a3﹣4a= .17.化简:= .三.解答题18.已知分式,试问:(1)当m 为何值时,分式有意义?(2)当m 为何值时,分式值为0?19.解方程:=1﹣.20.阅读后填空:某家灯具厂为了比较甲、乙两种灯的使用寿命,各抽出8 支做试验,结果如下(单位:小时).甲:457,438,460,443,464,459,444,451;乙:466,455,467,439,459,452,464,438.试说明哪种灯的使用寿命长?哪种灯的质量比较稳定?21.如图,在平行四边形ABCD 中,点E 是AB 边的中点,DE 的延长线与CB 的延长线交于点F.求证:BC=BF.22.如图,点C 是AB 的中点,AD=CE,CD=BE.(1)求证:△ACD≌△CBE;(2)连接DE,求证:四边形CBED 是平行四边形.23.△ABC 的中线BD,CE 相交于O,F,G 分别是BO,CO 的中点,求证:EF∥DG,且EF=DG.24.如图:小亮从 A 点出发,沿直线前进10 米后向左转30°,再沿直线前进10 米,又向左转30°照这样走下去,他第一次回到出发点 A 时,一共走了多少米?。
【鲁教版】初二数学上期末试卷(带答案)

一、选择题1.使分式21xx -有意义的x 的取值范围是( )A .x ≠1B .x ≠0C .x ≠±1D .x 为任意实数2.若a =1,则2933a a a -++的值为( ) A .2B .2-C .12D .12-3.计算()3222()m m m -÷⋅的结果是( )A .2m -B .22mC .28m -D .8m -4.2a ab b a ++-的结果是( ).A .2a-B .4aC .2b a b--D .b a- 5.多项式291x 加上一个单项式后﹐使它成为一个整式的完全平方,那么加上的单项式可以是( ) A .6x ±B .-1或4814x C .29x - D .6x ±或1-或29x -6.已知435x y +-与2(24)x y --互为相反数,则x y 的值为( ) A .2-B .2C .1-D .17.我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如左图可以用来解释(a+b )2-(a -b )2=4ab .那么通过右图面积的计算,验证了一个恒等式,此等式是( )A .22()()a b a b a b -=+-B .22()(2)a b a b a ab b -+=+-C .222()2a b a ab b -=-+D .222()2a b a ab b +=++ 8.下列运算中错误的是( ). A .-(-3a n b)4=-81a 4n b 4B .(a n+1+b n )4 = a 4n+4b 4nC .(-2a n )2.(3a 2)3 = -54a 2n+6D .(3x n+1-2x n )5x=15x n+2-10x n+19.如图,在ABC 中,18cm AC =,20cm BC =,点M 从点A 出发以每秒2cm 的速度向点C 运动,点N 从点C 出发以每秒1.6cm 的速度向点B 运动,其中一个动点到达终点时,另一个动点也随之停止运动,当CMN △是以MN 为底的等腰三角形时,则这时等腰三角形的腰长是( )A .5cmB .6cmC .7cmD .8cm10.如图,AC AD =,BC BD =,则有( )A .AB 与CD 互相垂直平分 B .CD 垂直平分ABC .CD 平分ACB ∠D .AB 垂直平分CD11.已知:如图,BD 为△ABC 的角平分线,且BD=BC ,E 为BD 延长线上的一点,BE=BA ,过E 作EF ⊥AB ,F 为垂足,下列结论:①△ABD ≌△EBC②∠BCE+∠BCD=180°③AD=AE=EC ④ BA+BC=2BF 其中正确的是( )A .①②③B .①③④C .①②④D .①②③④ 12.下列长度(单位:cm )的三条线段能组成三角形的是( )A .13,11,12B .3,2,1C .5,12,7D .5,13,5二、填空题13.符号“a b c d”称为二阶行列式,规定它的运算法则为:a b c d=ad ﹣bc ,请你根据上述规定求出下列等式中x 的值.若2111111xx =--,那么x =__.14.已知关于x 的方程321x mx -=-的解是正数,则m 的取值范围为____________. 15.已知10的整数部分是a .小数部分是b ,则2a b -=______.16.若2x y a +=,2x y b -=,则22x y -的值为____________.17.如图,在△ABC 中,直线l 垂直平分BC ,射线m 平分∠ABC ,且l 与m 相交于点P ,若∠A =60°,∠ACP =24°,则∠ABP =_____°.18.如图,在△ABC 中,点D 是BC 上一点,∠BAD =80°,AB =AD =DC ,则∠C =________19.如图,AB =4cm ,AC =BD =3cm ,∠CAB =∠DBA ,点P 在线段AB 上以1cm/s 的速度由点A 向点B 运动,同时,点Q 在线段BD 上由点B 向点D 运动.设运动时间为t (s ),则当△ACP 与△BPQ 全等时,点Q 的运动速度为__cm/s .20.如图,ABC 中,40A ∠=︒,72B ∠=︒,CE 平分ACB ∠,CD AB ⊥于D ,DF CE ⊥交CE 于F ,则CDF ∠=______.三、解答题21.计算.(1)因式分解:243x y xy y ++.(2)解方程:22312442x x x x-=--+-. 22.分式计算与解方程:(1)21211a a a a ----; (2)121221xx x +=-+. 23.材料:数学兴趣一小组的同学对完全平方公式进行研究:因2()0a b -≥,将左边展开得到2220a ab b -+≥,移项可得222a b ab +≥.(当且仅当a b =时,取“=”)数学兴趣二小组受兴趣一小组的启示,继续研究发现:对于任意两个非负数m ,n ,都存在2m n mn +≥(当且仅当m n =时,取“=”)并进一步发现,两个非负数m ,n 的和一定存在着个最小值. 根据材料,解答下列问题:(1)22(3)(4)x y +≥________(0x >,0y >);221x x ⎛⎫+≥ ⎪⎝⎭________(0x >);(2)求312(0)4x x x+>的最小值; (3)已知2x >,当x 为何值时,代数式43201036x x ++-有最小值?并求出这个最小值.24.如图,在平面直角坐标系中有ABC :(1)已知111A B C △和ABC 关于y 轴对称,在图中画出111A B C △; (2)将111A B C △沿x 轴向右平移4个单位,在图中画出平移后的222A B C △; (3)222A B C △和ABC 关于某条直线l 对称,在图中画出对称轴l . 25.如图,AB AD =,AC AE =,CAE BAD ∠=∠.求证:B D ∠=∠.26.如图,已知长方形ABCD 中,10cm AD =,6cm DC =,点F 是DC 的中点,点E 从A 点出发在AD 上以每秒1cm 的速度向D 点运动,运动时间设为t 秒.(假定0t 10<<)(1)当5t =秒时,求阴影部分(即三角形BEF )的面积;(2)用含t 的式子表示阴影部分的面积;并求出当三角形EDF 的面积等于3时,阴影部分的面积是多少?(3)过点E 作//EG AB 交BF 于点G ,过点F 作//FH BC 交BE 于点H ,请直接写出在E 点运动过程中,EG 和FH 的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】分式有意义的条件是分母不等于零,据此可得x 的取值范围. 【详解】由题意,得x 2−1≠0, 解得:x≠±1, 故选:C . 【点睛】此题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.2.B解析:B 【分析】根据同分母分式减法法则计算,再将a=1代入即可求值. 【详解】2933a a a -++=293a a -+=a-3, 当a=1时,原式=1-3=-2, 故选:B . 【点睛】此题考查分式的化简求值,掌握因式分解及同分母分式的减法计算法则是解题的关键.3.C解析:C 【分析】先分别计算积的乘方运算,再利用单项式除以单项式法则计算即可. 【详解】 解:()3222()m m m -÷⋅=()468mm -÷ =()468m m -÷=28m -, 故选:C . 【点睛】本题考查单项式除以单项式,积的乘方运算.在做本题时需注意运算顺序,先计算积的乘方,再算除法.4.C解析:C 【分析】根据分式的加减运算的法则计算即可. 【详解】222()()a a b a b a b a b b a a b a b a b+-++=-=-----. 故选:C 【点睛】本题考查了分式加减运算的法则,熟记法则是解题的关键.5.D解析:D 【分析】根据完全平方公式计算解答. 【详解】解:添加的方法有4种,分别是: 添加6x ,得9x 2+1+6x=(3x+1)2; 添加﹣6x ,得9x 2+1﹣6x=(3x ﹣1)2; 添加﹣9x 2,得9x 2+1﹣9x 2=12; 添加﹣1,得9x 2+1﹣1=(3x )2, 故选:D . 【点睛】此题考查添加一个整式得到完全平方式,熟记完全平方式的特点是解题的关键.6.D解析:D 【分析】根据相反数和非负数的性质即可求出x 、y 的值,再代入xy 中即可. 【详解】根据绝对值和偶次方的性质可知,4350x y +-≥,224)0(x y --≥又∵435x y +-和2(24)x y --是相反数,即2435(24)0x y x y +-+--=.∴435=024=0x y x y +-⎧⎨--⎩ ,解得:=2=1x y ⎧⎨-⎩,∴2(1)1x y =-=. 故选:D . 【点睛】本题考查相反数和非负数的性质、代数式求值以及求解二元一次方程组.根据题意列出二元一次方程组求出x 、y 的值是解答本题的关键.7.C解析:C 【分析】利用不同的方法表示出空白部分的面积:一种是利用公式2()a b -直接计算,另一种是割补法得222a ab b -+,根据面积相等即可建立等式,得出结论. 【详解】解:空白部分的面积:2()a b -, 还可以表示为:222a ab b -+, ∴此等式是222()2a b a ab b -=-+. 故选:C . 【点睛】本题考查了完全平方公式的几何意义,注意图形的分割与拼合,会用不同的方法表示出空白部分的面积是解题的关键.8.C解析:C 【分析】根据幂的乘方法则、积的乘方法则、单项式乘法法则以及多项式乘以单项式的运算法则计算即可. 【详解】 解:A:()()4444443381n n n a b a b a b --=--=- ,故答案正确;B:()41444n nn na b a b +++=+ ,故答案正确; C:()()232262623427108n nn a a a a a +-⋅=⋅= ,故答案错误;D:()113253525n nn nx x x x x x x ++-=⋅-⋅ =211510n n x x ++- ,故答案正确.故选:C . 【点睛】此题考查了积的乘方法则、幂的乘方法则、单项式乘法法则以及多项式乘以单项式的运算法则,熟练掌握运算法则是解题的关键.9.D解析:D 【分析】要求运动后得到的等腰三角形的腰长,首先要求出动点所运动的时间.我们可以设M 、N 运动的时间为x 秒. 【详解】设M 、N 运动的时间为x 秒.当CMN △是以MN 为底的等腰三角形时,,182, 1.6CM CN CM x CN x ==-= 即182 1.6x x -=,解得5x =. ∴腰长为5 1.68cm ⨯= 故选D .【点睛】此题主要考查学生对等腰三角形的性质这一知识点的理解和掌握,此题涉及到动点,有一定的拔高难度.10.D解析:D 【分析】根据线段垂直平分线的判定定理解答. 【详解】∵AC AD =,BC BD =, ∴AB 垂直平分CD , 故D 正确,A 、B 错误, OC 不平分∠ACB ,故C 错误, 故选:D . 【点睛】此题考查线段垂直平分线的判定:到线段两个端点距离相等的点在这条线段的垂直平分线上.11.D解析:D 【分析】易证ABD EBC ∆∆≌,可得BCE BDA ∠=∠,AD=EC 可得①②正确;再根据角平分线的性质可求得DAE DCE ∠=∠ ,即③正确,根据③可判断④正确; 【详解】∵ BD 为∠ABC 的角平分线, ∴ ∠ABD=∠CBD ,∴在△ABD 和△EBD 中,BD=BC ,∠ABD=∠CDB ,BE=BA , ∴△ABD EBC ∆∆≌(SAS),故①正确; ∵ BD 平分∠ABC ,BD=BC ,BE=BA , ∴ ∠BCD=∠BDC=∠BAE=∠BEA , ∵△ABD ≌△EBC , ∴∠BCE=∠BDA ,∴∠BCE+∠BCD=∠BDA+∠BDC=180°, 故②正确;∵∠BCE=∠BDA ,∠BCE=∠BCD+∠DCE , ∠BDA=∠DAE+∠BEA ,∠BCD=∠BEA , ∴∠DCE=∠DAE , ∴△ACE 是等腰三角形, ∴AE=EC , ∵△ABD ≌△EBC , ∴AD=EC ,∴AD=AE=EC,故③正确;作EG⊥BC,垂足为G,如图所示:∵ E是BD上的点,∴EF=EG,在△BEG和△BEF中BE BE EF EG=⎧⎨=⎩∴△BEG≌△BEF,∴BG=BF,在△CEG和△AFE中EF EG AE CE=⎧⎨=⎩∴△CEG≌△AFE,∴ AF=CG,∴BA+BC=BF+FA+BG-CG=BF+BG=2BF,故④正确;故选:D.【点睛】本题考查了全等三角形的判定,全等三角形对应边、对应角相等的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应边、对应角相等的性质是解题的关键;12.A解析:A【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”进行分析.【详解】解:根据三角形的三边关系,A、11+12>13,能组成三角形,符合题意;B、1+2=3,不能组成三角形,不符合题意;C、5+7=12,不能组成三角形,不符合题意;D、5+5<13,不能组成三角形,不符合题意;故选A.【点睛】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.二、填空题13.4【分析】首先根据题意由二阶行列式得到一个分式方程解分式方程即得问题答案【详解】解:∵=1∴方程两边都乘以x ﹣1得:2+1=x ﹣1解得:x =4检验:当x =4时x ﹣1≠01﹣x≠0即x =4是分式方程的解析:4【分析】首先根据题意由二阶行列式得到一个分式方程,解分式方程即得问题答案 .【详解】解:∵211111xx --=1, ∴21111x x-=--, 方程两边都乘以x ﹣1得:2+1=x ﹣1,解得:x =4,检验:当x =4时,x ﹣1≠0,1﹣x≠0,即x =4是分式方程的解,故答案为:4.【点睛】本题考查分式方程与新定义实数运算的综合运用,通过观察所给运算式子归纳出运算规律并得到分式方程再求解是解题关键.14.m >2且m≠3【分析】先给分式方程去分母化为整式方程用m 表示出方程的解再由解为正数求出m 的取值范围即可【详解】解:去分母得:3x ﹣m=2(x ﹣1)解得:x=m ﹣2∵分式方程的解是正数且x≠1∴m ﹣2解析:m >2且m≠3【分析】先给分式方程去分母化为整式方程,用m 表示出方程的解,再由解为正数求出m 的取值范围即可.【详解】解:去分母,得:3x ﹣m=2(x ﹣1),解得:x=m ﹣2,∵分式方程的解是正数,且x≠1,∴m ﹣2>0,且m ﹣2≠1,解得:m >2且m≠3,故答案为:m >2且m≠3.【点睛】本题考查了分式方程的解、解一元一次不等式,熟练掌握分式方程的解法是解答的关键,注意分式的分母不能为零.15.6-16【分析】先估算确定ab 的值进而即可求解【详解】∵<<∴3<<4又∵a 是的整数部分b 是的小数部分∴a =3b =−3∴3-(−3)2=3-(10-6+9)=3-10+6-9=6-16故答案是:6-解析:-16【分析】,确定a ,b 的值,进而即可求解.【详解】 ∵∴3<4,又∵a b 的小数部分,∴a =3,b−3,∴2a b -=−3)2-16.故答案是:-16.【点睛】本题考查无理数的估算、完全平方公式,确定a 、b 的值是解决问题的关键.16.【分析】应用平方差把多项式因式分解再整体代入即可【详解】解:把代入原式=故答案为:【点睛】本题考查了运用平方差公式因式分解和整体代入求值能够熟练运用平方差把多项式因式分解并整体代入求值是解题的关键 解析:4ab .【分析】应用平方差把多项式22x y -因式分解,再整体代入即可.【详解】解:22()()x y x y x y -=+-,把2x y a +=,2x y b -=代入,原式=224a b ab ⨯=,故答案为:4ab .【点睛】本题考查了运用平方差公式因式分解和整体代入求值,能够熟练运用平方差把多项式因式分解并整体代入求值,是解题的关键. 17.32【分析】根据角平分线定义求出∠ABP =∠CBP 根据线段的垂直平分线性质得出BP =CP 根据等腰三角形的性质得到∠CBP =∠BCP 根据三角形内角和定理得出方程3∠ABP+24°+60°=180°解方解析:32【分析】根据角平分线定义求出∠ABP =∠CBP ,根据线段的垂直平分线性质得出BP =CP ,根据等腰三角形的性质得到∠CBP =∠BCP ,根据三角形内角和定理得出方程3∠ABP +24°+60°=180°,解方程得到答案.【详解】解:∵BP 平分∠ABC ,∴∠ABP =∠CBP ,∵直线l 是线段BC 的垂直平分线,∴BP =CP ,∴∠CBP =∠BCP ,∴∠ABP =∠CBP =∠BCP ,∵∠A +∠ACB +∠ABC =180°,∠A =60°,∠ACP =24°,∴3∠ABP +24°+60°=180°,解得:∠ABP =32°,故答案为:32.【点睛】本题考查角平分线的定义和垂直平分线的性质,解题的关键是掌握角平分线的定义和垂直平分线的性质.18.25°【分析】先根据AB=AD 利用三角形内角和定理求出∠B 和∠ADB 的度数再根据三角形外角的性质即可求出∠C 的大小【详解】解:∵AB=AD ∴∠B=∠ADB ∵∠BAD=80°∴∠B=∠ADB==50°解析:25°【分析】先根据AB=AD ,利用三角形内角和定理求出∠B 和∠ADB 的度数,再根据三角形外角的性质即可求出∠C 的大小.【详解】解:∵AB=AD ,∴∠B=∠ADB ,∵∠BAD=80°,∴∠B=∠ADB =180802︒︒-=50°, ∵AD=DC ,∴∠C=∠ACD ,∴∠C=12∠ADB=25°, 故答案为:25°.【点睛】此题主要考查学生对等腰三角形的性质和三角形内角和定理的理解和掌握,解答此题的关键是利用三角形一个外角等于与它不相邻的两个内角的和.19.1或15【分析】分两种情况讨论:当△ACP ≌△BPQ 时从而可得点的运动速度;当△ACP ≌△BQP 时可得:从而可得点的运动速度从而可得答案【详解】解:当△ACP ≌△BPQ 时则AC =BPAP =BQ ∵AC解析:1或1.5【分析】分两种情况讨论:当△ACP ≌△BPQ 时,1AP BQ ==, 从而可得Q 点的运动速度;当△ACP ≌△BQP 时,可得:23AP BP BQ ===,, 从而可得Q 点的运动速度,从而可得答案.【详解】解:当△ACP ≌△BPQ 时,则AC =BP ,AP =BQ ,∵AC =3cm ,∴BP =3cm ,∵AB =4cm ,∴AP =1cm ,∴BQ =1cm ,∴点Q 的速度为:1÷(1÷1)=1(cm/s );当△ACP ≌△BQP 时,则AC =BQ ,AP =BP ,∵AB =4cm ,AC =BD =3cm ,∴AP =BP =2cm ,BQ =3cm ,∴点Q 的速度为:3÷(2÷1)=1.5(cm/s );故答案为:1或1.5.【点睛】本题考查的是全等三角形的判定与性质,分类讨论的数学思想,掌握利用分类讨论解决全等三角形问题是解题的关键.20.74°【分析】先根据三角形的内角和定理求得∠ACB 的度数再根据CE 平分∠ACB 求得∠ACE 的度数则根据三角形的外角的性质就可求得∠CED =∠A+∠ACE 再结合CD ⊥ABDF ⊥CE 就可求解【详解】解:解析:74°【分析】先根据三角形的内角和定理求得∠ACB 的度数,再根据CE 平分∠ACB 求得∠ACE 的度数,则根据三角形的外角的性质就可求得∠CED =∠A +∠ACE ,再结合CD ⊥AB ,DF ⊥CE 就可求解.【详解】解:∵∠A =40°,∠B =72°,∴∠ACB =180°﹣40°﹣72°=68°,∵CE 平分∠ACB ,∴∠ACE =∠BCE =34°,∴∠CED =∠A +∠ACE =74°,∵CD ⊥AB ,DF ⊥CE ,∴∠CDF +∠ECD =∠ECD +∠CED =90°,∴∠CDF =∠CED =74°,故答案为:74°.【点睛】此题主要考查了三角形的内角和定理、三角形的外角的性质、以及角平分线定义和垂直定义.三、解答题21.(1)(1)(3)y x x ++;(2)3x =【分析】(1)先提取公因式,再用十字相乘分解即可;(2)先去分母,把方程化为整式方程,再解整式方程,最后检验即可.【详解】解:(1)原式()243(1)(3)y x x y x x =++=++.(2)22312442x x x x-=--+- 方程两边同时乘()22x -得,2(2)3(2)x x --=--去括号,2432x x --=-+移项合并同类项,39x =系数化为1,3x =,检验:把3x =代入,(2)(2)0x x -+≠,所以,3x =是原方程的解.【点睛】本题考查了因式分解和解分式方程,要注意:因式分解要彻底,分式方程要检验. 22.(1)1a -;(2)13x =【分析】(1)先对分式变形化成同分母的分式,然后利用同分母分式的运算法则运算即可; (2)利用分式的性质,将分式方程化成整式方程,然后再求解,最后验根得出结果.【详解】 解:(1)21211a a a a ----21211a a a a -=+--2211a a a -+=-()211a a -=-1a =-;(2)121221x x x +=-+ 方程两边同乘()()221x x -+,得:()()()()2122122x x x x x ++-+=- 解得:13x =, 检验:当13x =时,()()2210x x -+≠, 所以,原方程的解为13x =. 【点睛】本题考查分式的加减运算及解分式方程,熟练掌握分式运算的法则及解分式方程的方法是解题的关键.23.(1)24xy ,2;(2)6;(3)83x =,最小值为2020 【分析】(1)根据阅读材料可得结论;(2)根据阅读材料介绍的方法即可得出结论;(3)把已知代数式变形为4(36)201636x x -++-,再利用阅读材料介绍的方法即可得出结论.【详解】解:(1)∵0x >,0y >∴22(3)(4)x y +≥23424x y xy ⨯⨯=∵0x > ∴221x x ⎛⎫+≥ ⎪⎝⎭122x x ⨯⨯= 故答案为:24xy ,2 (2)∵0x >时,12x ,34x 均为正数,∴31264x x +≥= ∴3124x x+的最小值是6 (3)当2x >时,3x ,36x -,436x -均为正数 ∴43201036x x ++-44(36)20162(36)20163636x x x x =-++≥-⋅+-- 242016=+2020=当43636x x -=-时,即8433x =或(舍去)时,有最小值, ∴当83x =时,代数式43201036x x ++-的最小值是2020. 【点睛】此题主要考查了完全平方公式的变形应用,解答本题的关键是理解阅读材料所介绍的方法.24.(1)见解析;(2)见解析;(3)见解析.【分析】(1)利用关于y 轴对称点的性质得出对应点位置进而得出答案;(2)直接利用平移的性质得出对应点位置进而得出答案;(3)直接利用轴对称的性质得出对称轴的位置进而得出答案.【详解】解:(1)如图所示:(2)如图所示;(3)如图所示.【点睛】此题主要考查了轴对称变换以及平移变换,正确得出对应点位置是解题关键. 25.见解析【分析】先证明BAC DAE ∠=∠,再根据“SAS”证明ABC ADE △≌△即可.【详解】证明:CAE BAD ∠=∠,CAE EMB BAD EAB ∴∠+∠=∠+∠,即BAC DAE ∠=∠.在ABC 和ADE 中,AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩,()ABC ADE SAS ∴≌.B D ∴∠=∠.【点睛】题主要考查了全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.26.(1)4522cm ;(2)23302t cm ⎛⎫- ⎪⎝⎭;218cm ;(3)53EG FH = 【分析】(1)由长方形的性质得出10cm BC AD ==,6cm AB DC ==,由5t =得AE=5,DE=10-5=5,根据ABCD BEF BE BCF DEF S S S S S =---△△A △△长方形即可求解;(2)由题意得AE=t ,DE=10-t ,根据ABCD BEF BE BCF DEF S S S S S =---△△A △△长方形表示出阴影部分的面积;由12EDF S DE DF =⋅△求出t 的值,代入计算即可; (3)由长方形ABCD 得AD CD ⊥,根据平行线的性质得EG HF ⊥,根据平行线间的距离相等可得DE ,AE ,DF ,CF 分别等于,,,EGF EGB EHF BHF △△△△的高,由BEF S的面积即可得出结论.【详解】解:(1)∵长方形ABCD 中,10cm AD =,6cm DC =,∴10cm BC AD ==,6cm AB DC ==,∵点F 是DC 的中点,∴3cm DF CF ==,当5t =秒时,AE=5cm ,DE=10-5=5 cm ,∵ABCD BEF BE BCF DEF S S S S S =---△△A △△长方形 =()()()1111066510353222⨯-⨯-⨯-⨯ =156015152--- =4522cm ; (2)由题意得AE=t ,DE=10-t , ∵ABCD BEF BE BCF DEF S S S S S =---△△A △△长方形 =()()1111066103310222t t ⨯-⨯-⨯-⨯⨯-=360315152t t ---+=3302t -, ∴用含t 的式子表示阴影部分的面积为:23302t cm ⎛⎫-⎪⎝⎭; 当三角形EDF 的面积等于3时,12EDF S DE DF =⋅△=()13102t ⨯⨯-=3, 解得:8t =, 8t =时,38=30=182S ⨯-阴影2cm ; (3)∵长方形ABCD ∴AD CD ⊥,//,//AB CD AD BC ,∵//EG AB ,//FH BC ,∴EG HF ⊥,,AD EG CD HF ⊥⊥,∴DE ,AE 分别等于,EGF EGB △△的EG 边上的高,DF ,CF 分别等于,EHF BHF △△的FH 边上的高, ∴11112222BEF S EG DE EG AE HF DF HF CF =⋅+⋅=⋅+⋅△, ∴()()1122EG DE AE HF DF CF +=+,即EG AD HF CD ⋅=⋅, ∵10cm AD =,6cm DC =,∴106EG HF =,即53EG FH =.【点睛】本题是一个动点问题,考查了平行线间的距离,三角形面积的计算,解题的关键是熟练掌握平行线的性质和三角形面积的计算方法.。
【鲁教版】八年级数学上期末试题(及答案)

一、选择题1.下列各分式中,最简分式是( )A .6()8()x y x y -+B .22y x x y --C .2222x y x y xy ++D .222()x y x y -+2.若a 与b 互为相反数,则22201920212020a bab+=( )A .-2020B .-2C .1D .23.若数a 使关于x 的分式方程2311a x x+=--的解为非负数,且使关于y 的不等式组213202y yy a +⎧->⎪⎪⎨-⎪≤⎪⎩的解集为2y <-,则符合条件的所有整数a 的个数为( ) A .5B .6C .7D .84.下列式子的变形正确的是( )A .22b b a a=B .22+++a b a b a b=C .2422x y x yx x --=D .22m nn m-=- 5.若2x y +=,1xy =-,则()()1212x y --的值是( ) A .7-B .3-C .1D .96.当代数式2()2020x y ++的值取到最小..时,代数式222||2||x y x y -+-=……( ) A .0 B .2- C .0或2-D .以上答案都不对7.设, a b 是实数,定义一种新运算:()2*a b a b =-.下面有四个推断: ①**a b b a =; ②()222**a b a b =; ③()()**a b a b -=-; ④()**a b c a b a c +=+*. 其中所有正确推断的序号是( ) A .①②③④ B .①③④ C .①② D .①③ 8.若|m ﹣3n ﹣2019|=1,则(2020﹣m +3n )2的值为( )A .1B .0C .1或2D .0或4 9.已知一个等腰三角形两个内角度数之比为1:4,则这个等腰三角形顶角度数为( ) A .75°B .90°C .105°D .120°或20°10.如图,已知点D 为ABC 内一点,CD 平分ACB ∠,BD CD ⊥,A ABD ∠=∠,若6AC =,4BC =,则BD 的长为( )A .2B .1.5C .1D .2.5 11.在尺规作图作一个角的平分线时的两个三角形全等的依据是( ) A .SASB .AASC .SSSD .HL12.如图,直线//,65,30AB CD A E ∠=︒∠=︒,则C ∠等于( )A .30°B .35°C .40°D .45°二、填空题13.关于x 的分式方程3122m x x-=--无解,则m 的值为_____. 14.计算:22311x x x -=+-____________. 15.已知2m a =,5n a =,则2m n a -=___________. 16.若a - b = 1, ab = 2 ,则a + b =______.17.如图,已知60AOB ︒∠=,点P 在边OA 上, 10OP =,点,M N 在边OB 上,PM PN =,若3,MN =则OM 的长是__________.18.如图,∠ABC 的平分线BF 与△ABC 中∠ACB 的相邻外角∠ACG 的平分线CF 相交于点F ,过F 作DF ∥BC ,交AB 于D ,交AC 于E ,若BD =8cm ,DE =3cm ,AE =2,求AC 的长为_____cm .19.如图,在ABC 中,AB AC =,BD CD =,点E ,F 是AD 上的任意两点、若8BC =,6AD =,则图中阴影部分的面积为__________.20.如图,∠BAK +∠B +∠C +∠CDE +∠E +∠F +∠MGN +∠H +∠K =________.三、解答题21.先化简:22122441a a a a a a ⎛⎫-÷ ⎪-⎭-⎝+-+,然后从0,2,3中选择一个合适的数代入求值.22.(1)计算:0(23)43218π-+-- (2)解不等式:452(1)x x +≤+23.小王购买了一套一居室,他准备将房子的地面全部铺上地砖,地面结构如图所示,根据图中所给的数据(单位:米),解答下列问题:(1)用含m ,n 的代数式表示地面的总面积S ;(2)已知 1.5n =,且客厅面积是卫生间面积的6倍与厨房面积的和,如果铺1平方米地砖的平均费用为100元,那么小王铺地砖的总费用为多少元?24.如图,在平面直角坐标系中,ABC 三个顶点坐标分别为()3,3A ,()1,1B ,()4,1C -.(1)画出ABC ,并求出ABC 的面积;(2)在图中作出ABC 关于y 轴对称的图形111A B C △,并写出2B 、1C 两点的坐标.25.如图,△ABC 中,AB=AC ,∠BAC=90°,CD 平分∠ACB ,BE ⊥CD ,垂足E 在CD 的延长线上.求证:CD=2BE .26.已知22a m n =+,2b m =,c mn =,且m >n >0. (1)比较a ,b ,c 的大小;(2)请说明以a ,b ,c 为边长的三角形一定存在.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】分式的分子和分母没有公因式的分式即为最简分式,根据定义解答. 【详解】 A 、6()8()x y x y -+=3()4()x y x y -+,故该项不是最简分式;B 、22y x x y--=-x-y ,故该项不是最简分式;C 、2222x y x y xy ++分子分母没有公因式,故该项是最简分式; D 、222()x y x y -+=x yx y-+,故该项不是最简分式;故选:C . 【点睛】此题考查最简分式定义,化简分式,掌握方法将分式的化简是解题的关键.2.B解析:B 【分析】a 与b 互为相反数,由相反数的定义与性质得22=,a b a b -=,将代数式中字母统一成b,合并约分即可. 【详解】∵a 与b 互为相反数, ∴22=,a b a b -=,222222019202120192021220202020a b b b ab b ++==--,故选择:B . 【点睛】本题考查分式求值问题,掌握相反数的定义与性质,会利用相反数将代数式的字母统一为b 是解题关键.3.C解析:C 【分析】 根据分式方程2311a x x+=--的解为非负数求得a>5,根据不等式组的解集为2y <-,求得2a ≥-,利用分式的分母不等于0得到x ≠1,即可得到a 的取值范围25a -≤≤,且x ≠1,根据整数的意义得到a 的整数值. 【详解】 解分式方程2311a x x+=--,得53a x -=,∵分式方程2311ax x+=--的解为非负数, ∴503a-≥, 解得a ≤5,∵关于y 的不等式组213202y yy a +⎧->⎪⎪⎨-⎪≤⎪⎩,得2y y a <-⎧⎨≤⎩,∵不等式组的解集为2y <-, ∴2a ≥-, ∵x-1≠0, ∴x ≠1,∴25a -≤≤,且x ≠1,∴整数a 为:-2、-1、0、1、3、4、5,共有7个, 故选:C . 【点睛】此题考查根据分式方程的解的情况求未知数的取值范围,根据不等式组的解集情况求未知数的取值范围,确定不等式的整数解,正确理解题意并计算是解题的关键.4.C解析:C 【分析】根据分式的性质逐一判断即可. 【详解】解:A. 22b b a a=不一定正确;B. 22+++a b a b a b=不正确;C. 2422x y x yx x --=分子分母同时除以2,变形正确; D.22m nn m-=-不正确; 故选:C . 【点睛】本题考查分式的基本性质,掌握分式的基本性质是解题的关键.5.A解析:A 【分析】利用多项式乘以多项式法则计算,整理后将已知等式代入计算即可求出值. 【详解】解:∵x+y=2,xy=-1,∴(1-2x )(1-2y )=1-2y-2x+4xy=1-2(x+y )+4xy=1-2×2-4=-7; 故选:A . 【点睛】本题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.6.A解析:A 【分析】由题意,当0x y +=时,代数式取到最小值,则有x y =-,根据绝对值的意义进行化简,即可得到答案. 【详解】 解:根据题意, ∵2()0x y +≥,∴当0x y +=时,代数式2()2020x y ++的值取到最小值2020, ∴x y =-, ∴x y =-, ∴0x y --=, ∴22,x y x y ==, ∴222||2||0x y x y -+-=; 故选:A . 【点睛】本题考查了乘方的定义,绝对值的意义,以及求代数式的值,解题的关键是掌握运算法则,正确得到0x y +=和x y =-.7.D解析:D 【分析】根据a*b 的定义,将每个等式的左右两边分别计算,再进行判断即可. 【详解】①∵a*b=()2a b -,b*a=()()22b a a b -=-, ∴a*b=b*a 成立; ②(a*b)2=()()()224a b a b -=-,a 2*b 2=()()()22222a b a b a b -=-+,∵()()()422a b a b a b -≠-+∴(a*b )2=a 2*b 2不成立;③∵(−a)*b=()()22a b a b --=+,a*(−b)= ()()22a b a b --=+⎡⎤⎣⎦, ∴−a*b=a*(−b)成立;④∵a*(b+c)= ()()22a b c a b c -+=--⎡⎤⎣⎦,a*b+a ∗c=()()()222a b a c a b c -+-≠--, ∴a*(b+c) =a*b+a ∗c 不成立; 故选:D .【点睛】本题考查了新定义下实数的运算,正确理解题意是解题的关键.8.D解析:D【分析】依据绝对值的性质,即可得到m﹣3n=2020或2018,进而得出m﹣3n的值,再根据平方运算,即可得到(2020﹣m+3n)2的值.【详解】∵|m﹣3n﹣2019|=1,∴m﹣3n﹣2019=±1,即m﹣3n=2020或2018,∴2020﹣m+3n=2020﹣(m﹣3n)=0或2,∴(2020﹣m+3n)2的值为0或4,故选:D.【点睛】本题考查绝对值的性质和代数式求值,利用整体思想求出m﹣3n的值且注意去绝对值时的两种情况.9.D解析:D【分析】设两内角的度数为x、4x,分两种情况,列出方程,即可求解.【详解】解:设两内角的度数为x、4x,当等腰三角形的顶角为x时,x+4x+4x=180°,x=20°;当等腰三角形的顶角为4x时,4x+x+x=180°,x=30°,4x=120°;因此等腰三角形的顶角度数为20°或120°.故选:D.【点睛】本题考查了等腰三角形的性质,掌握分类讨论思想方法是解题的关键.10.C解析:C【分析】延长BD与AC交于点E,由题意可推出BE=AE,依据等角的余角相等,即可得等腰三角形BCE,可推出BC=CE,AE=BE=2BD,根据AC=6,BC=4,即可推出BD的长度.【详解】解:延长BD与AC交于点E,∵∠A=∠ABD,∴BE=AE,∵BD⊥CD,∴BE⊥CD,∵CD平分∠ACB,∴∠BCD=∠ECD,∴∠EBC=∠BEC,∴△BEC为等腰三角形,∴BC=CE,∵BE⊥CD,∴2BD=BE,∵AC=6,BC=4,∴CE=4,∴AE=AC-EC=6-4=2,∴BE=2,∴BD=1.故选:C.【点睛】本题主要考查等腰三角形的判定与性质,比较简单,关键在于正确地作出辅助线,构建等腰三角形,通过等量代换,即可推出结论.11.C解析:C【分析】根据作图过程可知用到的三角形全等的判定方法是SSS.【详解】解:尺规作图-作一个角的角平分线的作法如下:①以O为圆心,任意长为半径画弧,交AO、BO于点F、E,②再分别以F、E为圆心,大于12EF长为半径画弧,两弧交于点M,③画射线OM,射线OM即为所求.由作图过程可得用到的三角形全等的判定方法是SSS.故选:C.【点睛】本题主要考查了基本作图以及全等三角形的判定,关键是掌握作一个角的平分线的基本作图方法.12.B解析:B 【分析】根据平行线和三角形外角的性质即可求出C ∠的大小. 【详解】如图,设AE 和CD 交于点F , ∵//AB CD ,∴65A DFE ∠=∠=︒(两直线平行同位角相等), ∵DFE ∠是CEF △的外角,∴653035C DFE E ∠=∠-∠=︒-︒=︒.故选:B . 【点睛】本题考查平行线和三角形外角的性质.熟练利用两个性质证明和求解是解答本题的关键.二、填空题13.-3【分析】先求解分式方程得到用m 表示的根然后再确定该分式方程的增根最后让分式方程的根等于增根并求出m 的值即可【详解】解:m+3=x-2x=m+5由的增根为x=2令m+5=2解得m=-3故填:-3【解析:-3 【分析】先求解分式方程得到用m 表示的根,然后再确定该分式方程的增根,最后让分式方程的根等于增根并求出m 的值即可. 【详解】 解:3122m x x -=-- 3122m x x +=-- 312m x +=- m+3=x-2 x=m+5由3122m x x-=--的增根为x=2 令m+5=2,解得m=-3.故填:-3.【点睛】 本题主要考查了解分式方程以及分式方程的增根,理解增根的定义是解答本题的关键. 14.【分析】根据通分可化成同分母分式根据同分母分式的加减可得答案【详解】故答案为:【点睛】本题考查了分式加减运算的法则熟记法则是解题的关键 解析:323x x x-- 【分析】根据通分,可化成同分母分式,根据同分母分式的加减,可得答案.【详解】()()()()()()()3313323111111x x x x x x x x x x x x x x x x-----==+-+-+--. 故答案为:323x x x--. 【点睛】本题考查了分式加减运算的法则,熟记法则是解题的关键. 15.【分析】根据幂的乘方与同底数幂的除法法则解答即可【详解】∵(am )2÷an =22÷5=4÷5=故答案为:【点睛】本题主要考查了幂的乘方与同底数幂的除法熟记幂的运算法则是解答本题的关键 解析:45【分析】根据幂的乘方与同底数幂的除法法则解答即可.【详解】∵2m a =,5n a =,2m n a -=(a m )2÷a n =22÷5=4÷5=45. 故答案为:45. 【点睛】 本题主要考查了幂的乘方与同底数幂的除法,熟记幂的运算法则是解答本题的关键. 16.【分析】根据完全平方公式及开方运算即可求解【详解】解:∵∴故答案为:【点睛】本题考察完全平方公式熟练掌握完全平方公式是解题的关键 解析:3±【分析】根据完全平方公式及开方运算即可求解.【详解】解:∵()()22241429a b a b ab +=-+=+⨯=, ∴93a b +=±=±故答案为:3±.【点睛】本题考察完全平方公式,熟练掌握完全平方公式是解题的关键. 17.5【分析】作PH ⊥MN 于H 如图根据等腰三角形的性质得MH=NH=MN=15在Rt △POH 中由∠POH=60°得到∠OPH=30°则根据在直角三角形中30°角所对的直角边等于斜边的一半可得OH=OP=解析:5【分析】作PH ⊥MN 于H ,如图,根据等腰三角形的性质得MH=NH=12MN=1.5,在Rt △POH 中由∠POH=60°得到∠OPH=30°,则根据在直角三角形中,30°角所对的直角边等于斜边的一半可得OH=12OP=5,然后计算OH-MH 即可. 【详解】作PH ⊥MN 于H ,如图,∵PM=PN ,∴MH=NH=12MN=1.5, 在Rt △POH 中,∵∠POH=60°,∴∠OPH=30°,∴OH=12OP=12×10=5, ∴OM=OH-MH=5-1.5=3.5.故答案为:3.5.【点睛】本题考查了含30度角的直角三角形的性质:在直角三角形中,30°角所对的直角边等于斜边的一半.也考查了等腰三角形的性质.18.7【分析】根据已知条件BFCF分别平分∠ABC∠ACB的外角且DE∥BC可得∠DBF=∠DFB∠ECF=∠EFC根据等角对等边得出DF=BDCE=EF根据BD-CE=DE即可求得【详解】解:∵BFC解析:7【分析】根据已知条件,BF、CF分别平分∠ABC、∠ACB的外角,且DE∥BC,可得∠DBF=∠DFB,∠ECF=∠EFC,根据等角对等边得出DF=BD,CE=EF,根据BD-CE=DE即可求得.【详解】解:∵BF、CF分别平分∠ABC、∠ACB的外角,∴∠DBF=∠CBF,∠FCE=∠FCG,∵DE∥BC,∴∠DFB=∠CBF,∠EFC=∠FCG,∴∠DBF=∠DFB,∠FCE=∠EFC,∴BD=FD,EF=CE,∴BD-CE=FD-EF=DE,∴EF=DF-DE=BD-DE=8-3=5cm,∴EC=5cm,∴AC=AE+EC=2+5=7cm,故答案为:7.【点睛】本题主要考查了等腰三角形的性质以及平行线的性质,利用边角关系并结合等量代换来推导证明是本题的特点.19.12【分析】利用SSS证明△ADC≌△ADB可得△ABD的面积=△ACD的面积通过拼接可得阴影部分的面积=△ABD的面积再利用三角形的面积公式可求解【详解】解:∵AB=ACBD=CDAD=AD∴△A解析:12【分析】利用SSS证明△ADC≌△ADB,可得△ABD的面积=△ACD的面积,通过拼接可得阴影部分的面积=△ABD的面积,再利用三角形的面积公式可求解.【详解】解:∵AB=AC,BD=CD,AD=AD,∴△ADC≌△ADB(SSS),∴S△ADC=S△ADB,∵BC=8,∴BD=4,∵AB=AC,BD=DC,∴AD⊥BC,∴EB=EC,FB=FC,∵EF=EF,∴△BEF≌△CEF(SSS)∴S△BEF=S△CEF,∵AD=6,∴S阴影=S△ADB=12BD•AD=12×4×6=12.故答案为:12.【点睛】本题考查了全等三角形的性质与判定,三角形的面积,理解S阴影=S△ADB是解题的关键.20.540°【分析】连接AGGD先根据∠H+∠K=∠HGA+∠KAG∠E+∠F=∠EDG+∠FGD最后根据多边形的面积公式解答即可【详解】解:连接AGGD∵∠H+∠K+∠HMK=180°∠HGA+∠KA解析:540°【分析】连接AG、GD,先根据∠H+∠K=∠HGA+∠KAG, ∠E+∠F=∠EDG+∠FGD,最后根据多边形的面积公式解答即可.【详解】解:连接AG、GD,∵∠H+∠K+∠HMK=180°,∠HGA+∠KAG +∠AMG=180°,∠HMK=∠AMG∴∠H+∠K=∠HGA+∠KAG;同理:∠E+∠F=∠EDG+∠FGD∴∠BAK+∠B+∠C+∠CDE+∠E+∠F+∠MGN+∠H+∠K=∠BAK+∠B+∠C+∠CDE+∠EDG+∠FGD+∠MGN+∠HGA+∠KAG=五边形的内角和=(5-2)×180°=540°故答案为540°.【点睛】本题考查了三角形内角和定理和多边形内角和定理,根据题意正确作出辅助线成为解答本题的关键.三、解答题21.3a;1 【分析】 根据分式的减法和除法可以化简题目中的式子,然后从0,2,3中选择一个使得原分式有意义值,代入化简后的式子即可解答本题.【详解】 解:22122441a a a a a a ⎛⎫-÷ ⎪-⎭-⎝+-+ ()()2212222a a a a a a a ⎛-+-=---÷⎪⎝⎭-⎫ 22322a a a a3a= ∵当0a =或2时,原式没有意义,∴当3a =时,原式1=.【点睛】本题考查分式的化简求值,明确分式化简求值的方法和分式有意义的条件是解答本题的关键. 22.(1)3-;(2)x≤32-. 【分析】(1)原式利用零指数幂法则,绝对值的意义,以及算术平方根性质计算即可得到结果; (2)去括号,移项,合并同类项,系数化成1即可求出不等式的解集.【详解】解:(1)原式=14+-3-;(2)去括号,得4x+5≤2x+2,移项合并同类项得,2x≤-3,解得x≤32-. 【点睛】此题考查了实数的运算和解一元一次不等式,零指数幂,熟练掌握运算法则是解本题的关键.23.(1)S =6m +2n +18;(2)4500元.【分析】(1)根据总面积等于四个部分矩形的面积之和列式整理即可得解;(2)根据题意求出m 的值,把m ,n 的值代入计算即可.【详解】解:(1)S=2n+6m+3×4+2×3=6m+2n+18.(2)n=1.5时2n=3根据题意,得6m=8×3=24,m=4,∵铺1平方米地砖的平均费用为100元,∴铺地砖的总费用为:100(6m+2n+18)=100×(24+3+18)=4500.答:铺地砖的总费用4500元.【点睛】本题考查了列代数式,准确表示出各部分矩形的长和宽是解题的关键.24.(1)画图见解析;5 (2)画图见解析;()11,1B -,()14,1C --【分析】(1)先根据A 、B 、C 三点坐标描点,再顺次连接即可得到ABC ,再运用割补法即可求出ABC 的面积;(2)分别作出A 、B 、C 三点关于y 轴的对称点,再顺次连接即可,根据作图即可写出2B 、1C 两点的坐标.【详解】解:(1)ABC 如图所示: 111341422235222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯=△;(2)111A B C △如图所示:()11,1B -,()14,1C --.【点睛】本题主要考查作图-轴对称变换,解题的关键是掌握轴对称变换的定义和性质. 25.见解析【分析】根据等角的余角相等求出∠ACD=∠ABF ,再利用“角边角”证明△AFB ≌△ADC 可得CD=BF ,利用“角边角”证明△BCE 和△FCE 全等,根据全等三角形对应边相等BE=EF ,整理即可得证.【详解】证明:∵BE ⊥CD ,∠BAC=90°,∴∠ACD+∠F=180°-90°=90°,∠ABF+∠F=180°-90°=90°,∴∠ACD=∠ABF ,在△AFB 和△ADC 中,90ACD ABF AB ACCAD BAF ∠∠⎧⎪⎨⎪∠∠︒⎩====, ∴△AFB ≌△ADC (ASA );∴CD=BF ,∵CD 平分∠ACB ,∴∠BCE=∠FCE ,在△BCE 和△FCE 中,90BCE FCE CE CEBEC FEC ∠∠⎧⎪⎨⎪∠∠︒⎩====, ∴△BCE ≌△FCE (ASA ),∴BE=EF ,∴BF=2BE∴CD=2BE .【点睛】本题考查了全等三角形的判定与性质,熟练掌握三角形全等的证明方法并准确识图是解题的关键.26.(1)a >b >c ;(2)见解析【分析】(1)a 、b 、c 两两作差可得出a 、b 、c 之间的大小关系;(2)对于任意一个三角形的三边a ,b ,c ,满足任意两边之和大于第三边,任意两边之差小于第三边.【详解】(1)∵a -b =m 2+n 2-m 2=n 2>0;a -c =m 2+n 2-mn =(m -n )2+mn >0;b -c = m 2-mn =m (m -n )>0∴a >b >c ;(2)由(1)a >b >c 可得,a +b >c∵a -b = m 2+n 2-m 2=n 2<mn∴a -b <c∴以a、b、c为边长的三角形一定存在.【点睛】本题主要考查了利用差比法比较代数式的大小和用三角形三边关系证明三角形的存在.。
八年级数学上册 期末考试卷(鲁教版)(一)

八年级数学上册期末考试卷(鲁教版)(一)满分:120分时间:120分钟一、选择题(每题3分,共36分)1.【2022·徐州】下列图案是轴对称图形但不是中心对称图形的是()2.将6ab2-3ab进行因式分解,公因式是()A.3ab B.ab C.3ab2D.6ab3.【2023·淄博张店区期中】若分式x2-9x2-4x+3的值为零,那么() A.x=3或x=-3 B.x=3且x=-3C.x=3 D.x=-34.【2022·无锡】分式方程2x-3=1x的解是()A.x=1 B.x=-1 C.x=3 D.x=-35.【母题:教材P71复习题T4】某学校规定学生的数学成绩由三部分组成,期末考试成绩占70%,期中考试成绩占20%,平时作业成绩占10%,某人上述三项成绩分别为85分、90分、80分,则他的数学成绩是() A.85分B.85.5分C.90分D.80分6.【2023·济南槐荫区期末】如图,△ABC沿直线m向右平移2 cm,得到△DEF,下列说法错误的是()A.AC∥DF B.AB=DEC.CF=2 cm D.DE=2 cm7.【2022·锦州】某校开展安全知识竞赛,进入决赛的学生有20名,他们的决赛成绩如表所示:决赛成绩/分100 99 98 97人数 3 7 6 4 则这20名学生决赛成绩的中位数和众数分别是()A.98,98 B.98,99 C.98.5,98 D.98.5,998.如图,▱ABCD 的对角线AC ,BD 相交于点O ,点E ,F 分别是线段AO ,BO 的中点,若AC +BD =24 cm ,△OAB 的周长是18 cm ,则EF 的长为( )A .12 cmB .9 cmC .6 cmD .3 cm9.【2022·南充】如图,在正五边形ABCDE 中,以AB 为边向内作正三角形ABF ,则下列结论错误的是( ) A .AE =AF B .∠EAF =∠CBF C .∠F =∠EAF D .∠C =∠E10. 观察下列分解因式的过程:x 2-2xy +y 2-16=(x -y )2-16=(x -y +4)()x -y -4,这种分解因式的方法叫分组分解法.利用这种分组的思想方法,已知a ,b ,c 满足a 2-b 2-ac +bc =0,则以a ,b ,c 为三条线段首尾顺次连接围成一个三角形,下列描述正确的是( ) A .围成一个等腰三角形 B .围成一个直角三角形 C .围成一个锐角三角形 D .以上都不正确11.如图,将▱ABCD 沿对角线AC 翻折,点B 落在点E 处,CE 交AD 于点F ,若∠B =80°,∠ACE =2∠ECD ,FC =a ,FD =b ,则▱ABCD 的周长为( )A .2a +bB .4a +bC .4a +2bD .2a +2b12.若关于x 的一元一次不等式组⎩⎨⎧3x -2≥2(x +2),a -2x <-5的解集为x ≥6,且关于y的分式方程y+2ay-1+3y-81-y=2的解是正整数,则所有满足条件的整数a的值之和是()A.5 B.8 C.12 D.15 二、填空题(每题3分,共18分)13.【母题:教材P45复习题T6】若分式x+2x2-1有意义,则x应满足的条件是________.14.【2023·烟台龙口市期中】若多项式x2-(m-1)x+16能用完全平方公式进行因式分解,则m=________.15.【2022·山西】生物学研究表明,植物光合作用速率越高,单位时间内合成的有机物越多,为了解甲、乙两个品种的大豆的光合作用速率,科研人员从甲、乙两个品种的大豆中各选五株,在同等实验条件下,测量它们的光合作用速率(单位:μmol·m-2·s-1),结果统计如下:品种第一株第二株第三株第四株第五株平均数甲32 30 25 18 20 25乙28 25 26 24 22 25 则两个品种的大豆中光合作用速率更稳定的是________(填“甲”或“乙”).16.如图,△ABC是等边三角形,点P是三角形内的任意一点,PD∥AB,PE∥BC,PF∥AC,若△ABC的周长为12,则PD+PE+PF=________.17.如图,在平面直角坐标系中,点A(3,0),点B(0,2),连接AB,将线段AB绕点A顺时针旋转90°得到线段AC,连接OC,则线段OC的长度为________.18.如图,在▱ABCD 中,AB =6,∠BAD 的平分线与BC 的延长线交于点E ,与DC 交于点F ,且点F 为边CD 的中点,DG ⊥AE ,垂足为G ,若 DG =5,则AE 的长为________.三、解答题(19,21题每题9分,24,25题每题12分,其余每题8分,共66分) 19.分解因式:(1)x 3-x ; (2)2a 2-4a +2; (3)m 4-2m 2+1.20.(1)化简:⎝ ⎛⎭⎪⎫m +2n m -n +m n -m ÷n m -n;(2)先化简,再求值:⎝ ⎛⎭⎪⎫1-1a 2-2a +1÷a -2a -1,其中a =3.21.【2022·无锡】如图,在▱ABCD 中,点O 为对角线BD 的中点,EF 过点O 且分别交AB ,DC 于点E ,F ,连接DE ,BF .求证: (1)△DOF ≌△BOE ; (2)DE =BF .22.【2023·烟台莱阳市期中】近年来,网约车给人们的出行带来了便利,为了解网约车司机的收入情况,小飞和数学兴趣小组同学从甲、乙两家网约车公司分别随机抽取10名司机的月收入进行统计,情况如下:根据以上信息,整理分析数据如表:平均数/千元中位数/千元众数/千元方差甲公司a 6 b 1.2乙公司 6 c 4 d(1)表中a=______,b=______,c=______,d=______;(2)小飞的叔叔决定从两家公司中选择一家做网约车司机,如果你是小飞,你建议他选哪家公司?简述理由.23.【2022·赤峰】某学校建立了劳动基地,计划在基地上种植A,B两种苗木共6 000株,其中A种苗木的数量比B种苗木的数量的一半多600株.(1)请问A,B两种苗木各多少株?(2)如果学校安排350人同时开始种植这两种苗木,每人每天平均能种植A种苗木50株或B种苗木30株,应分别安排多少人种植A种苗木和B 种苗木,才能确保同时..完成任务?24.如图,在▱ABCD中,点E在边AD上,连接EB并延长至F,使BF=BE;连接EC并延长至G,使CG=CE,连接FG,点H为FG的中点,连接DH,AF.(1)若∠BAE=70°,∠DCE=20°,求∠DEC的度数;(2)求证:四边形AFHD为平行四边形.25.(1)如图①,O是等边△ABC内一点,连接OA,OB,OC,且OA=3,OB=4,OC=5,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.①旋转角的度数为________;②线段OD的长为________;③求∠BDC的度数.(2)如图②,O是等腰Rt△ABC(∠ABC=90°)内一点,连接OA,OB,OC,将△BAO绕点B顺时针旋转后得到△BCD,连接OD,当OA,OB,OC 满足什么条件时,∠ODC=90°?请给出证明.答案一、1.C 2.A3.D【点拨】分式x2-9x2-4x+3=(x+3)(x-3)(x-1)(x-3),由这个分式的值为0,可得(x+3)(x-3)=0且(x-1)(x-3)≠0.解得x=-3.4.D 5.B6.D【点拨】∵△ABC沿直线m向右平移2cm得到△DEF,∴AC∥DF,AB =DE,CF=AD=BE=2cm.7.D8.D【点拨】∵四边形ABCD为平行四边形,∴AO=12AC,BO=12BD,∴AO+BO=12(AC+BD)=12cm.又∵△AOB的周长为18cm,∴AB=18-(AO+BO)=18-12=6(cm).∵E,F分别是线段AO,BO的中点,∴EF为△AOB的中位线,∴EF=12AB=12×6=3(cm).9.C【点拨】∵多边形ABCDE是正五边形,∴该多边形内角和为(5-2)×180°=540°,AB=AE,∴∠C=∠E=∠EAB=∠ABC=540°5=108°,故D正确;∵△ABF是正三角形,∴∠FAB=∠FBA=∠F=60°,AB=AF=FB,∴∠EAF=∠EAB-∠FAB=108°-60°=48°,∠CBF=∠ABC-∠FBA=108°-60°=48°,∴∠EAF=∠CBF,故B正确;∵AB=AE,AB=AF,∴AE=AF,故A正确;∵∠F=60°,∠EAF=48°,∴∠F≠∠EAF,故C错误.10.A【点拨】a2-b2+bc-ac=0,(a+b)(a-b)+c(b-a)=0,(a-b)(a+b-c)=0,∴a=b或a+b=c,当a=b时,围成一个等腰三角形;当a+b=c时,不能围成三角形.11.C【点拨】∵∠B=80°,四边形ABCD为平行四边形,∴∠D=80°,AD∥BC.∴∠DAC=∠ACB.由折叠可知∠ACB=∠ACE,∴∠ACE=∠DAC.∴△AFC为等腰三角形.∴AF=FC=a.∴AD=AF+FD=a+b.设∠ECD=x°,则∠ACE=∠DAC=2x°.在△ADC中,由三角形内角和定理可知2x°+2x°+x°+80°=180°,解得x=20.∴∠DFC=4x°=80°,∴∠DFC=∠D.∴△DFC为等腰三角形.∴DC=FC=a.∴▱ABCD的周长为2(DC+AD)=2(a+a+b)=4a+2b.12.B x-2≥2(x+2),①-2x<-5,②解不等式①得x≥6.解不等式②得x>a+5 2.∵不等式组的解集为x≥6,∴a+52<6,∴a<7.分式方程两边都乘(y -1),得y +2a -3y +8=2(y -1),解得y =a +52.∵方程的解是正整数,∴a +52>0,∴a >-5.由题意得y -1≠0,∴a +52≠1,∴a ≠-3,∴-5<a <7且a ≠-3,∴能使a +52是正整数的a 的值是-1,1,3,5,∴-1+1+3+5=8.二、13.x ≠±114.9或-715.乙16.4【点拨】如图,延长EP ,FP 分别交AB ,BC 于G ,H ,∵△ABC 为等边三角形,∴∠B =∠C =60°.∵PD ∥AB ,PE ∥BC ,PF ∥AC ,∴四边形PGBD 、四边形EPHC 是平行四边形,∠FGP =∠B =60°,∠PDH =∠B =60°,∠FPG =∠PHD =∠C =60°.∴PG =BD ,PE =HC ,△PFG ,△PDH 是等边三角形.∴PF =PG =BD ,PD =DH .∵△ABC 的周长为12,∴BC =4.∴PD +PE +PF =DH +HC +BD =BC =4.17.34【点拨】如图,作CH ⊥x 轴于H .∵A(3,0),B(0,2),∴OA=3,OB=2.∵∠BAC=∠AHC=90°,∴∠BAO+∠HAC=90°,∠HAC+∠ACH=90°,∴∠BAO=∠ACH.∵AB=AC,∠AOB=∠CHA=90°.∴△ABO≌△CAH(AAS),∴AH=OB=2,CH=OA=3,∴OH=OA+AH=3+2=5,∴OC=OH2+CH2=52+32=34. 18.8【点拨】∵AE为∠DAB的平分线,∴∠DAE=∠BAE.∵四边形ABCD为平行四边形,∴AD∥BC,DC∥AB,DC=AB.∴∠BAE=∠DFA,∴∠DAE=∠DFA,∴AD=FD.又∵DG⊥AE,∴AG=FG,即AF=2AG.∵F为DC的中点,∴DF=CF,∴AD=DF=12DC=12AB=3.在Rt△ADG中,根据勾股定理得AG=2,则AF=2AG=4.∵AD∥BC,∴∠DAF=∠E,∠ADF=∠ECF.在△ADF和△ECF ∠DAF=∠E,∠ADF=∠ECF,DF=CF,∴△ADF ≌△ECF (AAS),∴AF =EF ,则AE =2AF =8.三、19.解:(1)x 3-x =x (x 2-1)=x (x +1)(x -1).(2)2a 2-4a +2=2(a 2-2a +1)=2(a -1)2.(3)m 4-2m 2+1=(m 2-1)2=(m +1)2(m -1)2.20.解:(1)原式=m +2n -m m -n ·m -n n=2n m -n ·m -n n=2.(2)÷a -2a -1=a (a -2)(a -1)2·a -1a -2=a a -1,当a =3时,原式=33-1=32.21.证明:(1)∵四边形ABCD 是平行四边形,O 是BD 的中点,∴AB ∥DC ,OB =OD ,∴∠OBE =∠ODF .在△BOE 和△DOF OBE =∠ODF ,=OD ,BOE =∠DOF ,∴△BOE ≌△DOF (ASA).(2)∵△BOE ≌△DOF ,∴EO =FO .∵OB =OD ,∴四边形BEDF 是平行四边形.∴DE =BF .22.解:(1)6;6;4.5;7.6(2)选甲公司,理由如下:虽然两家公司的司机月收入的平均数一样,但是甲公司的司机月收入的中位数、众数大于乙公司,且甲公司的司机月收入的方差小,更稳定.23.解:(1)设A 苗木的数量是x 株,B 苗木的数量是y 株,根据题意,得+y =6000,=12y +600,=2400,=3600.答:A 种苗木2400株,B 种苗木3600株.(2)设安排a 人种植A 苗木,则安排(350-a )人种植B 苗木,根据题意,得240050a =360030(350-a ),解得a =100,经检验a =100是原方程的解,∴350-a =250.答:安排100人种植A 苗木,250人种植B 苗木,才能确保同时完成任务.24.(1)解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∠BAE =∠BCD =70°.∴∠DEC =∠BCE =∠BCD -∠DCE =70°-20°-50°.(2)证明:∵四边形ABCD 是平行四边形,∴AD =BC ,AD ∥BC .∵BF =BE ,CG =CE ,∴BC 是△EFG 的中位线,∴BC ∥FG ,BC =12FG ,∴AD ∥FH .∵H 为FG 的中点,∴FH =12FG ,∴BC =FH ,∴AD =FH ,∴四边形AFHD 是平行四边形.25.解:(1)①60°②4③由题易证△BOD为等边三角形,∴∠BDO=60°.∵△BAO绕点B顺时针旋转后得到△BCD,∴CD=AO=3.在△OCD中,CD=3,OD=4,OC=5.∵32+42=52,∴CD2+OD2=OC2.∴△OCD为直角三角形,∠ODC=90°.∴∠BDC=∠BDO+∠ODC=60°+90°=150°.(2)OA2+2OB2=OC2时,∠ODC=90°.理由如下:∵△BAO绕点B顺时针旋转后得到△BCD,∴∠OBD=∠ABC=90°,BO=BD,CD=AO.∴△OBD为等腰直角三角形.∴OD=2OB.∵当CD2+OD2=OC2时,△OCD为直角三角形,∠ODC=90°,∴OA2+2OB2=OC2.∴当OA,OB,OC满足OA2+2OB2=OC2时,∠ODC=90°.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2009—2010学年度第一学期期中考试八年级数学试题(四年制)三题 号一二1920212223242526总 分得 分选择题答题栏题 号123456789101112答 案一、选择题(本大题满分36分,每小题3分.每小题只有一个符合题意的选项,请你将正确选项的代号填在答题栏内 )1.对于x +,,,,, 其中分式有2y 312+a 13a z y x +-nn k )2(- A .1个 B .2个 C .3个D .4个2.下列各式中,无论x 取何值,分式都有意义的是A .B .C .D .121x +21xx +231x x +2221x x +3.下列运算正确的是A .B .212=a a yx a y x a 333+=+C .D .414+=-a c c a ba c bc a 22=∙4.在给定下面的五个图案中,位似图形有A .1个B .2个C .3个D .4个八年级数学试题(四年制)第1页(共8页)5.在夏季某天的中午,八年级一班的综合实践活动小组为了测量学校旗杆的高度,先将2米的竹竿直立在地面上,测得竹竿的影长为0.6米,同时测得旗杆的影长为5.4米. 那么旗杆的高度是A . 10.8米B . 16米C .18米D . 18.8米6.下列说法正确的是A .所有的矩形都是相似形B .有一个角等于100°的两个等腰三角形相似C .对应角相等的两个多边形相似D .对应边成比例的两个多边形相似7.若x ,y 的值均扩大为原来的2倍,则下列分式的值保持不变的是A .B .C .D .y x 73225y x y x 3322323y x 8.已知==,且a -b +c =10,则a +b -c 的值为4a 5b 6cA . 7B . 6C . 5D . 39.如图,已知DE ∥BC ,EF ∥AB ,则下列比例式中错误的是A .B .AC AEAB AD=FB EACF CE =C . D .BD ADBCDE=CBCFAB EF =10. 在正数范围内定义一种运算☆,其规则为☆=,根据这个规则☆a b ba 11+x 的解为23)1(=+x A . 1B .或C .D .或=x 1=x 32-32=x 32=x 1-11.“十一”江北水城文化旅游节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费,设参加旅游的同学共x 人,则所列方程为A .B .32180180=+-x x 31802180=-+x x C . D .32180180=--x x 31802180=--xx 12.如图,在△ABC 中,AE =ED =DC ,FE //MD //BC ,FD 的延长线交BC 的延长线于N ,则为BNEFA .B .C .D .31415121八年级数学试题(四年制)第2页(共8页)ABCDEF(第9题图)(第12题图)ABCNMDFE二、填空题(本大题满分18分,每小题3分,请你将答案填写在题目中的横线上)13.分式,,的最简公分母为________________.xy x 413-)(322x y x y -yx 221-14.已知线段a =4,b =9,则线段a ,b 的比例中项c 是 ,线段c ,a ,b 的第四比例项d 是.15.如果两个相似多边形的周长比为1:2,则其面积比为_______________.16.在比例尺为1∶5000的地图上,一块多边形地区的面积是320 cm 2,这个地区的实际面积是___________________m 2.17.如图,已知∠1=∠2,若再增加一个条件就能使结论“AB•ED=AD•BC ”成立,则这个条件可以是.18.在中国地图上,连结上海、香港、台湾三地构成一个三角形,用刻度尺测得它们之间的距离如图所示.飞机从台湾直飞上海的距离约为1286千米,那么飞机从台湾绕到香港再到上海的空中飞行距离约是千米.三、解答题 (本大题满分66分, 解答要写出必要的文字说明或推演步骤)19.(本题满分12分,每小题4分)计算下列各题:(1) ; (2);22343b b a b b a ---ab b b a a --+--2222八年级数学试题(四年制)第3页(共8页)12ABECD(第17题图)(第18题图)5.4厘米厘米厘米33.6香港台湾上海(3).xy x y xy ∙÷-23)3(2220.(本题满分6分)解分式方程:.1412112-=-++x x x 21.(本题满分7分)先化简, 再选取一个你喜欢的数代入求值.21)44451(2-+÷+--+x x x x x 八年级数学试题(四年制)第4页(共8页)阅读下面对话:小红妈:“售货员,请帮我买些梨.”售货员:“小红妈,您上次买的那种梨都卖完了,我们还没来得及进货,我建议这次您买些新进的苹果,价格比梨贵一点,不过苹果的营养价值更高.”小红妈:“好,你们很讲信用,这次我照上次一样,也花30元钱.”对照前后两次的电脑小票,小红妈发现:每千克苹果的价是梨的1.5倍,苹果的重量比梨轻2.5千克.试根据上面对话和小红妈的发现,分别求出梨和苹果的单价.23.(本题满分7分)如图,测量小玻璃管口径的量具△ABC ,AB 的长为10cm ,AC 被分为60等份. 如果小玻璃管口DE 正好对着量具上20等份处(DE ∥AB ),那么小玻璃管口径DE 是多大?八年级数学试题(四年制)第5页(共8页)605040302010CDA B E (第23题图)在社会主义新农村建设中,某乡镇决定对一段公路进行改造.已知这项工程由甲工程队单独做需要40天完成;如果由乙工程队先单独做10天,那么剩下的工程还需要两队合做20天才能完成.(1)求乙工程队单独完成这项工程所需天数;(2)求两队合做完成这项工程所需天数.八年级数学试题(四年制)第6页(共8页)等腰△ABC ,AB =AC ,∠BAC =120°,P 为BC 上的中点,小慧拿着含 30°角的透明三角板,使30°角的顶点落在点P 处,三角板绕点P 旋转到如图所示情形时,三角板的两边分别交BA 的延长线于点E ,交边AC 于点F , 连结EF ,△BPE 与△PFE 是否相似?请说明理由;八年级数学试题(四年制)第7页(共8页)B26.(本题满分9分)如图,已知矩形的边长.某一时刻,动点从点ABCD 3cm 6cm AB BC ==,M A 出发沿方向以的速度向点匀速运动;同时,动点从点出发沿方向AB 1cm /s B N D DA 以的速度向点匀速运动,问:是否存在时刻,使以为顶点的三角形2cm /s A t A M N ,,与相似?若存在,求的值;若不存在,请说明理由.ACD △t 八年级数学试题(四年制)第8页(共8页)CDM NA B(第26题图)2009 — 2010学年度第一学期期中考试八年级数学试题(四年制)评分标准与参考答案一、选择题 (本大题满分36分,每小题3分)1.C 2.D 3.A 4.D 5.C 6.B 7.A 8.B 9.C 10.A 11.D 12.B二、填空题 (本大题满分18分,每小题3分)13.12x 2y (x -y ) 14.6,6 15.1︰4 16.800000 17.∠D =∠B , 或∠AED =∠C18. 3858三、解答题 (本大题满分66分)19.解:(1)原式===.…………………………………… 4分234b b a b a +--233bb b 1(2)原式====.………… 4分b a b a -+--2222b a b a --22ba b a b a -+-))((b a +(3)原式===6x 2y .………………… 4分x y y x y x ∙∙22232)9(xy yx y x ∙∙∙22232920.解:去分母,方程两边同乘以最简公分母,得)1)(1(-+x x . ……………………………… 2分4)1(2)1(=++-x x 解这个整式方程得,.……………………………… 4分1=x 检验:把代入最简公分母,发现=0.1=x )1)(1(-+x x )1)(1(-+x x ∴ 不是原方程的解,应舍去.……………………… 5分1=x ∴ 原方程无解.……………………………… 6分21.解:原式=21)44454444(222-+÷+--++-+-x x x x x x x x x = ………………… 2分214422-+÷+-+x x x x x x =12)2()1(2+-∙-+x x x x x 八年级数学试题答案(四年制)第1页(共3页)=. ………………………………… 5分2-x x当x =3时, ……………………………………… 6分原式==3.……………………………… 7分233-说明:x 的值不能取-1及2.22.解:设梨的单价是x 元/千克,苹果的单价是1.5x 元/千克. ……………… 1分根据题意得:+2.5. ………………………………………………………………… 3分xx 5.13030=解这个方程得:x =4.……………………………………………………………… 4分经检验x =4是方程的解. ………………………………………………………… 5分∴ 1.5x =6. ……………………………………………………………………… 6分答:梨的单价是4元/千克,苹果的单价是6元/千克. ……………………… 7分23.解:∵ DE ∥AB ,∴ ∠B =∠CED . 又∵ ∠C =∠C ,∴ △ABC ∽△DEC . ……………………………………………………… 2分∴.……………………………………………………………… 3分ACCDAB DE =∵ AB =10 cm ,CD =40 cm , AC =60 cm ,∴. ∴ DE =(cm ). …………………………………… 6分604010=DE 320 答:小玻璃管口径DE 长cm . ………………………………………… 7分32024.解:(1)设乙工程队单独完成这项工程需要x 天.……………………… 1分根据题意,得.…………………………………………… 3分120401110=⨯⎪⎭⎫⎝⎛++x x 解得:x =60.……………………………………………………………… 4分经检验:x =60是原方程的解. ………………………………………… 5分 答:乙工程队单独完成这项工程所需要的天数是60天.……………… 6分(2)设两队合做完成这项工程需要y 天.………………………………… 7分根据题意,得. …………………………………………………… 8分1601401=⎪⎭⎫⎝⎛+y 解得:y =24. ……………………………………………………………… 9分答:两队合做完成这项工程所需要的天数是24天.……………………… 10分八年级数学试题答案(四年制)第2页(共3页)25.答:△BPE 与△PFE 相似. …………………………………………… 2分理由:∵ AB =AC ,∠BAC =120°,∴ ∠B =∠C =30°.∵ ∠B +∠BEP =∠EPC , ∠EPF =30°,∴ ∠BEP =∠CPF .∴ △BPE ∽△CFP . …………………………………………… 4分∴ .PE BE PF PC =∵ BP =PC , ∴ .…………………………………………… 6分PEBE PF PB =即 .PB BE PF PE =又 ∠B =∠EPF =30°,∴ △BPE ∽△PFE . …………………………………………… 8分26.解:存在. ……………………………………………………………… 1分当△ACD ∽△MNA 时,则,即, …………………………………… 3分NA MA CD AD =t t 2636-=∴ 36-12t =3t .∴ t =2.4. …………………………………………………………… 5分当△ACD ∽△NMA 时,则,即. ………… 7分MA NA CD AD =t t 2636-=∴ 6t =18-6t .∴ t =1.5. ………………………………………………………… 9分八年级数学试题答案(四年制)第3页(共3页)。