时间序列的ARMA模型
时间序列arma模型建立的流程

时间序列arma模型建立的流程时间序列ARMA模型建立的流程1. 引言时间序列分析是一种对时间序列数据进行建模、预测和分析的统计方法。
ARMA模型是一种常用的时间序列模型,它可以描述时间序列数据中的自相关和移动平均关系。
本文将从数据准备、模型选择、参数估计和模型诊断等方面,介绍建立时间序列ARMA模型的完整流程。
2. 数据准备1.收集时间序列数据,确保数据具有一定的观测频率,并且包含足够的历史观测值。
2.对数据进行可视化分析,绘制时间序列图和自相关图,初步了解数据的趋势和周期性。
3. 模型选择1.确定时间序列数据是否平稳。
对于非平稳数据,需要进行差分运算,直到得到平稳的时间序列数据。
2.根据平稳时间序列数据的自相关和偏自相关图,选择合适的ARMA模型阶数。
通过观察自相关图的截尾性和偏自相关图的截尾性,确定ARMA(p, q)模型中的p和q。
4. 参数估计1.通过最大似然估计或最小二乘法,估计ARMA模型中的参数。
最大似然估计假定模型误差服从正态分布,而最小二乘法假定误差服从零均值正态分布。
2.通过估计的参数,建立ARMA模型。
5. 模型诊断1.对残差进行自相关和偏自相关分析,验证模型的残差序列是否为纯随机序列,即不存在自相关和异方差性。
2.对模型的残差序列进行Ljung-Box检验,验证残差的独立性。
3.对模型的残差序列进行正态性检验,验证模型的残差是否符合正态分布。
4.对模型的残差序列进行异方差性检验,验证模型的残差是否存在异方差现象。
6. 模型评估和预测1.使用信息准则(如AIC、BIC)评价模型的拟合程度。
较小的AIC和BIC值表示模型的拟合程度较好。
2.使用估计的ARMA模型对未来的数据进行预测,得到预测值和置信区间。
7. 结论建立时间序列ARMA模型的流程包括数据准备、模型选择、参数估计和模型诊断等环节。
通过该流程,我们能够对时间序列数据进行建模和预测,为相关领域的决策提供科学依据。
以上为时间序列ARMA模型建立的流程,希望对读者有所帮助。
时间序列中的ARMA模型

c u=
1 (1 2 ... p)
旳无条
7
ARIMA模型旳概念
Yt-u=1(Yt-1-u)+ 2(Yt-2-u)+...+p(Yt-p-u)+vt
0=1 1+ 2 2+...+p p+ 2 1=1 0+ 2 1+...+ p p-1
……
p=1 p-1+ 2 p-2+...+ p 0
(1
2
1
1≤j≤22q ... q2 )
0 j>q
j>q时,ACF(j)=0,此现象为截尾,是MA(q)过程旳一种特征
如下图:
18
ARMA模型旳辨认
MA(2)过程
yt =0.5ut-1 0.3ut2 ut
19
ARMA模型旳辨认
⑵ AR(p)过程旳偏自有关函数
j p 时,偏自有关函数旳取值不为0 j>q 时,偏自有关函数旳取值为0 AR(p)过程旳偏自有关函数p阶截尾 如下图:
32
ARMA模型旳预测
二. 基于MA过程旳预测
过程 结论:
MA (2) 过程仅有2期旳记忆力
33
ARMA模型旳预测
三. 基于ARMA过程旳预测
结合对AR过程和MA过程进行预测 ARMA模型一般用于短期预测
34
五、实例:ARMA模型在金融数 据中旳应用
数据: 1991年1月到2023年1月旳我国货币供
3
ARIMA模型旳概念
2.MA(q)过程旳特征
1. E(Yt)=u
2.
var(Yt)
(1
2
arma模型原理

arma模型原理
ARMA模型(AutoRegressive Moving Average Model)是一种时间序列分析模型,它结合了自回归模型(AR)和移动平均模型(MA)。
ARMA 模型的原理是,对于一个时间序列,在保持平稳性的前提下,通过自回归和移动平均两个方面来描述序列的特征。
具体来说,AR表示当前时间点的值与前面若干个时间点的值有关,而MA表示当前时间点的值与前面若干个时间点的噪声有关。
因此,ARMA模型可以很好地捕捉时间序列数据的趋势和周期性。
在实际应用中,ARMA模型通常用于预测未来的时间序列值和分析时间序列的特征。
在ARMA模型中,参数估计和模型检验是重要的步骤,需要一定的统计学知识和技能。
常用的估计方法包括最大似然估计和贝叶斯估计,而模型检验可以通过残差分析和模型诊断来进行。
总之,ARMA模型是一种经典的时间序列模型,它结合了自回归模型和移动平均模型,可以用于预测未来的时间序列值和分析时间序列的特征。
在实际应用中需要谨慎使用,需要考虑时间序列数据的特征和背景知识,以及参数估计和模型检验的可靠性。
ARMA模型

方差为 2 的正态分布.随机项与滞后变量不相关。
注2: 一般假定
X t 均值为0,否则令
X
t
Xt
1 时间序列分析模型【ARMA模型 】简介
记 Bk 为 k 步滞后算子, 即 Bk X t X tk , 则
模型【1】可表示为
Xt 1BXt 2B2 Xt pBp Xt ut
实际问题中, 常会遇到季节性和趋势性同时存在的情况, 这 时必须事先剔除序列趋势性再用上述方法识别序列的季节性, 否则季节性会被强趋势性所掩盖, 以至判断错误.
包含季节性的时间序列也不能直接建立ARMA模型, 需进 行季节差分消除序列的季节性, 差分步长应与季节周期一致.
1 时间序列分析模型【ARMA模型 】简介
式【5】称为( p, q)阶的自回归移动平均模型, 记为ARMA ( p, q)
注1: 实参数 1,2 , , p 称为自回归系数, 1,2 , ,q 为移动平均系数,
都是模型的待估参数
注2: 【1】和【3】是【5】的特殊情形 注3: 引入滞后算子,模型【5】可简记为
(B) Xt (B)ut
【6】
在实际中, 常见的时间序列多具有某种趋势, 但很多序列 通过差分可以平稳
判断时间序列的趋势是否消除, 只需考察经过差分后序列 的自相关系数
(3)季节性 时间序列的季节性是指在某一固定的时间间隔上, 序列重
复出现某种特性.比如地区降雨量、旅游收入和空调销售额等 时间序列都具有明显的季节变化. 一般地, 月度资料的时间序列, 其季节周期为12个月;
Xt 1 v1B v2B2
ut
vjB
j
ut
j0
arma模型的数学表达式

arma模型的数学表达式摘要:1.ARMA 模型的概述2.ARMA 模型的数学表达式3.ARMA 模型的应用正文:一、ARMA 模型的概述自回归滑动平均模型(ARMA)是一种常用的时间序列分析方法,主要用于拟合和预测具有线性趋势的时间序列数据。
ARMA 模型是由自回归模型(AR)和滑动平均模型(MA)组合而成的,可以同时对时间序列数据中的长期依赖关系和短期依赖关系进行建模。
二、ARMA 模型的数学表达式ARMA 模型的数学表达式分为两个部分:自回归部分(AR)和滑动平均部分(MA)。
1.自回归部分(AR)自回归模型主要描述时间序列数据中的长期依赖关系,其数学表达式为:X_t = c + Φ1X_{t-1} + Φ2X_{t-2} +...+ ΦpX_{t-p} + ε_t其中,X_t 表示时间序列数据在t 时刻的取值,c 为常数项,Φ1、Φ2、...、Φp 为自回归系数,ε_t 为误差项。
2.滑动平均部分(MA)滑动平均模型主要描述时间序列数据中的短期依赖关系,其数学表达式为:X_t = μ+ θ1ε_{t-1} + θ2ε_{t-2} +...+ θqε_{t-q}其中,X_t 表示时间序列数据在t 时刻的取值,μ为常数项,θ1、θ2、...、θq 为滑动平均系数,ε_{t-1}、ε_{t-2}、...、ε_{t-q}为误差项。
将自回归部分和滑动平均部分相结合,即可得到ARMA 模型的数学表达式:X_t = c + Φ1X_{t-1} + Φ2X_{t-2} +...+ ΦpX_{t-p} + μ+ θ1ε_{t-1} + θ2ε_{t-2} +...+ θqε_{t-q}其中,c、μ为常数项,Φ1、Φ2、...、Φp、θ1、θ2、...、θq 分别为自回归系数和滑动平均系数,ε_t、ε_{t-1}、ε_{t-2}、...、ε_{t-q}为误差项。
三、ARMA 模型的应用ARMA 模型广泛应用于金融、经济学、气象学等领域的时间序列数据分析和预测。
ARMA模型时间序列分析法

ARMA模型时间序列分析法ARMA模型时间序列分析法简称为时序分析法,是一种利用参数模型对有序随机振动响应数据进行处理,从而进行模态参数识别的方法。
参数模型包括AR自回归模型、MA滑动平均模型和ARMA自回归滑动平均模型。
1969年AkaikeH首次利用自回归滑动平均ARMA模型进行了白噪声激励下的模态参数识别。
N个自由度的线性系统激励与响应之间的关系可用高阶微分方程来描述,在离散时间域内,该微分方程变成由一系列不同时刻的时间序列表示的差分方程,即ARMA时序模型方程:(1)式(1)表示响应数据序列与历史值的关系,其中等式的左边称为自回归差分多项式,即AR模型,右边称为滑动平均差分多项式,即MA模型。
2N为自回归模型和滑动均值模型的阶次,、分别表示待识别的自回归系数和滑动均值系数,表示白噪声激励。
当k=0时,设。
由于ARMA过程{}具有唯一的平稳解为(2)式中:为脉冲响应函数。
的相关函数为(3)是白噪声,故(4)式中:为白噪声方差。
将此结果代人式(3),即可得(5)因为线性系统的脉冲响应函数,是脉冲信号,激励该系统时的输出响应,故由ARMA过程定义的表达式为(6)利用式(5)和式(6),可以得出:(7)对于一个ARMA过程,当是大于其阶次2N时,参数=0。
故当l>2N时,式(7)恒等于零,于是有(8)或写成(9)设相关函数的长度为L,并令M=2N。
对应不同的l值,由代人以上公式可得一组方程:(10)将式(10)方程组写成矩阵形式,则有(11)或缩写为(12)式(12)为推广的Yule-walker方程。
一般情况下,由于L比2N大得多,采用伪逆法可求得方程组的最小二乘解,即(13)由此求得自回归系数。
滑动平均模型系数可通过以下非线性方程组来求解:(14)其中(15)式中:为响应序列的自协方差函数。
滑动平均模型MA系数的估算方法很多,主要的有基于Newton-Raphson算法的迭代最优化方法和基于最小二乘原理的次最优化方法。
中级计量经济学-考察时间序列自相关性的ARMA模型

rˆh l E rhl rh , rh1,
E c0 ahl 1ahl1 c0
eh l rhl rˆh l ahl 1ahl1
vareh l
1 12
2 a
总 结 : 对 于 MA(1) 模 型,超过1步的点预测 为rt的无条件均值,预 测误差的方差为rt的无 条件方差
,当l
1
0,当l 1
1,当l 0
1
1 12
,当l
1
MA2:l
0
1 12
2 2
0,02 当1l2122
2 2
,当l
2
总结:MA(q)的ACF会在滞后q期之后截尾,有限记 忆,利用此性质来确定MA模型的order
22
实际MA模型的应用
模型的选择 模型的估计 模型的检验 模型的预测 模型应用举例
6
AR(2)模型的性质(续)
ACF特征:l 1l1 2l2 l c1 x1l c2 x2l
如果 12 42 0 ,x1, x2 为实数,ACF为两个指数衰减的混合 如果 12 42 0 ,x1, x2 为虚数,ACF为逐渐衰弱的正弦余弦波
,表明商业周期的存在
7
AR(p)模型
23
MA模型的应用——模型选择
ACF与PACF
若ACF表现为一个衰减拖尾的形状(非截尾),基本 可以选择AR模型,再以截尾的PACF来确定order
若ACF在滞后期为q处截尾,即 q 0,但对于 l q则有l 0
则rt服从一个MA(q)模型
Information Criteria
24
表达式:
rt 0 1 rt1 p rt p at
11B pBp rt 0 at
特征方程
ARMA模型介绍

ARMA模型介绍ARMA模型(Autoregressive Moving Average model)是时间序列分析中常用的一种模型,用于描述和预测随时间变化的数据。
ARMA模型结合了自回归(AR)和移动平均(MA)两种模型的特点,可以较好地描述时间序列数据的变化趋势。
ARMA模型的核心思想是:当前时刻的观测值可以通过历史观测值和随机误差的线性组合来表示。
具体地说,AR部分考虑了当前时刻和过去几个时刻的观测值之间的关系,而MA部分则考虑了当前时刻和过去几个时刻的随机误差之间的关系。
在AR模型中,当前时刻的观测值与过去几个时刻的观测值之间存在线性关系。
AR模型的阶数(p)表示过去几个时刻的观测值被考虑进来。
对于AR(p)模型,数学表达式如下:yt = c + φ1 * yt-1 + φ2 * yt-2 + ... + φp * yt-p + et其中,yt表示当前时刻的观测值,c表示常数项,φ1, φ2, ... ,φp表示对应的回归系数,et表示当前时刻的随机误差。
在MA模型中,当前时刻的观测值与过去几个时刻的随机误差之间存在线性关系。
MA模型的阶数(q)表示过去几个时刻的随机误差被考虑进来。
对于MA(q)模型,数学表达式如下:yt = c + et + θ1 * et-1 + θ2 * et-2 + ... + θq * et-q其中,yt表示当前时刻的观测值,c表示常数项,θ1, θ2, ... ,θq表示对应的回归系数,et表示当前时刻的随机误差。
yt = c + φ1 * yt-1 + φ2 * yt-2 + ... + φp * yt-p + et + θ1 * et-1 + θ2 * et-2 + ... + θq * et-qARMA模型可以用于时间序列的拟合和预测。
通过将模型与已有数据进行拟合,可以得到模型的参数估计值。
然后,利用这些参数估计值,可以预测未来的观测值。
ARMA模型适用于没有明显趋势和季节性的时间序列数据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
If our model successfully captures the dependence structure in the data then the residuals should look random
6
4/9/2010
Identifying a MA process
If the ACF of the differenced series displays a sharp cutoff and/or the lag-1 autocorrelation is negative then consider adding an MA term to the model
X t 0 1 X t 1 et
What does the model say for the t+1 observation?
X t 1 0 1 X t et 1
The AR(1) model expresses what we don’t know in terms of what we do know at time t
Amount of correlation between a variable and a lag of itself that is not explained by correlations at all lower-order-lags
Correlation at lag 1 “propagates” to lag 2 and presumably to higherorder lags PA at lag 2 is difference between the actual correlation at lag 2 and expected correlation due to propagation of correlation at lag 1
So to check the AR(1) model, we can check the residuals from the regression for any “left-over” dependence
Identifying an AR process
If the PACF displays a sharp cutoff while the ACF decays more slowly (i.e., has significant spikes at higher lags), we say that the series displays an "AR signature“
Like a multiple regression model, but Xt is regressed on past values of Xt
The AR(1) odel
A simple way to model dependence over time is with the “autoregressive model of order 1” This is a OLS model of Xt regressed on lagged Xt-1
The diagnostic patterns of ACF and PACF for an AR(1) model are:
ACF: declines in geometric progression from its highest value at lag 1 PACF: cuts off abruptly after lag 1
2
4/9/2010
Autoregressive (AR) models
An autoregressive model of order “p”
AR(p)
X t 1 X t 1 2 X t 2 ... p X t p et
Current value of Xt can be found from past values, plus a random shock et
4/9/2010
Time series analysis
Stochastic processes
Concepts
Models of time series
Moving averages (MA) and autoregressive (AR) processes Mixed models (ARMA/ARIMA)
The opposite types of patterns apply to an MA(1) process:
ACF: cuts off abruptly after lag 1 PACF: declines in geometric progression from its highest value at lag 1
The lag at which the PACF cuts off is the indicated number of AR terms
4
4/9/2010
ACF and PACF for an AR(1) process
ACF and PACF for an AR(2) process
5
4/9/2010
The lag at which the ACF cuts off is the indicated number of MA terms
ACF and PACF for an MA(1) process
7
4/9/2010
ACF and PACF for an MA(2) process
Just to reiterate one more time…
8
4/9/2010
Mixed ARMA models
An ARMA process of the order (p, q)
X t 1X t 1 ... p Xt p et 1et 1 ... q et q
Just a combination of MA and AR terms
For the ARMA(1,1), both the ACF and the PACF exponentially decrease Much of fitting ARMA models is guess work and trial-anderror!
9
4/9/2010
ACF and PACF for an ARMA(1,1) process
X t et 1et 1
If 1 is zero, X depends purely on the error or shock (e) at the current time, and there is no temporal dependence If 1 is large, previous errors influence the value of Xt
Moving-average (MA) models
A moving-average model of order “q”
MA(q)
X t et 1et 1 2et 2 ... q et q
Current value of Xt can be found from past shocks/error (e), plus a new shock/error (et)
How do we choose the best model?
In most cases, the best model turns out a model that uses either only AR terms or only MA terms It is possible for an AR term and an MA term to cancel each other’s effects, even though both may appear significant in the model
3
4/9/2010
The AR(1) Model
X t 0 1 X t 1 et
If 1 is zero, X depends purely on the random component (e), and there is no temporal dependence If 1 is large, previous values of X influence the value of Xt
The time series is regarded as a moving average (unevenly weighted, because of different coefficients) of a random shock series et
The MA(1) model
A first order moving average model would look like:
If our model successfully captures the dependence structure in the data then the residuals should look random
There should be no dependence in the residuals!
How do we decide which to use?
ACF and PACF
Autocorrelation functions (ACFs) and Partial-autocorrelation functions (PACFs)