时间序列作业ARMA模型--.
ARMA模型介绍

习惯上用AR(p)、MA(q)或ARMA(p,q)来 表示对应的滞后时期。
AR(p)模型
AR(p)模型是回归模型的一种形式,其一般形 式为:
Yt 1Yt1 2Yt2 ... pYt p ut
另一种表达方式是用差分形式: Yt Yt1 1Yt1 ... p1Yt p1 ut
调整可决系数、AIC和SC准则都是模型 选择的重要标准。
AIC准则和SC准则
赤池信息准则:AIC=-2L/n+2k/n,其中L 是对数似然值,n是观测值数目,k是被 估计的参数个数。AIC准则要求其取值 越小越好。
施瓦茨准则:SC=-2L/n-klnn/n,使用时 也要求SC值越小越好。
ARIMA模型
maq的偏自相关系数随着滞后期的增加呈现指数衰减趋向于零这称为偏自相关系arprp序列的自相关函数是非截尾序列称为拖尾序列
时间序列模型-ARMA模型
ARMA模型是一类常用的随机时间序列 分析模型,由博克斯(Box)和詹金斯(Jenkins) 创立,也称B-J方法。
AR(p)的自相关函数(AC)和偏相关函 数(PAC)
根据自相关函数的特征,可见AR(p) 序列的自相关函数是非截尾序列,称为 拖尾序列。因此,自相关函数拖尾是AR ( p )序列的一个特征。
根据偏自相关函数的特征,当k>p时, PACkk =0,也就是在p以后截尾。
模型的识别
AR(p)模型的识别。若序列的偏自相关函数在p以 后截尾,而且自相关系数是拖尾的,则此序列是自 回归AR(p)序列。
MA(q)模型的识别。若序列的自相关函数在q以后 截尾,而且偏自相关系数是拖尾的,则此序列是移 动平均MA(q)序列。
ARMA(p,q)模型的识别。若序列的自相关函数和 偏自相关系数都是拖尾的,则此序列是自回归移动 平均ARMA(p,q)序列。至于模型中p和q的识别, 则要从低阶开始逐步试探,直到定出合适的模型为 止。
时间序列模型--ARMA模型与ARCH模型(2008.11)

时间序列模型时间序列分析是现代计量经济学的重要内容,是研究经济变量的动态特征和周期特征及其相关关系的重要工具,被广泛应用经济分析和预测中。
时间序列按其平稳性与否又分为平稳时间序列和非平稳时间序列。
1.ARMA与ARCH模型2.协整与误差修正模型3.向量自回归模型1第五讲ARMA与ARCH模型本讲中将讨论时间序列的平稳性(stationary)概念及自回归模型(Autoregressive models)、移动平均模型(Moving average models)、自回归移动平均模型(Autoregressive moving average models)、自回归条件异方差模型(Autoregressivec conditional Heteroscedasticity models)的识别、估计、检验、应用。
23一、时间序列的平稳性(一)平稳时间序列所谓时间序列的平稳性,是指时间序列的统计规律不会随着时间的推移而发生变化。
严格地讲,如果一个随机时间序列,对于任何时间,都满足下列条件:t y t Ⅰ)均值;()t E y μ=∞ Ⅱ)方差,是与时间无关的常数;22()()t t Var y E y μσ=-=t Ⅲ)自协方差,是只与时期间隔有关,{}(,)t t k t t k k Cov y y E y y μμγ--=--=()()k 与时间无关的常数。
t4则称该随机时间序列是平稳的。
生成该序列的随机过程是平稳过程。
例5.1.一个最简单的随机时间序列是一具有零均值同方差的独立分布序列:= ~该序列常被称为是一个白噪声(white noise )。
t y t εt ε2(0,)iid σ 由于具有相同的均值与方差,且协方差为零,满足平稳性条件,是平稳的。
t y 例5.2.另一个简单的随机时间列序被称为随机游走(random walk ):~,是一个白噪声。
1t t t y y ε-=+t ε2(0,)iid σ 容易判断该序列有相同的均值:,但是方差,即1()()t t E y E y -=2()t Var y t σ=的方差与时间t 有关而非常数,它是一非平稳序列。
时间序列arma模型建立的流程

时间序列arma模型建立的流程时间序列ARMA模型建立的流程1. 引言时间序列分析是一种对时间序列数据进行建模、预测和分析的统计方法。
ARMA模型是一种常用的时间序列模型,它可以描述时间序列数据中的自相关和移动平均关系。
本文将从数据准备、模型选择、参数估计和模型诊断等方面,介绍建立时间序列ARMA模型的完整流程。
2. 数据准备1.收集时间序列数据,确保数据具有一定的观测频率,并且包含足够的历史观测值。
2.对数据进行可视化分析,绘制时间序列图和自相关图,初步了解数据的趋势和周期性。
3. 模型选择1.确定时间序列数据是否平稳。
对于非平稳数据,需要进行差分运算,直到得到平稳的时间序列数据。
2.根据平稳时间序列数据的自相关和偏自相关图,选择合适的ARMA模型阶数。
通过观察自相关图的截尾性和偏自相关图的截尾性,确定ARMA(p, q)模型中的p和q。
4. 参数估计1.通过最大似然估计或最小二乘法,估计ARMA模型中的参数。
最大似然估计假定模型误差服从正态分布,而最小二乘法假定误差服从零均值正态分布。
2.通过估计的参数,建立ARMA模型。
5. 模型诊断1.对残差进行自相关和偏自相关分析,验证模型的残差序列是否为纯随机序列,即不存在自相关和异方差性。
2.对模型的残差序列进行Ljung-Box检验,验证残差的独立性。
3.对模型的残差序列进行正态性检验,验证模型的残差是否符合正态分布。
4.对模型的残差序列进行异方差性检验,验证模型的残差是否存在异方差现象。
6. 模型评估和预测1.使用信息准则(如AIC、BIC)评价模型的拟合程度。
较小的AIC和BIC值表示模型的拟合程度较好。
2.使用估计的ARMA模型对未来的数据进行预测,得到预测值和置信区间。
7. 结论建立时间序列ARMA模型的流程包括数据准备、模型选择、参数估计和模型诊断等环节。
通过该流程,我们能够对时间序列数据进行建模和预测,为相关领域的决策提供科学依据。
以上为时间序列ARMA模型建立的流程,希望对读者有所帮助。
时间序列方法在股票交易中的应用

时间序列方法在股票交易中的应用股票市场是一个动态变化的金融市场,影响股票价格变动的因素众多且复杂。
为了预测股票价格的未来走势和制定有效的投资策略,金融学家和投资者们开始广泛运用时间序列方法来分析和预测股票市场的走势。
本文将介绍时间序列方法在股票交易中的应用,包括AR模型、MA模型、ARMA模型、ARCH模型和GARCH模型等。
一、AR模型自回归(AR)模型是时间序列分析中常用的一种方法。
它假设未来的数值与过去的数值存在相关关系,能够通过过去的数据来预测未来的走势。
AR模型可表示为:xt = β0 +β1xt-1 + β2xt-2 + ... + βpxt-p +εt,其中xt表示时间序列的数值,p表示使用过去的几个数据,β表示权重参数,εt表示误差项。
在股票交易中,AR模型可以通过历史股票价格来预测未来股票价格。
金融学家们可以根据过去一段时间内股票价格的变动情况,建立AR模型并进行参数估计,然后利用该模型预测未来股票价格的走势,为投资决策提供参考。
二、MA模型移动平均(MA)模型是另一种常用的时间序列方法。
它假设未来的数值与过去的预测误差有关,能够考虑到不同时间点的影响。
MA模型可表示为:x t = μ + εt + θ1εt-1 + θ2εt-2 + ... + θqεt-q,其中xt表示时间序列的数值,μ表示常数项,q表示使用过去的几个预测误差,θ表示权重参数,εt表示误差项。
在股票交易中,MA模型可以通过历史股票价格的预测误差来预测未来股票价格。
金融学家们可以根据过去一段时间内股票价格的预测误差,建立MA模型并进行参数估计,然后利用该模型预测未来股票价格的走势,提供投资决策的参考。
三、ARMA模型自回归移动平均(ARMA)模型是将AR模型和MA模型结合起来的一种方法。
它能够同时考虑过去数据和预测误差对未来数值的影响。
ARMA模型可表示为:xt = μ + β1xt-1 + β2xt-2 + ... + βpxt-p + εt + θ1εt-1 + θ2εt-2 + ... + θqεt-q,其中xt表示时间序列的数值,μ表示常数项,p和q分别表示AR模型和MA模型的阶数,β和θ表示权重参数,εt表示误差项。
时间序列中的ARMA模型

c u=
1 (1 2 ... p)
旳无条
7
ARIMA模型旳概念
Yt-u=1(Yt-1-u)+ 2(Yt-2-u)+...+p(Yt-p-u)+vt
0=1 1+ 2 2+...+p p+ 2 1=1 0+ 2 1+...+ p p-1
……
p=1 p-1+ 2 p-2+...+ p 0
(1
2
1
1≤j≤22q ... q2 )
0 j>q
j>q时,ACF(j)=0,此现象为截尾,是MA(q)过程旳一种特征
如下图:
18
ARMA模型旳辨认
MA(2)过程
yt =0.5ut-1 0.3ut2 ut
19
ARMA模型旳辨认
⑵ AR(p)过程旳偏自有关函数
j p 时,偏自有关函数旳取值不为0 j>q 时,偏自有关函数旳取值为0 AR(p)过程旳偏自有关函数p阶截尾 如下图:
32
ARMA模型旳预测
二. 基于MA过程旳预测
过程 结论:
MA (2) 过程仅有2期旳记忆力
33
ARMA模型旳预测
三. 基于ARMA过程旳预测
结合对AR过程和MA过程进行预测 ARMA模型一般用于短期预测
34
五、实例:ARMA模型在金融数 据中旳应用
数据: 1991年1月到2023年1月旳我国货币供
3
ARIMA模型旳概念
2.MA(q)过程旳特征
1. E(Yt)=u
2.
var(Yt)
(1
2
arma模型原理

arma模型原理
ARMA模型(AutoRegressive Moving Average Model)是一种时间序列分析模型,它结合了自回归模型(AR)和移动平均模型(MA)。
ARMA 模型的原理是,对于一个时间序列,在保持平稳性的前提下,通过自回归和移动平均两个方面来描述序列的特征。
具体来说,AR表示当前时间点的值与前面若干个时间点的值有关,而MA表示当前时间点的值与前面若干个时间点的噪声有关。
因此,ARMA模型可以很好地捕捉时间序列数据的趋势和周期性。
在实际应用中,ARMA模型通常用于预测未来的时间序列值和分析时间序列的特征。
在ARMA模型中,参数估计和模型检验是重要的步骤,需要一定的统计学知识和技能。
常用的估计方法包括最大似然估计和贝叶斯估计,而模型检验可以通过残差分析和模型诊断来进行。
总之,ARMA模型是一种经典的时间序列模型,它结合了自回归模型和移动平均模型,可以用于预测未来的时间序列值和分析时间序列的特征。
在实际应用中需要谨慎使用,需要考虑时间序列数据的特征和背景知识,以及参数估计和模型检验的可靠性。
ARMA模型

方差为 2 的正态分布.随机项与滞后变量不相关。
注2: 一般假定
X t 均值为0,否则令
X
t
Xt
1 时间序列分析模型【ARMA模型 】简介
记 Bk 为 k 步滞后算子, 即 Bk X t X tk , 则
模型【1】可表示为
Xt 1BXt 2B2 Xt pBp Xt ut
实际问题中, 常会遇到季节性和趋势性同时存在的情况, 这 时必须事先剔除序列趋势性再用上述方法识别序列的季节性, 否则季节性会被强趋势性所掩盖, 以至判断错误.
包含季节性的时间序列也不能直接建立ARMA模型, 需进 行季节差分消除序列的季节性, 差分步长应与季节周期一致.
1 时间序列分析模型【ARMA模型 】简介
式【5】称为( p, q)阶的自回归移动平均模型, 记为ARMA ( p, q)
注1: 实参数 1,2 , , p 称为自回归系数, 1,2 , ,q 为移动平均系数,
都是模型的待估参数
注2: 【1】和【3】是【5】的特殊情形 注3: 引入滞后算子,模型【5】可简记为
(B) Xt (B)ut
【6】
在实际中, 常见的时间序列多具有某种趋势, 但很多序列 通过差分可以平稳
判断时间序列的趋势是否消除, 只需考察经过差分后序列 的自相关系数
(3)季节性 时间序列的季节性是指在某一固定的时间间隔上, 序列重
复出现某种特性.比如地区降雨量、旅游收入和空调销售额等 时间序列都具有明显的季节变化. 一般地, 月度资料的时间序列, 其季节周期为12个月;
Xt 1 v1B v2B2
ut
vjB
j
ut
j0
时间序列上机实验ARMA模型的建立

实验一ARMA模型建模一、实验目的学会检验序列平稳性、随机性。
学会分析时序图与自相关图。
学会利用最小二乘法等方法对ARMA模型进行估计,以及掌握利用ARMA模型进行预测的方法。
学会运用Eviews软件进行ARMA模型的识别、诊断、估计和预测和相关具体操作。
二、基本概念宽平稳:序列的统计性质不随时间发生改变,只与时间间隔有关。
AR模型:AR模型也称为自回归模型。
它的预测方式是通过过去的观测值和现在的干扰值的线性组合预测,自回归模型的数学公式为:乂2『t2 川p y t p t式中:p为自回归模型的阶数i(i=1,2,,p)为模型的待定系数,t为误差,yt 为一个平稳时间序列。
MA模型:MA模型也称为滑动平均模型。
它的预测方式是通过过去的干扰值和现在的干扰值的线性组合预测。
滑动平均模型的数学公式为:y t t 1 t 1 2 t 2 川q t q式中:q为模型的阶数;j(j=1,2,,q)为模型的待定系数;t为误差;yt为平稳时间序列。
ARMA模型:自回归模型和滑动平均模型的组合,便构成了用于描述平稳随机过程的自回归滑动平均模型ARMA,数学公式为:y t 1 y t 1 2 y t 2 p y t p t 1 t 1 2 t 2 q t q三、实验内容(1)通过时序图判断序列平稳性;(2)根据相关图,初步确定移动平均阶数q 和自回归阶数p;(3)对时间序列进行建模四、实验要求学会通过各种手段检验序列的平稳性;学会根据自相关系数和偏自相关系数来初步判断ARMA模型的阶数p和q,学会利用最小二乘法等方法对ARMA 模型进行估计,学会利用信息准则对估计的ARMA 模型进行诊断,以及掌握利用ARMA 模型进行预测。
五、实验步骤1.模型识别(1)绘制时序图在Eviews 软件中,建立一个新的工作文件, 500个数据。
通过Eviews 生成随机序列“ e,再根据“ x=*x(-1)*x(-2)+e ”生成AR(2)模型序列“ x” 默认x(1)=1, x(2)=2,得到下列数据,由于篇幅有限。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一案例分析的目的
本案例选取2001年1月,到2013年我国铁路运输客运量月度数据来构建ARMA模型,并利用该模型进行外推预测分析。
二、实验数据
数据来自中经网统计数据库
数据来源:中经网数据库
三、ARMA 模型的平稳性
首先绘制出N 的折线图,如图
从图中可以看出,N 序列具有较强的非线性趋势性,因此从图形可以初步判断该序列是非平
稳的。
此外,N在每年同期出现相同的变动方式,表明N还存在季节性特征。
下面对N 的平稳性和季节季节性进行进一步检验。
四、单位根检验
为了减少N 的变动趋势以及异方差性,先对N进行对数处理,记为LN其曲线图如下:GENR LN = LOG(N)
对数后的N趋势性也很强。
下面观察N 的自相关表,选择滞后期数为36,如下:
从上图可以看出,LN的PACF只在滞后一期是显著的ACF随着阶数的增加慢慢衰减至0,因此从偏/自相关系数可以看出该序列表现一定的平稳性。
进一步进行单位根检验,打开LN选择存在趋势性的形式,并根据AIC自动选择滞后阶数,单位根检验结果如下:
T统计值的值小于临界值,且相伴概率为0.0001,因此该序列不存在单位根,即该序列是平稳序列。
五、季节性分析
趋势性往往会掩盖季节性特征,从LN的图形可以看出,该序列具有较强的趋势性,为了分析季节性,可以对LN进行差分处理来分析季节性:
Genr = DLN = LN – LN (-1)
观察DLN的自相关表,如下:
DLN在之后期为6、12、18、24、30、36处的自相关系数均显著异于0,因此,该序列是以周期6呈现季节性,而且季节自相关系数并没有衰减至0,因此,为了考虑这种季节性,进行季节性差分:
GENR SDLN = DLN – DLN(-6)
再做关于SDLN的自相关表,如下:
SDLN在滞后期36之后的季节ACF和PACF已经衰减至0,下面对SDLN建立SARMA模型。
六、滞后阶数的初步确定
观察SDLN的自相关、偏自相关图,ACF 和PACF在滞后期1和滞后期6还有滞后期12异于0,其余均与0无异,因此,SARMA(p,q)(k,m)s 中p和q均不超过1,k和m均不超过2.6考虑到高洁移动平均模型估计较为困难,而且自回归模型的检验可以表示无穷的移动平均过程,因此q尽可能取较小的取值。
本例拟选择SARMA(1,0)(1,0)6、SARMA(1,0)(1,1)6、SARMA(1,0)(1,2)6、SARMA(1,0)(2,1)6、SARMA(1,1)(1,0)6、SARMA(1,1)(1,1)6、SARMA(1,1)(1,2)6、SARMA(1,1)(0,1)6八个模型来拟合SDLN。
七、ARMA模型的参数估计
1.分析SARMA(1,0)(1,0)6分析该模型的估计以及残差的检验。
LS SDLN C AR(1) SAR(6)
回归结果如表所示:
LS SDLN C AR(1) SAR(6)回归结果如表所示:
LS SDLN C AR(1) SAR(6) sar(6)SAR(12)回归结果如表所示:
LS SDLN C AR(1) SAR(12) SAR(6)回归结果如表所示:
LS SDLN C AR(1) ma(1) SAR(6) 回归结果如表所示:
LS SDLN C AR(1) ma(1) SAR(6) sma(6)回归结果如表所示:
LS SDLN C AR(1) ma(1) SAR(6) sma(12)回归结果如表所示:
LS SDLN C AR(1) ma(1) SAR(12) sma(6)回归结果如表所示:
各个模型的AIC、SC、残差检验结果汇总如下
综合来看选择SARMA(1,1)(1,2)6对数据的拟合是最优的。
六、模型的预测
在SARMA(1,1)(1,2)6中选择动态估计,预测2013.11月的序列值,预测图如图:
上图中左边是预测值与置信区间,右边是预测的误差。
Boot meansquared error 代表均方误差方,MAE表示平均绝对误差,MAPE表示平均绝对误差百分比。
Theil不等系数中bias proportion表示偏误,即预测均值与真实均值的偏离程度;variance proportion 表示方误差,用来反映波动与真实波动之间的差异;covariance proportion表示协方差误,反映残存非系统预测误差,该误差占比越大,预测效果越好。
本例中的协方差误(0.415544)要大于方差误(0.347297),因此预测效果较好。