《两条直线平行与垂直的判定》教学设计

合集下载

数学《两条直线平行与垂直的判定》教案

数学《两条直线平行与垂直的判定》教案

数学《两条直线平行与垂直的判定》教案一、教学目标:1. 确定两条直线是否平行或垂直。

2. 掌握平行线和垂直线的特征和性质。

3. 培养学生观察、分析和判断的能力。

二、教学重难点:1. 两条直线平行与垂直的判定方法。

2. 如何运用这些方法来分析和解决实际问题。

三、教学步骤:1. 导入新知识:解释平行线和垂直线的概念,引导学生思考如何确定两条直线是否平行或垂直。

2. 学习重点:(1)两条直线平行的判定方法:①第一种方法:两条直线的斜率相等,且不相交。

②第二种方法:两条直线的两个任意向量相乘的内积等于 0。

(2)两条直线垂直的判定方法:两条直线的斜率的乘积等于 -1。

3. 学习难点:如何运用判定方法来解决实际问题。

4. 教学过程:(1)两条直线平行的判定例:如图所示,判断直线 AB 和直线 CD 是否平行。

分析:因为直线 AB 的斜率为 2,而直线 CD 的斜率也为 2,且两条直线不相交,所以直线 AB || 直线 CD。

(2)两条直线垂直的判定例:如图所示,判断直线 AB 和直线 CD 是否垂直。

分析:直线 AB 的斜率为 1/2,直线 CD 的斜率为 -2,而 1/2 ×(-2) = -1,因此直线 AB 和直线 CD 垂直。

5. 练习与拓展:(1)练习一:判断两条直线是否平行:①直线 y = 2x + 3 和直线 y = -2x - 1。

②直线 y = 3x + 1 和直线 y = -6x + 6。

(2)练习二:判断两条直线是否垂直:①直线 y = 2x + 3 和直线 y = -2x - 1。

②直线 y = 3x + 1 和直线 2x - y = 4。

6. 总结与归纳:对判定两条直线平行或垂直的方法进行总结归纳,帮助学生理清思路,掌握知识点。

四、教学板书设计:两条直线平行的判定方法:①两条直线的斜率相等,且不相交。

②两条直线的两个任意向量相乘的内积等于 0。

两条直线垂直的判定方法:两条直线的斜率的乘积等于 -1。

高中数学_两条直线平行与垂直的判定教学设计学情分析教材分析课后反思

高中数学_两条直线平行与垂直的判定教学设计学情分析教材分析课后反思

《两条直线平行与垂直的判定》教学设计一、教材分析本课内容选自普通高中新课程标准实验教科书人教版数学必修2的第三章第二节,介绍的是平面解析几何的知识。

从本章开始学生初步、系统地了解平面解析几何的知识,在第一、二章的学习中,学生已掌握了高中立体几何的初步知识,这有利于学生从新的角度了解高中数学几何教学内容编排体系。

通过本章知识的学习可以让学生从新认识平面几何的知识,又可以为选修里面的圆锥曲线理论知识的学习打下重要的基础,起到承上启下的作用。

同时在本章中,学生初步尝试从新的观念来认识直线和方程的联系,再从基本概念和基本方法深化对直线方程的理解,从而使知识规律化、系统化、网络化。

这种学习方式的过程和方法一经掌握,可以轻松地学习第四章圆的方程的内容。

本节内容是在学习了直线的倾斜角和斜率的基础上,重点学习直线与直线在平面中的特殊位置关系。

只有掌握了两条直线的位置关系,才能更进一步的来学习直线方程,教材利用两条直线的倾斜角和斜率的关系引出了两条直线的平行和垂直的位置关系这一节课的知识结构非常系统,有利于学生形成规律性的知识网络。

二、知识结构分析以上的简要教材分析,可从这一章的知识结构的思维导图中得以充分体现。

三、课标的分析《普通高中数学课程标准》关于直线与方程的内容标准指出:将直线的倾斜角代数化,探索确定直线位置的几何要素,建立直线的方程,把直线问题转化为代数问题;分析代数结果的几何含义,最终解决几何问题。

这种思想贯穿本章教学的始终,帮助学生不断地体会数形结合的思想方法。

从课标中这部分内容标准的要求,可以知道直角坐标系使几何研究又一次飞跃,几何从此跨入了一个新的时代。

在欧氏几何里,我们直接依据图形中点、直线、平面的关系,研究图形的性质。

现在我们采用另外一种研究方法:坐标法。

坐标法是在坐标系的基础上,把几何问题转化为代数问题,通过代数运算研究几何图形性质的一种方法。

在平面直角坐标系中,给直线插上方程的“翅膀”,通过直线的方程研究直线之间的位置关系:平行、垂直,以及两条直线的交点坐标,点到直线的距离公式等等。

两直线平行和垂直的判定(优质课教案)

两直线平行和垂直的判定(优质课教案)
y
解: 直线BA的斜率kBA
直线PQ的斜率kPQ
Q P
A
kBA kPQ
x
30 1 2 (4) 2 1 2 1 1 (3) 2
又 k AP
B
O
3 1 2 1 2 (3) 5 2
直线AB // PQ
例2. 已知四边形ABCD的四个顶点分别为 A(0,0),B(2,-1),C(4,2),D(2,3),试判断四边形ABCD 的形状,并给出证明. 1 解:k AB kCD 2 3 k AD kCB 2 因为k AB kCD , k AD kCB AB / / CD, AD / /CB 四边形ABCD是平行四边形。
解 : k AB k PQ
k AB kPQ
6 3 2 3 ( 6) 3 6 3 3 60 2
2 3 1, 直线AB PQ. 3 2
例2. 已知四边形ABCD的四个顶点分别为 A(0,0),B(2,-1),C(4,2),D(2,3),试判断四边形 ABCD的形状,并给出证明.
(2)两直线垂直 k AB kPQ -1
k AB
m 0
练习:
3、已知直线 l1经过点A(3,a),B(a-2,3),直线 l2 经过点C(2,3),D(-1,a-2),若 l1 l2 ,求 a 的值。 分析:
l1 l2 k1 k2 1或l1 , l2一斜率不存在另一斜率 为0
l1 l2 k1 k2 1或l1, l2一斜率不存在另一斜率为0
例4、已知A(5,-1),B(1,1),C(2,3)三 点,试判断△ABC的形状。
(分析:借助图形,通过观察猜想: 三角形ABC是直角 三角形, 其中AB⊥BC, 再通过计算加以验证。)

2024四年级数学《平行与垂直》教案设计

2024四年级数学《平行与垂直》教案设计

•教学目标与要求•教材内容与特点•学情分析与教学策略•教学方法与手段选择•课堂活动设计与实施•评价方式与标准制定•课后作业布置及辅导安排目录01教学目标与要求使学生理解平行与垂直的基本概念,能准确判断两条直线是否平行或垂直。

让学生掌握平行线、垂线的画法,培养学生的绘图能力。

引导学生理解平行与垂直在现实生活中的应用,如建筑、交通等领域。

知识与技能目标过程与方法目标培养学生的空间观念和几何直觉,发展学生的数学素养。

引导学生在探究过程中体验成功的喜悦,增强自信心和意志力。

激发学生的学习兴趣和好奇心,使学生对数学产生积极的情感态度。

情感态度与价值观目标教学重点与难点教学重点教学难点02教材内容与特点《平行与垂直》知识点概述平行的概念01垂直的概念02平行线与垂直线的性质和应用03图文并茂循序渐进重视实践030201教材编排特点及意图与前后知识点联系前置知识点后续知识点联系与区别03学情分析与教学策略学生已经掌握了直线、线段和射线的基本概念。

学生已经了解了角的基本概念,包括角的分类和度量。

学生已经初步了解了平面内两条直线的位置关系,如相交、平行等。

学生已有知识经验分析学生学习困难及原因预测学生对平行和垂直概念的理解可能存在困难,因为这两个概念比较抽象。

学生在判断两条直线是否平行或垂直时,可能会受到视觉上的干扰,导致判断错误。

学生在应用平行和垂直的知识解决实际问题时,可能会感到无从下手。

针对性教学策略制定通过生动的实例和直观的演示,帮助学生理解平行和垂直的概念。

提供丰富的练习题目,让学生在实践中掌握判断两条直线是否平行或垂直的方法。

引导学生将平行和垂直的知识应用到实际生活中,如测量、建筑等领域,激发学生的学习兴趣。

04教学方法与手段选择启发式教学法应用举例通过提问引导学生思考利用学生已有知识经验从学生熟悉的生活中的平行与垂直现象入手,如铁轨、斑马线等,引导学生感知和理解平行与垂直的概念。

直观演示法辅助理解概念使用教具进行演示通过多媒体课件展示小组合作探究法培养能力分组讨论将学生分成小组,让他们讨论生活中的平行与垂直现象,并尝试用自己的语言描述平行与垂直的概念。

《6.3.1两条直线平行》教学设计教学反思-2023-2024学年中职数学高教版2021基础模块下册

《6.3.1两条直线平行》教学设计教学反思-2023-2024学年中职数学高教版2021基础模块下册

《两条直线平行》教学设计方案(第一课时)一、教学目标1. 理解两条直线平行的概念,掌握判断两条直线平行的条件。

2. 能够正确判断两条直线的位置关系。

3. 培养学生的空间想象能力及逻辑思维能力。

二、教学重难点1. 教学重点:理解两条直线平行的概念,掌握判断两条直线平行的条件。

2. 教学难点:培养学生的空间想象能力,正确判断两条直线的位置关系。

三、教学准备1. 准备教学PPT,准备相关教具(如直尺、三角板等)。

2. 设计课堂互动环节,引导学生积极参与。

3. 安排学生预习课本相关内容,提前准备问题。

四、教学过程:本节课的教学设计以培养学生逻辑推理及数学抽象思维能力为目标,以观察、操作、探究、猜想、证明为活动主线,设计了四个环节:导入新课、探索新知、探究证明、课堂小结。

1. 导入新课:通过展示生活中两条直线平行的实例,引导学生观察思考,引入课题,激发学生的学习兴趣。

2. 探索新知:通过动手操作,让学生观察两条直线的位置关系,探索平行线的性质,培养学生的观察能力和动手操作能力。

3. 探究证明:通过引导学生观察两条直线的位置关系,探究证明两条直线平行的条件,培养学生的逻辑推理能力和数学抽象思维能力。

环节一:导入新课通过PPT展示生活中的两条直线平行的实例,如房屋的窗框和门框,引出课题“两条直线平行”。

引导学生思考:两条直线的位置关系有哪些?如何判断两条直线平行?激发学生的兴趣和求知欲。

环节二:探索新知通过动手操作,让学生观察两条直线的位置关系,探索平行线的性质。

教师准备教具:直尺、三角板、白纸等。

学生动手操作,将三角板的一条直角边与直尺靠在桌面上,移动三角板,观察两条直线的位置关系变化。

教师引导学生归纳出平行线的性质:两条直线都垂直于同一条直线,则这两条直线互相平行。

环节三:探究证明教师提出问题:如何证明两条直线平行?引导学生思考:在几何图形中,有哪些条件可以用来证明两条直线平行?学生讨论交流,提出猜想:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行。

两条直线平行与垂直的判定教案

两条直线平行与垂直的判定教案

【教学设计】两条直线垂直与平行的判定(1课时)江川县第二中学:杨雪芳一、教学目标 (一)知识技能1.掌握两条直线平行与垂直的条件。

2.能根据斜率判定两条直线平行或垂直。

(二)过程与方法体验、经历用斜率研究两条直线的位置关系的过程与方法,通过两条直线斜率之间的关系解释几何含义,初步体会数形结合思想。

(三)情感、态度、价值观1.使学生感受到几何与代数有着密切的联系,对解析几何有感性的认识。

2.培养学生勇于探索、创新的精神。

二、教学重难点教学重点:两直线平行与垂直的判定及其应用。

教学难点:探究两条直线斜率与两条直线垂直的关系。

三、教学方法:综合运用“教师启发”、“问题探究”、“合作学习”等方法组织教学 四、教具:幻灯片 五、教学过程(一)创设情境,导入课题1、什么叫倾斜角?它的范围是什么?2、什么叫斜率?如何计算呢?斜率是刻画直线倾斜程度的量,当两条直线相互平行或相互垂直时,它们之间的斜率有何关系?(二)观察类比,探究新知思考:如图,1l ∥ 2l 时,1k 与 2k 满足什么关系?_ Y_ X_O_ Y_ X_O_Y_X_O能得到什么结论:12 k k =探究1 两直线平行时,它们的斜率一定相等吗?不一定,两直线的斜率均不存在时两直线也平行探究2,若 12 k k =,两直线的位置关系如何? 平行或重合结论:①若12k k ,均存在,则12 k k =⇔1l ∥ 2l 或1l 与 2l 重合.②若12k k ,均不存在,则1l ∥ 2l 或1l 与2l 重合.(说明:用斜率相等可证明三个点是否共线,如P89第5题)例1、已知A (2,3),B (-4,0) P (-3,2),Q (-1,3),试判断直线AB 与直线PQ 的位置关系,并证明你的结论. 分析→学生解决问题→方法提炼试试看:判断下列各小题中的直线 1l 与2l 是否平行?(1)经过两点A(2,3),B(10-,)的直线1l ,与经过点P(1,0)且斜率为1的直线2l ;(2)1l 经过点A (-3,2), B (-3,10) ,2l 经过点 M (5,-2)N (5,5). 指导学生阅读P -87例4(1分钟)思考:如图,1l ⊥ 2l 时, 1k 与 2k 满足什么关系?_ Y_ X_O能得到什么结果:21k k =-1探究3.两直线垂直时,它们的斜率之积一定为-1吗?一条斜率为0,同时另一条斜率不存在时,这两条直线垂直 探究4 当21k k =-1 时,1l 与2l 的关系如何? 垂直结论:①若12k k ,均存在,则1l ⊥ 2l 21k k ⇔=-1②若斜率一个为0且另一个不存在时,则两直线垂直例2:已知A (-6,0)、B (3,6)、 P (0,3)、 Q (6,-6),试判断直线AB 与直线PQ 的位置关系。

《两条直线平行与垂直的判定》教学设计

《两条直线平行与垂直的判定》教学设计

《两条直线平行与垂直的判定》教学设计一:教学目标:1:知识与技能通过本节课的学习,学生掌握用代数的方法判定两直线平行或垂直的方法,并能熟练运用。

2:过程与方法利用两条直线平行,倾斜角相等这一性质,推出两条直线平行的判定方法,即∥又利用两条直线垂直时,倾斜角的关系“和几何画板进行验证得到两条直线垂直的判定方法,即并且对特殊情况进行研究3:情感、态度与价值观通过本节课的学习,可以增强我们用“联系”的观点看问题,进一步增强代数与几何的联系,培养学生学好数学的信心。

二:教学重难点重点:揭示“两条直线平行(垂直)”与“斜率”之间的关系难点:“两条直线平行(垂直)”与“斜率”之间关系的探究三:授课类型:新授课四:教学方法与教学手段教学方法:启发探究式教学教学手段:黑板和多媒体相结合,利用几何画板等教学工具演示五:课时安排:1课时六:教学过程环节一:设置情境,尝式探究设计意图:学生在初中已经学习了两条直线平行(垂直)的判断方法,本节课直接从直线的斜率入手引问是否能判定两条直线的位置关系,使学生很自然的进入今天学习的内容问题:我们在初中已经学习了同一平面内两条直线的位置关系并且学习两条直线平行(垂直)的判定方法,为了在平面直角坐标系内表示直线的倾斜程度,我们引入了直线倾斜角与斜率的概念,并导出了计算斜率的公式,即把几何问题转化为代数问题。

那么,我们能否通过直线的斜率k1、k2来判断两条直线的位置关系呢?(说明:我们约定:若没有特别说明,说“两条直线与”时,一般是指两条不重合的直线)环节二:两条直线平行的探究设计意图;此环节通过学生观察两条直线平行倾斜角相等探究两条直线平行与斜率之间的关系,学生通过观察,探究与讨论的方式,调动了学生的积极性,激发学生的思维,体会解析几何的思想。

在平面直角坐标系中任意做两条平行直线与探究1:这两条直线的倾斜角有什么关系?由此我们可以得到怎样的结论?∥探究2:这两条直线的斜率有什么关系?∥活动:教师指出如何利用学习的知识证明这个结论?学生以小组为单位探究讨论完成证明并且展示结果,互相做出评价由∥反之∥问题:上面的结论恒成立吗?有没有特例?学生探究画出图形:问题:那么上面的结论需要添加什么条件?活动:学生以小组为单位探究,教师给予指导,学生展示结果,并且相互评价结论1:如果与不重合,且两条直线都存在斜率,∥2:与可能重合时且两条直线都存在斜率,∥或与重合环节三:两条直线垂直的探究设计意图:学生从熟知的两条直线垂直的图形,利用三角形的外角和定理,找到两条直线的倾斜角之间的关系,探究出两条直线垂直与斜率之间的关系。

关于平行与垂直教案(精选范文4篇)

关于平行与垂直教案(精选范文4篇)

关于平行与垂直教案(精选范文4篇)垂直,是指一条线与另一条线相交并成直角,这两条直线相互垂直。

通常用符号“⊥”表示。

设有两个向量a和b,a⊥b的充要条件是a·b=0,即(x1x2+y1y2)=0 。

对于立体几何中的垂直问题,主要涉及到线面垂直问题与面面垂直问题,而要解决相关的,以下是为大家整理的关于平行与垂直教案4篇, 供大家参考选择。

平行与垂直教案4篇【篇一】平行与垂直教案第四单元平行四边形和梯形第____课时总序第____个教案编写时间:____年____月____日执行时间:____年____月____日【篇二】平行与垂直教案垂直与平行教学内容:人教版《义务教育课程标准试验教科书·数学》四年级上册64~65页的内容。

教学目标:1.引导学生通过视察、探讨感知生活中的垂直与平行的现象。

2.协助学生初步理解垂直与平行是同一平面内两条直线的两种位置关系,初步相识垂线和平行线。

3.造就学生的空间观念及空间想象实力,引导学生树立合作探究的学习意识。

4、在分析、比拟、综合的视察与思维中渗透分类的思想方法。

教学重点:正确理解“相交”“相互平行”“相互垂直”等概念,开展学生的空间想象实力。

教学难点:相交现象的正确理解〔尤其是对看似不相交而事实上是相交现象的理解〕教学过程:一、画图感知,探究两条直线的位置关系同学们,前面我们相识的直线,知道了直线的特点是可以向两端无限延长,这节课咱们接着探究和直线有关的学问!首先教师向学生出示一个魔方,说怎么玩?生:把一样颜色的方块转到同一个平面上。

然后教师又拿出一张白纸,我们把这张白纸看成一个平面,闭上眼睛想象在这个平面上出现了一条直线,又出现了一条直线,你想象的这两条直线是什么样儿呢?睁开眼睛!把他们用直尺和彩色笔画在纸上!〔生画直线,师巡察〕二、视察分类,了解平行的特征师:好多同学都已经画完坐端正了,你们都画完了吗?好!刚刚教师收集了几幅作品,我们贴黑板上吧!师:你们看,同学们的想象真丰富,我们在同一个平面内想象两条直线,竟然出现了这么多不同的样子,真不简洁!师:细致看看,能不能给他们分分类呢?好!为了大家表达起来便利,咱们给他们编上号,一起来吧!师:下面请你把分类的状况写在练习本上,用序号表示〔小组合作完成〕〔起先吧!〕师:都分好了吗?谁情愿到前面来分给大家看看!给大家说说你分的理由!1、教学相交师:这个同学把黑板上的分成了两类!对于这样的分发你有没有不同的想法?这个同学的观点认为4号是穿插的,你们认为呢?为什么?谁能再说说理由?大家说能再画长一些吗?〔能〕师小结:也就是说这幅作品把穿插的局部没画出来,它穿插了吗?〔穿插了〕嗯!它看似不穿插实际却是穿插了的!此时此刻我们可以把它放到哪一类?〔穿插的一类〕师总结:好!大家看,我们把黑板上的作品分成了两类,这一类是两条直线相互穿插了,这一类就是相交〔板书:相交〕2、教学相互平行师:那这一类相交了吗?是不是因为这两条直线画的太短了呢?那是为什么?你从哪儿看出来再画也不会相交呢?师:也就是说这边的宽窄和这边儿的宽窄一样,对吗?那你用什么方法证明这两边的宽窄一样呢?〔用尺子量〕谁情愿上来量?这一幅谁来量?师:这两个同学量了这边儿是3厘米,这边儿也是3厘米,这幅这边是2厘米,这边儿也是2厘米,把它们画的再长些,这两条直线会相交吗?为什么?谁能再说说理由!师小结:也就是说这两条直线之间必需一样宽窄!那么像这样在同一平面内的两条直线画的再长、再长也不会相交。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《两条直线平行与垂直的判定》教学设计
一、教材分析
本课内容选自普通高中新课程标准实验教科书人教版数学必修2的第三章第二节,介绍的是平面解析几何的知识。

从本章开始学生初步、系统地了解平面解析几何的知识,在第一、二章的学习中,学生已掌握了高中立体几何的初步知识,这有利于学生从新的角度了解高中数学几何教学内容编排体系。

通过本章知识的学习可以让学生从新认识平面几何的知识,又可以为选修里面的圆锥曲线理论知识的学习打下重要的基础,起到承上启下的作用。

同时在本章中,学生初步尝试从新的观念来认识直线和方程的联系,再从基本概念和基本方法深化对直线方程的理解,从而使知识规律化、系统化、网络化。

这种学习方式的过程和方法一经掌握,可以轻松地学习第四章圆的方程的内容。

本节内容是在学习了直线的倾斜角和斜率的基础上,重点学习直线与直线在平面中的特殊位置关系。

只有掌握了两条直线的位置关系,才能更进一步的来学习直线方程,教材利用两条直线的倾斜角和斜率的关系引出了两条直线的平行和垂直的位置关系这一节课的知识结构非常系统,有利于学生形成规律性的知识网络。

二、知识结构分析
以上的简要教材分析,可从这一章的知识结构的思维导图中得以充分体现。

三、课标的分析
《普通高中数学课程标准》关于直线与方程的内容标准指出:
将直线的倾斜角代数化,探索确定直线位置的几何要素,建立直线的方程,把直线问题转化为代数问题;分析代数结果的几何含义,最终解决几何问题。

这种思想贯穿本章教学的始终,帮助学生不断地体会数形结合的思想方法。

从课标中这部分内容标准的要求,可以知道直角坐标系使几何研究又一次飞跃,几何从此跨入了一个新的时代。

在欧氏几何里,我们直接依据图形中点、直线、平面的关系,研究图形的性质。

现在我们采用另外一种研究方法:坐标法。

坐标法是在坐标系的基础上,把几何问题转化为代数问题,通过代数运算研究几何图形性质的一种方法。

在平面直角坐标系中,给直线插上方程的“翅膀”,通过直线的方程研究直线之间的位置关系:平行、垂直,以及两条直线的交点坐标,点到直线的距离公式等等。

可以让学生既对几何产生兴趣,又让学生可以轻松的学习几何。

在教学中应注意引导学生将所学知识与现实实际联系,提高学生解决问题的能力。

四、教学对象的分析
1、学生的知识、技能的基础。

学生在义务教育阶段,学生学习过函数的图像。

知道在直角坐标系中,点可以用有序实数对(x,y )表示,但没有系统接受过解析几何研究问题的思想方法。

因此要进行对本章内容的简要说明,我要研究的是什么?用什么样的方法来研究。

在第一节的教学中学生学习了直线的倾斜角和斜率,奠定了一定的知识、技能和心理基础。

但学生对解析几何的分析能力、思维能力、探究能力有待进一步培养和提高。

学生在初中已经学习过一些一次函数的知识,在教学中应多加考虑新旧知识的相互衔接。

2、学生认知心理特点及认知发展水平。

高一学生对几何有很高兴趣,尤其对直线的位置关系很感兴趣,因此创设教学情境,激发学习兴趣显得尤为重要,但学生的动机水平往往较低,意志力不强,学习主动性还有待于调动。

3、学生的社会背景。

我们的学生数学的学习基础较差,学生中还有一些中考数学成绩不高,没有形成好的学习习惯,还有的初中没有培养成良好的数学思维,给教学上带来一定困难。

在教学中要多注重培养学生良好的数学思维。

五、教学目标的设计
根据以上教材分析、教学对象分析和课标中的三个维度的课程目标,设计本课的教学目标。

1.知识与技能目标:
(1)让学生掌握直线与直线的位置关系。

(2)让学生掌握用代数的方法判定直线与直线之间的平行与垂直的方法。

2.过程与方法目标:
(1)利用“两直线平行,倾斜角相等”这一性质,推出两直线平行的判定方法,即
2121//k k l l =⇔;
(2)利用两直线垂直时,倾斜角的关系“01290+=αα”得到了两直线垂直的判定方法,即。

12121-=⇔⊥k k l l ,并且对于特殊情况进行了研究。

3.情感态度和价值观:
(1)通过本节课的学习让学生感到了几何与代数有着密切的联系,对解析几何有了感性的认识。

(2)通过这节课的学习,培养了学生用“联系”的观点看问题,提高学习数学的兴趣。

(3)通过课堂上的启发教学,培养了学生用于去探索、创新的精神。

六、教学重点、难点的确定
根据教学目标确定本节课教学重点是根据直线的斜率判定两条直线平行和垂直,确定为本节课的教学重点,是因为这部分内容在教材中所处的地位和作用决定的。

两条直线的平行和垂直的判定,为后面学习直线方程和直线方程之间的相互转化奠定基础。

学生接受两条直线的平行与垂直的判定方法时比较困难,所以,两条直线的平行与垂直的判定方法又是教学难点。

采用学案导学将重点、难点概念化、系统化,教师在教学中启发教学,学生探究等方法来破本节课的教学重点和难点,在教学过程中采用多媒体演示使学生通过演示,对直线的位置关系进行观察、分析、概括,突破本节的教学重点和教学难点。

七、教学媒体的选择
课堂教学中,教学媒体的选择和使用是否合理,直接影响到各个知识点的教学目标达到程度,从而影响到整个课堂的教学质量,因此,必须重视教学媒体使用方法的设计,本节课教学媒体系统设计,板书、电脑投影等多媒体的综合运用。

使知识呈现方式更直观、更形象具体。

八、、教学模式的选择
新课程倡导建构主义学习理论,强调情境、协作、会话和意义建构是学习环境中的四大要素,主张教学以学生思维活动,实践活动为中心,充分发挥学生的主体性和创造性,达到使学生有效地实现对当前所学知识的意义建构的目的。

在这种学习理论的指导下,本节课以教师的启发学生探究为主导,创设丰富多彩的学习情境,综合运用“”教师启发式“问题探究”、“有意义的接受式学习”、“学案导学”等教学方式方法组织教学。

让学生在学习中动态建构学习两条直线的平行与垂直的判定方法等知识。

本课是直线间的位置关系知识课型,这种课型在传统教学中通常采用性质→证明→应用的教学思路,并通过直线的斜率揭示知识内在联系。

新课程强调要以数学问题为基础,通过问题预设→知识生成的建构过程学习知识,使学生亲历知识的生成过程,体验学习知识的方法,使学生的情意和能力得到和谐的发展。

因此:
本节课的教学模式设计如下:
九、教学流程
十一、教学评价:
通过本节课的学习,学生在学习方式上都有所变化,课堂上能积极主动参与教学活动,提高了对解析几何问题的解决能力,从教学目标的要求出发,较顺利地完成学习任务。

教学反思:新课程改革倡导学生主动参与、乐于探究、培养学生分析和解决问题的能力以及交流与合作的能力。

本节课从学生已有的立体几何学习经验和一次函数的图像出发,认识解析几何和代数的关系,培养学生的学习解析几何的方法,同时通过以问题探究活动,促进学习方式的转变,在学习中锻炼了学生的学习数学的方法和技能,提高了学生的创新思维和利用所学知识解决数学问题的能力。

相关文档
最新文档