泰州市姜堰区2019-2020学年八年级上学期期末【精编】.doc

合集下载

江苏省泰州市泰兴市2019-2020年八年级(上)期末数学试卷 解析版

江苏省泰州市泰兴市2019-2020年八年级(上)期末数学试卷  解析版

2019-2020学年八年级(上)期末数学试卷一.选择题(共6小题)1.下列交通标志图案是轴对称图形的是()A.B.C.D.2.下列各数:,﹣3.14,,2π,无理数有()A.1个B.2个C.3个D.4个3.点P(1,﹣2)关于y轴对称的点的坐标是()A.(﹣1,﹣2)B.(1,2)C.(﹣1,2)D.(﹣2,1)4.已知一次函数y=kx+b的图象经过第一、二、三象限,则b的值可以是()A.﹣2 B.﹣1 C.0 D.25.下列各组数是勾股数的是()A.6,7,8 B.1,,2C.5,4,3 D.0.3,0.4,0.56.在△ABC中,∠C=90°,∠B=60°,下列说法中,不一定正确的是()A.BC2+AC2=AB2B.2BC=ABC.若△DEF的边长分别为1,2,,则△DEF和△ABC全等D.若AB中点为M,连接CM,则△BCM为等边三角形二.填空题(共10小题)7.1﹣π的相反数是.8.17.85精确到十分位是.9.已知△ABC≌△A'B'C',∠A=60°,∠B=40°,则∠C′=.10.点P(﹣5,12)到原点的距离是.11.若函数y=2x+3﹣m是正比例函数,则m的值为.12.如图,△ABC中,D是BC上一点,AC=AD=DB,∠C=70°,则∠B=°.13.如图,Rt△ABC中,∠C=90°,AD是∠BAC的平分线,CD=4,AB=16,则△ABD的面积等于.14.一次函数y1=ax+3与y2=kx﹣1的图象如图所示,则不等式kx﹣1<ax+3的解集是.15.已知A(x1,y1)、B(x2,y2)是一次函数y=(2﹣m)x+3图象上两点,且(x1﹣x2)(y1﹣y2)<0,则m的取值范围为.16.如图,平面直角坐标系中,若点A(3,0)、B(4,1)到一次函数y=kx+4(k≠0)图象的距离相等,则k的值为.三.解答题(共10小题)17.(1)计算:(2)求x的值:8(x+1)3=118.已知,+(x+y﹣1)2=0,求y﹣2x的平方根.19.已知:如图点A、B、C、D在一条直线上,EA∥FB,EC∥FD,AB=CD,求证:EA=FB.20.如图,平面直角坐标系中,每个小正方形边长都是1.(1)按要求作图:①△ABC关于x轴对称的图形△A1B1C1;②将△A1B1C1向右平移7个单位得到△A2B2C2.(2)△A2B2C2中顶点B2坐标为.21.如图,△ABC中,∠ABC=30°,∠ACB=50°,DE、FG分别为AB、AC的垂直平分线,E、G分别为垂足.(1)求∠DAF的度数;(2)若△DAF的周长为10,求BC的长.22.如图,有一个长方形花园,对角线AC是一条小路,现要在AD边上找一个位置建报亭H,使报亭H到小路两端点A、C的距离相等.(1)用尺规作图的方法,在图中找出报亭H的位置(不写作法,但需保留作图痕迹,交代作图结果)(2)如果AD=8m,CD=4m,求报亭H到小路端点A的距离.23.如图,在△ABC中,AD是高,E、F分别是AB、AC的中点.(1)AB=12,AC=9,求四边形AEDF的周长;(2)EF与AD有怎样的位置关系?证明你的结论.24.一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.(1)求y关于x的函数关系式;(不需要写定义域)(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?25.已知:如图,在△ABC中,∠ACB=90°,AC=BC=4,D是AB的中点,点E是射线CB 上的动点,连接DE,DF⊥DE交射线AC于点F.(1)若点E在线段CB上.①求证:AF=CE.②连接EF,试用等式表示AF、EB、EF这三条线段的数量关系,并说明理由.(2)当EB=3时,求EF的长.26.在平面直角坐标系中,直线l1:y=kx+b(k、b为常数,且k≠0)经过A、B两点,点A在y轴上.(1)若B点坐标为(﹣1,2).①b=(用含有字母k的代数式表示)②当△OAB的面积为2时,求直线l1的表达式;(2)若B点坐标为(k﹣2b,b﹣b2),点C(﹣1,s)也在直线l1上,①求s的值;②如果直线l1:y=kx+b(k≠0)与直线l2:y=x交于点(x1,y1),且0<x1<2,求k的取值范围.参考答案与试题解析一.选择题(共6小题)1.下列交通标志图案是轴对称图形的是()A.B.C.D.【分析】根据轴对称的定义结合选项所给的特点即可得出答案.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误;故选:B.2.下列各数:,﹣3.14,,2π,无理数有()A.1个B.2个C.3个D.4个【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数.【解答】解:无理数有2π,共2个.故选:B.3.点P(1,﹣2)关于y轴对称的点的坐标是()A.(﹣1,﹣2)B.(1,2)C.(﹣1,2)D.(﹣2,1)【分析】平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(﹣x,y),即关于纵轴的对称点,纵坐标不变,横坐标变成相反数;这样就可以求出A的对称点的坐标,从而可以确定所在象限.【解答】解:∵点P(1,﹣2)关于y轴对称,∴点P(1,﹣2)关于y轴对称的点的坐标是(﹣1,﹣2).故选:A.4.已知一次函数y=kx+b的图象经过第一、二、三象限,则b的值可以是()A.﹣2 B.﹣1 C.0 D.2【分析】根据一次函数的图象经过第一、二、三象限判断出b的符号,再找出符合条件的b的可能值即可.【解答】解:∵一次函数的图象经过第一、二、三象限,∴b>0,∴四个选项中只有2符合条件.故选:D.5.下列各组数是勾股数的是()A.6,7,8 B.1,,2C.5,4,3 D.0.3,0.4,0.5【分析】欲求证是否为勾股数,这里给出三边的长,只要验证a2+b2=c2即可.【解答】解:A、72+62≠82,故此选项错误;B、不是整数,故此选项错误;C、32+42=52,故此选项正确;D、0.3,0.4,0.5,勾股数为正整数,故此选项错误.故选:C.6.在△ABC中,∠C=90°,∠B=60°,下列说法中,不一定正确的是()A.BC2+AC2=AB2B.2BC=ABC.若△DEF的边长分别为1,2,,则△DEF和△ABC全等D.若AB中点为M,连接CM,则△BCM为等边三角形【分析】根据勾股定理、等边三角形的判定以及相似三角形的判定即可求出答案.【解答】解:(A)由勾股定理可知BC2+AC2=AB2,故A正确.(B)∵∠C=90°,∠B=60°,∴∠A=30°,∴AB=2BC,故B正确.(C)若△DEF的边长分别为1,2,,则△DEF和△ABC相似.(D)∵CM是△ACB的中线,∴CM=BM=CB,∴△BCM是等边三角形,故D正确.故选:C.二.填空题(共10小题)7.1﹣π的相反数是π﹣1 .【分析】根据相反数的定义即可得到结论.【解答】解:1﹣π的相反数是﹣(1﹣π)=π﹣1.故答案为:π﹣1.8.17.85精确到十分位是17.9 .【分析】把百分位上的数字5进行四舍五入即可.【解答】解:17.85精确到十分位是17.9.故答案为17.9.9.已知△ABC≌△A'B'C',∠A=60°,∠B=40°,则∠C′=80°.【分析】直接利用全等三角形的性质得出对应角相等进而得出答案.【解答】解:∵△ABC≌△A'B'C',∴∠A=∠A′=60°,∠B=∠B′=40°,∴∠C′=180°﹣60°﹣40°=80°.故答案为:80°.10.点P(﹣5,12)到原点的距离是13 .【分析】直接根据勾股定理进行解答即可.【解答】解:∵点P(﹣5,12),∴点P到原点的距离==13.故答案为:13.11.若函数y=2x+3﹣m是正比例函数,则m的值为 3 .【分析】直接利用正比例函数的定义得出答案.【解答】解:∵函数y=2x+3﹣m是正比例函数,∴3﹣m=0,解得:m=3.故答案为:3.12.如图,△ABC中,D是BC上一点,AC=AD=DB,∠C=70°,则∠B=35 °.【分析】根据等腰三角形的性质得到∠ADC=70°,再根据三角形外角的性质和等腰三角形可求∠B的度数.【解答】解:∵AC=AD,∠C=70°,∴∠ADC=∠C=70°,∵AD=DB,∴∠B=∠BAD,∴∠B=∠ADC=35°.故答案为:35.13.如图,Rt△ABC中,∠C=90°,AD是∠BAC的平分线,CD=4,AB=16,则△ABD的面积等于32 .【分析】作DH⊥AB于H,如图,根据角平分线的性质得到DH=DC=4,然后利用三角形面积公式计算.【解答】解:作DH⊥AB于H,如图,∵AD是∠BAC的平分线,∴DH=DC=4,∴△ABD的面积=×16×4=32.故答案为32.14.一次函数y1=ax+3与y2=kx﹣1的图象如图所示,则不等式kx﹣1<ax+3的解集是x <1 .【分析】结合图象,写出直线y1=ax+3在直线y2=kx﹣1上方所对应的自变量的范围.【解答】解:∵一次函数y1=ax+3与y2=kx﹣1的图象的交点坐标为(1,2),∴当x<1时,y1>y2,∴不等式kx﹣1<ax+3的解集为x<1.故答案为x<1.15.已知A(x1,y1)、B(x2,y2)是一次函数y=(2﹣m)x+3图象上两点,且(x1﹣x2)(y1﹣y2)<0,则m的取值范围为m>2 .【分析】根据(x1﹣x2)(y1﹣y2)<0,得出y随x的增大而减小,再根据2﹣m<0,求出其取值范围即可.【解答】解:(x1﹣x2)(y1﹣y2)<0,即:或,也就是,y随x的增大而减小,因此,2﹣m<0,解得,m>2,故答案为:m>2.16.如图,平面直角坐标系中,若点A(3,0)、B(4,1)到一次函数y=kx+4(k≠0)图象的距离相等,则k的值为k=±1 .【分析】根据一次函数y=kx+4(k≠0)图象一定过点(0,4),点A(3,0)、B(4,1)到一次函数y=kx+4(k≠0)图象的距离相等,可分为两种情况进行解答,即,①当直线y=kx+4(k≠0)与直线AB平行时,②当直线y=kx+4(k≠0)与直线AB不平行时分别进行解答即可.【解答】解:一次函数y=kx+4(k≠0)图象一定过(0,4)点,①当直线y=kx+4(k≠0)与直线AB平行时,如图1,设直线AB的关系式为y=kx+b,把A(3,0),B(4,1)代入得,,解得,k=1,b=﹣3,∴一次函数y=kx+4(k≠0)中的k=1,②当直线y=kx+4(k≠0)与直线AB不平行时,如图2,则:直线y=kx+4(k≠0)一定过点C,点C的坐标为(4,0),代入得,4k+4=0,解得,k=﹣1,因此,k=1或k=﹣1.故答案为:k=±1.三.解答题(共10小题)17.(1)计算:(2)求x的值:8(x+1)3=1【分析】(1)首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.(2)根据立方根的含义和求法,求出x的值是多少即可.【解答】解:(1)=1+2﹣﹣2=1﹣(2)∵8(x+1)3=1,∴(x+1)3=,∴x+1=,解得x=﹣.18.已知,+(x+y﹣1)2=0,求y﹣2x的平方根.【分析】直接利用非负数的性质得出关于x,y的方程组进而得出答案.【解答】解:∵+(x+y﹣1)2=0,∴,解得:,故y﹣2x=2+2=4,则y﹣2x的平方根为:±2.19.已知:如图点A、B、C、D在一条直线上,EA∥FB,EC∥FD,AB=CD,求证:EA=FB.【分析】首先利用平行线的性质得出,∠A=∠FBD,∠D=∠ECA,根据AB=CD即可得出AC=BD,进而得出△EAC≌△FBD.【解答】证明:∵EA∥FB,∴∠A=∠FBD,∵EC∥FD,∴∠D=∠ECA,∵AB=CD,∴AC=BD,在△EAC和△FBD中,,∴△EAC≌△FBD(AAS),∴EA=FB.20.如图,平面直角坐标系中,每个小正方形边长都是1.(1)按要求作图:①△ABC关于x轴对称的图形△A1B1C1;②将△A1B1C1向右平移7个单位得到△A2B2C2.(2)△A2B2C2中顶点B2坐标为(1,﹣1).【分析】(1)①分别作出点A、B、C关于x轴的对称点,再首尾顺次连接即可得;②分别作出△A1B1C1的3个顶点向右平移7个单位所得对应点,再首尾顺次连接即可得;(2)由所作图形可得.【解答】解:(1)①如图所示,△A1B1C1即为所求;②如图所示,△A2B2C2即为所求.(2)由图知,△A2B2C2中顶点B2坐标为(1,﹣1),故答案为:(1,﹣1).21.如图,△ABC中,∠ABC=30°,∠ACB=50°,DE、FG分别为AB、AC的垂直平分线,E、G分别为垂足.(1)求∠DAF的度数;(2)若△DAF的周长为10,求BC的长.【分析】(1)根据三角形内角和定理求出∠BAC,根据线段垂直平分线的性质得到DA=DB,FA=FC,得到∠DAB=∠ABC=30°,∠FAC=∠ACB=50°,结合图形计算,得到答案;(2)根据三角形的周长公式计算即可.【解答】解:(1)∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣30°﹣50°=100°,∵DE是AB的垂直平分线,∴DA=DB,∴∠DAB=∠ABC=30°,∵FG是AC的垂直平分线,∴FA=FC,∴∠FAC=∠ACB=50°,∴∠DAF=∠BAC﹣(∠DAB+∠FAC)=20°;(2)∵△DAF的周长为10,∴AD+DF+FC=10,∴BC=BD+DF+FC=AD+DF+FC=10.22.如图,有一个长方形花园,对角线AC是一条小路,现要在AD边上找一个位置建报亭H,使报亭H到小路两端点A、C的距离相等.(1)用尺规作图的方法,在图中找出报亭H的位置(不写作法,但需保留作图痕迹,交代作图结果)(2)如果AD=8m,CD=4m,求报亭H到小路端点A的距离.【分析】(1)作AC的垂直平分线交AD与点G,进而得出答案;(2)利用勾股定理以及线段垂直平分线的性质得出即可.【解答】解:(1)如图所示:H点即为所求;(2)设AH=xm,则DH=(80﹣x)m,HC=xm,在Rt△DHC中,DH2+CD2=HC2,∴(80﹣x)2+402=x2,解得:x=50,答:报亭到小路端点A的距离50m.23.如图,在△ABC中,AD是高,E、F分别是AB、AC的中点.(1)AB=12,AC=9,求四边形AEDF的周长;(2)EF与AD有怎样的位置关系?证明你的结论.【分析】(1)根据在直角三角形中,斜边上的中线等于斜边的一半可得ED=EB=AB,DF=FC=AC,再由AB=12,AC=9,可得答案;(2)根据到线段两端点距离相等的点在线段的垂直平分线证明.【解答】解:(1)∵AD是高,∴∠ADB=∠ADC=90°,∵E、F分别是AB、AC的中点,∴ED=EB=AB,DF=FC=AC,∵AB=8,AC=6,∴AE+ED=12,AF+DF=9,∴四边形AEDF的周长为12+9=21;(2)EF⊥AD,理由:∵DE=AE,DF=AF,∴点E、F在线段AD的垂直平分线上,∴EF⊥AD.24.一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.(1)求y关于x的函数关系式;(不需要写定义域)(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?【分析】根据函数图象中点的坐标利用待定系数法求出一次函数解析式,再根据一次函数图象上点的坐标特征即可求出剩余油量为8升时行驶的路程,此题得解.【解答】解:(1)设该一次函数解析式为y=kx+b,将(150,45)、(0,60)代入y=kx+b中,,解得:,∴该一次函数解析式为y=﹣x+60.(2)当y=﹣x+60=8时,解得x=520.即行驶520千米时,油箱中的剩余油量为8升.530﹣520=10千米,油箱中的剩余油量为8升时,距离加油站10千米.∴在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.25.已知:如图,在△ABC中,∠ACB=90°,AC=BC=4,D是AB的中点,点E是射线CB 上的动点,连接DE,DF⊥DE交射线AC于点F.(1)若点E在线段CB上.①求证:AF=CE.②连接EF,试用等式表示AF、EB、EF这三条线段的数量关系,并说明理由.(2)当EB=3时,求EF的长.【分析】(1)①证明△ADF≌△CDE(ASA),即可得出AF=CE;②由①得△ADF≌△CDE(ASA),得出AF=CE;同理△CDF≌△BDE(ASA),得出CF=BE,在Rt△CEF中,由勾股定理得CE2+CF2=EF2,即可得出结论;(2)分两种情况:①点E在线段CB上时,求出CE=BC﹣BE=1,由(1)得AF=CE=1,AF2+EB2=EF2,即可得出答案;②点E在线段CB延长线上时,求出CE=BC+BE=7,同(1)得△ADF≌△CDE(ASA),得出AF=CE,求出CF=BE=3,在Rt△EF中,由勾股定理即可得出答案.【解答】(1)①证明:∵△ABC中,∠ACB=90°,AC=BC=4,D是AB的中点,∴∠DCE=45°=∠A,CD=AB=AD,CD⊥AB,∴∠ADC=90°,∵DF⊥DE,∴∠FDE=90°,∴∠ADC=∠FDE,∴∠ADF=∠CDE,在△ADF和△CDE中,,∴△ADF≌△CDE(ASA),∴AF=CE;②解:AF2+EB2=EF2,理由如下:由①得:△ADF≌△CDE(ASA),∴AF=CE;同理:△CDF≌△BDE(ASA),∴CF=BE,在Rt△CEF中,由勾股定理得:CE2+CF2=EF2,∴AF2+EB2=EF2;(2)解:分两种情况:①点E在线段CB上时,∵BE=3,BC=4,∴CE=BC﹣BE=1,由(1)得:AF=CE=1,AF2+EB2=EF2,∴EF==;②点E在线段CB延长线上时,如图2所示:∵BE=3,BC=4,∴CE=BC+BE=7,同(1)得:△ADF≌△CDE(ASA),∴AF=CE,∴CF=BE=3,在Rt△EF中,由勾股定理得:CF2+CE2=EF2,∴EF==;综上所述,当EB=3时,EF的长为或.26.在平面直角坐标系中,直线l1:y=kx+b(k、b为常数,且k≠0)经过A、B两点,点A在y轴上.(1)若B点坐标为(﹣1,2).①b=2+k(用含有字母k的代数式表示)②当△OAB的面积为2时,求直线l1的表达式;(2)若B点坐标为(k﹣2b,b﹣b2),点C(﹣1,s)也在直线l1上,①求s的值;②如果直线l1:y=kx+b(k≠0)与直线l2:y=x交于点(x1,y1),且0<x1<2,求k的取值范围.【分析】(1)①把B(﹣1,2)代入y=kx+b即可求得b的值;②根据三角形的面积即可求得k的值,从而可得直线解析式;(2)①把点B和点C代入函数解析式即可求得s的值;②根据两条直线的交点坐标的横坐标的取值范围即可求得k的取值范围.【解答】解:(1)①把B(﹣1,2)代入y=kx+b,得b=2+k.故答案为2+k;②∵S△OAB=(2+k)×1=2解得k=2,所以直线l1的表达式为:y=2x+4;(2)①∵直线l1:y=kx+b经过点B(k﹣2b,b﹣b2)和点C(﹣1,s).∴k(k﹣2b)+b=b﹣b2,﹣k+b=s整理得,(b﹣k)2=0,所以s=b﹣k=0.②∵直线l1:y=kx+b(k≠0)与直线l2:y=x交于点(x1,y1),∴kx1+b=x1(1﹣k)x1=b,∵b﹣k=0∴b=k∴x1=∵0<x1<2,∴>0或<2解得k<.答:k的取值范围是k<.。

2019-2020学年江苏省泰州市姜堰区八年级(上)期末数学试卷及答案解析

2019-2020学年江苏省泰州市姜堰区八年级(上)期末数学试卷及答案解析

2019-2020学年江苏省泰州市姜堰区八年级(上)期末数学试卷一、选择题(本大题共6小题,共18.0分)1. 下列图案是轴对称图形的有( )个.A. 1B. 2C. 3D. 4 2. 在3.14,π,−0.10010001,3.7.,−√4,√93,13中,无理数有( )A. 1个B. 2个C. 3个D. 4个3. 下列各组数据不是勾股数的是( )A. 12,18,22B. 3,4,5C. 7,24,25D. 9,12,154. 若点A(a +1,b −2)在第二象限,则点B(−a,1−b)在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限5. 已知△ABC 的六个元素,下面甲、乙、丙三个三角形中和△ABC 全等的图形是( )A. 甲和乙B. 乙和丙C. 只有乙D. 只有丙6. 下列图形中,表示一次函数y =mx +n 与正比例函数y =mnx(m 、n 为常数,且mn ≠0)的图象的是( )A. B. C. D.二、填空题(本大题共10小题,共30.0分)7. 16的平方根是______.8. 3.1415精确到百分位的近似数是______.9. 已知点P(−2,1),那么点P 关于x 轴对称的点Q 的坐标是______.10. 已知一次函数y =(k −1)x −2,y 随x 的增大而减小,那么k 的取值范围是______.11. 若等腰三角形中一个底角等于50°,则这个等腰三角形的顶角=______°.12. 若二元一次方程组{4x −y =1y =2x −m的解是{x =2y =7,则一次函数y =2x −m 的图象与一次函数y =4x −1的图象的交点坐标为______.13. 如图,在△ABC 中,AC =8,BC =5,AB 的垂直平分线DE 交AB 于点D ,交边AC 于点E ,则△BCE 的周长为_________.14. 如图,函数y =3x 和y =ax +4的图象相交于点A(m,3),不等式3x ≥ax +4的解集为______.15. 已知点A(3+2a,3a −5),点A 到两坐标轴的距离相等,点A 的坐标为_____.16. 如图,在矩形ABCD 中,AB =6cm ,点E 、F 分别是边BC 、AD 上一点,将矩形ABCD 沿EF 折叠,使点C 、D 分别落在点C′、D′处.若C′E ⊥AD ,则EF 的长为______ cm .三、解答题(本大题共10小题,共102.0分)17.计算:√12−|1−√3|+(7+π)0.18.已知:y与x+1成正比例,当x=−2时,y=−4。

江苏省泰州市姜堰区励才实验学校-学年度八年级上学期期末综合试卷二(Word版,有答案)

江苏省泰州市姜堰区励才实验学校-学年度八年级上学期期末综合试卷二(Word版,有答案)

八年级语文综合练习二(时间:150分钟满分:150分)一、积累与运用(32分)1.阅读下面文字,根据拼音在横线上填写相应的汉字。

(要求书写工整、规范、美观)(4分)踏上八年级的语文阅读之旅,我们被一篇篇文质兼美的文章所吸引。

在昆明的雨季,我们似乎尝了味极鲜yú( )的各种菌子;在苏州的园林,我们欣赏了盘曲lín xún( )( )的古老藤萝;在西北的高原,我们领略了白杨树傲然挺立的风zī( )……2.下列标点符号使用正确..的一项是(2分)()A.在2020年新年贺词中,习近平“只争朝夕,不负韶华”的寄语激励和感染了无数人。

B.主持人开场白有两个任务:一是建立说者与听者的同感;二是引入主题。

C.不知道今年春晚的魔术表演又会见证哪些奇迹的诞生?D.牛肝菌色如牛肝,滑、嫩、鲜、香,很好吃。

3.下列句子没有语病、句意明确.........的一项是(2分)()A.华为推出的5G多模终端芯片,凭借多项创新技术,全面开启5G时代。

B.这种赛车模型制作工艺非常精细,完全按照国际一级方程式赛车的式样缩小64倍制成。

C.丁细牙痛胶囊的主要成分是由丁香叶、细辛组成的,因此毒副作用比较小。

D.学校对极少数不尊重教师、无理取闹的事件,及时进行了严肃处理和批评教育。

4.下列说法不正确...的一项是(2分) ()A.谁能使过去的一切复活?/别在这儿傻傻地等了!/好在天无绝人之路!解说:根据不同的语气,以上三句话依次为:疑问句、祈使句、感叹句。

B.《孟子》是记录孟子及其弟子言行的著作,共七篇,由战国时期思想家孟子编著。

解说:这个文学常识的表述完全正确。

C.半个多世纪来,朱自清先生高尚的人格和不屈的气节,依旧闪耀着人性的光辉。

解说:“人格和气节闪耀光辉”是这句话的主干。

D.2019年11月,中国男足在世界杯预选赛中负于叙利亚队。

赛后,中国足协通过微博为中国男足的糟糕表现向球迷致歉:“中国男足表现差强人意....,令广大球迷倍感失望,中国足协对此深表歉意!”解说:这句话中加点成语运用错误。

泰州市八年级上册期末数学试卷(附答案)[推荐].doc

泰州市八年级上册期末数学试卷(附答案)[推荐].doc

2019-2020学年江苏省泰州市八年级(上)期末数学试卷一、选择题(本大题共6小题,每小题3分,计18分)1.(3分)在平面直角坐标系中,点P(﹣2,3)在第()象限.A.一B.二C.三D.四2.(3分)若分式有意义,则x的取值范围是()A.x≠2 B.x=2 C.x>2 D.x<23.(3分)为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,征求了所有学生的意见,根据赞成、反对、无所谓三种意见的人数之比画出扇形统计图,图中α的度数为()A.36°B.20°C.10°D.无法确定4.(3分)在平面直角坐标系中,把直线y=﹣2x+3沿y轴向上平移两个单位长度后,得到的直线的函数关系式为()A.y=﹣2x+1 B.y=﹣2x﹣5 C.y=﹣2x+5 D.y=﹣2x+75.(3分)如图,在△ABC中,∠ABC和∠ACB的平分线相交于点F,过F作DE∥BC,交AB于点D,交AC于点E.若BD=4,DE=7,则线段EC的长为()A.3 B.4 C.3.5 D.26.(3分)若关于x的分式方程=2的解为非负数,则m的取值范围是()A.m>﹣1 B.m≥1 C.m>﹣1且m≠1 D.m≥﹣1且m≠1二、填空题(本大题共10小题,每小题3分,计30分)7.(3分)2026精确到百位记作为 .8.(3分)如果分式的值为零,那么x= .9.(3分)已知甲、乙两人在同一地点出发,甲往东走4km ,乙往南走了3km ,这时甲、乙两人相距 km .10.(3分)如果点P 坐标为(3,﹣4),那么点P 到x 轴的距离为 .11.(3分)若+(1﹣y )2=0,则= .12.(3分)某班在一次适应性考试中,分数落在130﹣140分数段的人数为18人,频率为0.3,则该班共有 人.13.(3分)如图,直线y 1=x+n 与y 2=mx ﹣1相交于点N ,则关于x 的不等式x+n <mx ﹣1的解集为 .14.(3分)如图,折叠长方形纸片ABCD ,使点D 落在边BC 上的点F 处,折痕为AE .已知AB=3cm ,BC=5cm .则EC 的长为 cm .15.(3分)分式的值是正整数,则整数m= .16.(3分)已知∠AOB=45°,点P 在∠AOB 内部,点P 1与点P 关于OA 对称,点P 2与点P关于OB 对称,连接P 1P 2交OA 、OB 于E 、F ,若P 1E=,OP=,则EF 的长度是 .三、解答题(本大题共10小题,共102分.)17.(10分)(1)计算:(3﹣π)0﹣|﹣2|﹣(2)解方程: +2=18.(8分)先化简:÷(a﹣),并从0、1、2中选取一个恰当的数值代入求值.19.(10分)已知y+2与x成正比,当x=1时,y=﹣6.(1)求y与x之间的函数关系式;(2)若点(a,2)在这个函数图象上,求a的值.20.(10分)家庭过期药品属于“国家危险废物“处理不当将污染环境,危害健康.某市药监部门为了了解市民家庭处理过期药品的方式,决定对全市家庭作一次简单随机抽样调查本次抽样调查发现,接受调查的家庭都有过期药品,现将有关数据呈现如图:(1)求m、n的值;(2)补全条形统计图;(3)家庭过期药品的正确处理方式是送回收站,若该市有180万户家庭,请估计大约有多少户家庭处理过期药品的方式是送回收站.21.(8分)某社区计划对面积为400m2的区域进行绿化.经测算,甲队每天能完成绿化面积是乙队每天能完成绿化面积的2倍,且甲队单独完成比乙队单独完成少用4天.求甲、乙两队每天单独完成绿化的面积.22.(10分)如图,△ABC中,边AB、AC的垂直平分线分别交BC于D、E.(1)若BC=10,则△ADE周长是多少?为什么?(2)若∠BAC=128°,则∠DAE的度数是多少?为什么?23.(10分)已知一次函数y=x+b,它的图象与两坐标轴所围成的图形的面积等于2.(1)求b的值;(2)若函数y=x+b的图象交y轴于正半轴,则当x取何值时,y的值是正数?24.(10分)某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如表:(1)求日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;(2)当每件产品的销售价定为35元时,此时每日的销售利润是多少元?25.(12分)甲,乙两辆汽车分别从A,B两地同时出发,沿同一条公路相向而行,乙车出发2h后休息,与甲车相遇后,继续行驶.设甲,乙两车与B地的路程分别为 y甲(km),y乙(km),甲车行驶的时间为x(h),y甲,y乙与x之间的函数图象如图所示,结合图象解答下列问题:(1)a= ;(2)求乙车与甲车相遇后y乙与x的函数解析式,并写出自变量x的取值范围;(3)若a≤x≤5,则当x为何值时,两车相距100km.26.(14分)如图,在平面直角坐标系xOy中,点A的坐标为(0,3),点B的坐标为(4,0),C为第一象限内一点,AC⊥y轴,BC⊥x轴,D坐标为(m,0)(0<m<4).(1)若D为OB的中点,求直线DC的解析式;(2)若△ACD为等腰三角形,求m的值;(3)E为四边形OACB的某一边上一点.①若E在边BC上,满足△AOD≌△DBE,求m的值;②若使△EOD为等腰三角形的点E有且只有4个,直接写出符合条件的m的值.2019-2020学年江苏省泰州市姜堰市八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,计18分)1.(3分)在平面直角坐标系中,点P(﹣2,3)在第()象限.A.一B.二C.三D.四【解答】解:点P(﹣2,3)在第二象限.故选:B.2.(3分)若分式有意义,则x的取值范围是()A.x≠2 B.x=2 C.x>2 D.x<2【解答】解:由题意得,x﹣2≠0,解得x≠2.故选:A.3.(3分)为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,征求了所有学生的意见,根据赞成、反对、无所谓三种意见的人数之比画出扇形统计图,图中α的度数为()A.36°B.20°C.10°D.无法确定【解答】解:由图知“无所谓”意见人数占总人数的10%,所以图中α的度数为360°×10%=36°,故选:A.4.(3分)在平面直角坐标系中,把直线y=﹣2x+3沿y轴向上平移两个单位长度后,得到的直线的函数关系式为()A.y=﹣2x+1 B.y=﹣2x﹣5 C.y=﹣2x+5 D.y=﹣2x+7【解答】解:由题意得:平移后的解析式为:y=﹣2x+3+2=﹣2x+5.故选:C.5.(3分)如图,在△ABC中,∠ABC和∠ACB的平分线相交于点F,过F作DE∥BC,交AB于点D,交AC于点E.若BD=4,DE=7,则线段EC的长为()A.3 B.4 C.3.5 D.2【解答】解:∵∠ABC和∠ACB的平分线相交于点F,∴∠DBF=∠FBC,∠ECF=∠BCF,∵DF∥BC,交AB于点D,交AC于点E.∴∠DFB=∠DBF,∠CFE=∠BCF,∴BD=DF=4,FE=CE,∴CE=DE﹣DF=7﹣4=3.故选:A.6.(3分)若关于x的分式方程=2的解为非负数,则m的取值范围是()A.m>﹣1 B.m≥1 C.m>﹣1且m≠1 D.m≥﹣1且m≠1【解答】解:去分母得:m﹣1=2x﹣2,解得:x=,由题意得:≥0且≠1,解得:m≥﹣1且m≠1,故选:D.二、填空题(本大题共10小题,每小题3分,计30分)7.(3分)2026精确到百位记作为 2.0×103.【解答】解:2026精确到百位记作为2.0×103,故答案为:2.0×103.8.(3分)如果分式的值为零,那么x= 3 .【解答】解:由题意,得x﹣3=0且x2+1≠0,解得 x=3,故答案为:3.9.(3分)已知甲、乙两人在同一地点出发,甲往东走4km,乙往南走了3km,这时甲、乙两人相距 5 km.【解答】解:如图,∵∠AOB=90°,OA=4km,OB=3km∴AB==5km.10.(3分)如果点P坐标为(3,﹣4),那么点P到x轴的距离为 4 .【解答】解:点P(3,﹣4)到x轴的距离为4.故答案为:4.11.(3分)若+(1﹣y)2=0,则= 2 .【解答】解:∵+(1﹣y)2=0,∴x﹣4=0,1﹣y=0,[]解得:x=4,y=1,则==2.故答案为:2.12.(3分)某班在一次适应性考试中,分数落在130﹣140分数段的人数为18人,频率为0.3,则该班共有60 人.【解答】解:18÷0.3=60(人).故答案为:60.13.(3分)如图,直线y1=x+n与y2=mx﹣1相交于点N,则关于x的不等式x+n<mx﹣1的解集为x<﹣1 .【解答】解:观察图象,可知x+n<mx﹣1的解集为x<﹣1.故答案为 x<﹣114.(3分)如图,折叠长方形纸片ABCD,使点D落在边BC上的点F处,折痕为AE.已知AB=3cm,BC=5cm.则EC的长为cm.【解答】解:∵△AEF由△AED折叠而,∴AD=AF ,DE=FE .在Rt △ABF 中,AB=3cm ,AF=5cm ,∴BF==4cm ,∴CF=BC ﹣BF=1cm .设EC=xcm ,则EF=ED=(3﹣x )cm ,在Rt △CEF 中,EF 2=CE 2+CF 2,即(3﹣x )2=x 2+12, 解得:x=. 故答案为:.15.(3分)分式的值是正整数,则整数m= 1 .【解答】解:由题意可知:2m ﹣1=1或2或4, 当2m ﹣1=1时,∴m=1,符合题意当2m ﹣1=2时,∴m=,不符合题意,当2m ﹣1=4时,∴m=,不符合题意,综上所述,m=1,故答案为:m=116.(3分)已知∠AOB=45°,点P 在∠AOB 内部,点P 1与点P 关于OA 对称,点P 2与点P关于OB 对称,连接P 1P 2交OA 、OB 于E 、F ,若P 1E=,OP=,则EF 的长度是 .【解答】解:∵P ,P 1关于直线OA 对称,P 、P 2关于直线OB 对称,∴OP=OP 1=OP 2=,∠AOP=∠AOP 1,∠BOP=∠BOP 2,∵∠AOB=45°,∴∠P 1OP 2=2∠AOP+2∠BOP=2(∠AOP+∠BOP )=90°, ∴△P 1OP 2是等腰直角三角形,∴P 1P 2==2,设EF=x ,∵P 1E==PE ,∴PF=P2F=﹣x ,由轴对称可得,∠OPE=∠OP 1E=45°,∠OPF =∠OP 2F=45°, ∴∠EPF=90°,∴PE 2+PF 2=EF 2,即()2+(﹣x )2=x 2,解得x=.故答案为:.[]三、解答题(本大题共10小题,共102分.)17.(10分)(1)计算:(3﹣π)0﹣|﹣2|﹣(2)解方程:+2=【解答】解:(1)原式=1﹣2+﹣=﹣1;(2)去分母得:﹣3+2x ﹣8=1﹣x , 解得:x=4,经检验x=4是方程的增根,方程无解.18.(8分)先化简:÷(a﹣),并从0、1、2中选取一个恰当的数值代入求值.【解答】解:原式=÷=•=,当a=2时,原式=.19.(10分)已知y+2与x成正比,当x=1时,y=﹣6.(1)求y与x之间的函数关系式;(2)若点(a,2)在这个函数图象上,求a的值.[xxk]【解答】解:(1)∵y+2与x成正比,∴设y﹣2=kx,将x=1、y=﹣6代入y+2=kx得﹣6+2=k×1,∴k=﹣4,∴y=﹣4x﹣2(2)∵点(a,2)在函数y=﹣4x﹣2图象上,∴2=﹣4a﹣2,∴a=﹣1.20.(10分)家庭过期药品属于“国家危险废物“处理不当将污染环境,危害健康.某市药监部门为了了解市民家庭处理过期药品的方式,决定对全市家庭作一次简单随机抽样调查本次抽样调查发现,接受调查的家庭都有过期药品,现将有关数据呈现如图:(1)求m、n的值;(2)补全条形统计图;(3)家庭过期药品的正确处理方式是送回收站,若该市有180万户家庭,请估计大约有多少户家庭处理过期药品的方式是送回收站.【解答】解:(1)∵抽样调査的家庭总户数为:80÷8%=1000(户),∴m%==20%,m=20,n%==6%,n=6.(2)C类户数为:1000﹣(80+510+200+60+50)=100,条形统计图补充如下:(3)180×10%=18(万户).若该市有180万户家庭,估计大约有18万户家庭处理过期药品的方式是送回收点.21.(8分)某社区计划对面积为400m2的区域进行绿化.经测算,甲队每天能完成绿化面积是乙队每天能完成绿化面积的2倍,且甲队单独完成比乙队单独完成少用4天.求甲、乙两队每天单独完成绿化的面积.【解答】解:设乙队每天单独完成绿化的面积为xm2,则甲队每天单独完成绿化的面积为2xm2,根据题意得:﹣=4,解得:x=50,经检验,x=50是原方程的根,且符合题意,[]∴2x=2×50=100.答:甲队每天能完成绿化面积的为100m2,乙队每天能完成绿化面积的为50m2.22.(10分)如图,△ABC中,边AB、AC的垂直平分线分别交BC于D、E.(1)若BC=10,则△ADE周长是多少?为什么?(2)若∠BAC=128°,则∠DAE的度数是多少?为什么?【解答】解:(1)∵DM、EN是AB、AC的垂直平分线,∴DA=DB,EA=EC,∴△ADE周长为:AD+AE+DE=DB+EC+DE=BC=10;(2)∵∠BAC=128°,∴∠B+∠C=52°,∵DA=DB,EA=EC,∴∠BAD=∠B,∠EAC=∠C,∴∠BAD+∠EAC=52°,∴∠DAE=128°﹣52°=76°.23.(10分)已知一次函数y=x+b,它的图象与两坐标轴所围成的图形的面积等于2.(1)求b的值;(2)若函数y=x+b的图象交y轴于正半轴,则当x取何值时,y的值是正数?【解答】解:(1)当x=0时,y=b,∴一次函数图象与y轴的交点坐标为(0,b);当y=x+b=0时,x=﹣b,∴一次函数图象与y轴的交点坐标为(﹣b,0).∴×|b|×|﹣b|=2,解得:b=±2.(2)∵函数y=x+b的图象交y轴于正半轴,∴一次函数为y=x+2,∵y的值是正数,∴x+2>0,解得x>﹣2.故当x>﹣2时,y的值是正数.24.(10分)某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如表:已知日销售量y是销售价x的一次函数.(1)求日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;(2)当每件产品的销售价定为35元时,此时每日的销售利润是多少元?【解答】解:(1)设日销售量y(件)与每件产品的销售价x(元)之间的函数表达式是y=kx+b,,解得,,即日销售量y(件)与每件产品的销售价x(元)之间的函数表达式是y=﹣x+40;(2)当每件产品的销售价定为35元时,此时每日的销售利润是:(35﹣10)(﹣35+40)=25×5=125(元),即当每件产品的销售价定为35元时,此时每日的销售利润是125元.25.(12分)甲,乙两辆汽车分别从A,B两地同时出发,沿同一条公路相向而行,乙车出发2h后休息,与甲车相遇后,继续行驶.设甲,乙两车与B地的路程分别为 y甲(km),y乙(km),甲车行驶的时间为x(h),y甲,y乙与x之间的函数图象如图所示,结合图象解答下列问题:(1)a= 3 ;(2)求乙车与甲车相遇后y乙与x的函数解析式,并写出自变量x的取值范围;(3)若a≤x≤5,则当x为何值时,两车相距100km.【解答】解:(1)设甲车行驶的函数解析式为y甲=kx+b,(k是不为0的常数)y甲=kx+b图象过点(0,450),(5,0),得,解得,甲车行驶的函数解析式为y甲=﹣90x+450,当y=180时,x=3(h),∴a=3,故答案为:3;(2)设乙车与甲车相遇后y乙与x的函数解析式y乙=kx+b,y乙=kx+b图象过点(3,180),(5,450),得,解得,乙车与甲车相遇后y乙与x的函数解析式y乙=135x﹣225(3≤x≤5);(3)3≤x≤5时,y乙减y甲等于100千米,即135x﹣225﹣(﹣90x+450)=100,解得x=,∴当x为时,两车相距100km.26.(14分)如图,在平面直角坐标系xOy中,点A的坐标为(0,3),点B的坐标为(4,0),C为第一象限内一点,AC⊥y轴,BC⊥x轴,D坐标为(m,0)(0<m<4).(1)若D为OB的中点,求直线DC的解析式;(2)若△ACD为等腰三角形,求m的值;(3)E为四边形OACB的某一边上一点.①若E在边BC上,满足△AOD≌△DBE,求m的值;②若使△EOD为等腰三角形的点E有且只有4个,直接写出符合条件的m的值.【解答】解:(1)∵A(0,3),B(4,0),四边形AOBC是矩形,∴OA=BC=3,OB=AC=4,∴C(4,3),∵点D为O B中点,∴D(2,0),设直线CD的解析式为y=kx+b,则有,解得,∴直线CD的解析式为y=x﹣3.(2)①当DA=DC时,D(2,0).②当AD=AC=4时,在Rt△AOD中,OD==,∴D(,0).③当CD=AC时,在Rt△BCD中,BD==,∴D(4﹣,0).(3)①∵△AOD≌△DBE,∴DB=OA=3,∴OD=OB﹣BD=1,∴m=1.②如图1中,当m=3时,使△EOD为等腰三角形的点E有且只有4个;如图2中,当E与C重合时,OD=DC=m,在Rt△CDB中,∵CD2=BD2+BC2,∴m2=(4﹣m)2+32,'∴m=.此时使△EOD为等腰三角形的点E有且只有4个;。

江苏省泰州市2019_2020学年八年级物理上学期期末考试试题(含解析)

江苏省泰州市2019_2020学年八年级物理上学期期末考试试题(含解析)

江苏省泰州市2019-2020学年八年级物理上学期期末考试试题第一部分选择题(共24分)一、选择题(每小题2分,共24分.每小题给出的四个选项中只有一个符合题意)1.如图所示的四种现象中,与小孔成像的原理相同的是A. 手影B. 水面“折”枝C. 镜中花D. 放大镜【答案】A【解析】【详解】小孔成像是光的直线传播形成的;A.屏幕上的“手影”,影子的形成,是光的直线传播现象,符合题意;B.水面折枝是光从水传向空气发生的折射现象,不符合题意;C.镜中花属于平面镜成像,是由光的反射形成的,不符合题意;D.放大镜属于凸透镜成像,是光的折射现象,不符合题意.故选A。

2.以下估测与实际情况相符的是A. 家用普通冰箱冷冻室的温度约-30℃B. 一只铅笔的长度约为56cmC. 人正常步行的平均速度是1.2m/sD. 洗澡水的温度大约是90℃【答案】C【解析】【详解】A.家用普通冰箱冷冻室的温度约-18℃,故A不符合实际情况;B.中学生伸开手掌,大拇指指尖到中指指尖的距离大约20cm,新2B铅笔的长度略小于20cm,在18cm左右。

故B不符合实际情况;C.人正常步行时一秒2步,一步的长度约50cm左右,所以正常人的平均速度1.1m/s左右,故1.2m/s符合实际情况;D.洗澡水的温度比人体温度略高大约是40℃左右,故D不符合实际情况。

3.下列各种常见的现象中,属于液化的是A. 春天,清晨河面淡淡的白雾B. 夏天,玻璃上的水很快变干C. 秋天,日出后薄雾渐渐消散D. 冬天,室外冰冻的衣服变干【答案】A【解析】【详解】A.春天,清晨河面淡淡的白雾,是空气中的水蒸气遇冷凝结成的小水滴,属于液化现象;B.夏天,玻璃上的水很快变干,由液态变成了气态,属于汽化现象;C.秋天,日出后薄雾渐渐消散,由液态变成了气态,属于汽化现象;D.冬天,室外冰冻的衣服变干,由固态直接变成了气态,属于升华现象.故选A.4.关于声现象,下列说法正确的是()A. 中考期间,学校路段禁止汽车鸣笛,这是在传播过程中减弱噪声B. 声音在真空中传播的速度是340m/sC. 用超声波粉碎人体内的结石,说明超声波能传递能量D. 发声体的振动频率越高,响声越大【答案】C【解析】【详解】A.学校周边禁止鸣笛属于在声源处减弱噪声,所以A错;B.声音不能在真空中传播,而在空气中的传播速度是340m/s,B错;C.声的利用有两种形式:传递信息、传递能量,超声波碎石属于利用声波传递能量,C对;D.声音的响度与发声体的振幅有关,振幅越大,响度越大,响度与频率无关,而音调的高低是由频率决定的,D错.5.红外线和紫外线的应用非常广泛,下列仪器中,属于利用紫外线工作的是A. 电视遥控器B. 医用“B超机”C. 验钞机D. 夜视仪【答案】C【详解】A中的电视遥控器和D中的夜视仪都是利用红外线工作的;B中的“B超机”是利用超声波工作的;C中的验钞机才是利用紫外线工作的.6.老奶奶用放大镜看报纸时,为了看到更大的清晰的像,她常常这样做()A. 报纸与眼睛不动,放大镜离报纸远一些B. 报纸与眼睛不动,放大镜离报纸近一些C. 报纸与放大镜不动,眼睛离报纸远一些D. 报纸与放大镜不动,眼睛离报纸近一些【答案】A【解析】【详解】根据凸透镜的成像规律可知,成正立放大的虚像时,离焦点越近时,像越大,故应保持报纸与眼睛不动,放大镜离报纸远一些,故应选A.7.一位同学站在湖边看见水中的鱼在树枝的倒影中游动,对此现象下列论述中正确的是()A. 人看见的鱼是光的折射形成的实像B. 人看见的鱼是光的反射形成的虚像C. 人看见的水中树是光的折射形成的实像D. 人看见的水中鱼是光的折射形成的虚像【答案】D【解析】【详解】ABD.看到水中的鱼是由于光线从水中通过空气进入人的眼睛的,因此是光的折射现象形成的,并且像为虚像,故AB错误,D正确;C.平静的水面相当于平面镜,而水中树影是平面镜所成的像,因此属于光的反射现象,像为虚像,故C错误.故选D.8.正常的人眼,能将物体的像始终成在视网膜上,从而看清远近不同的物体,这是由于A. 不断改变晶状体的焦距,使像成在视网膜上B. 不断改变物距,使像成在视网膜上C. 不断改变像距,使像成在视网膜上D. 以上说法均不正确【解析】【详解】人眼晶状体的曲度可以调节,当看远处物体时,晶状体变薄,折光能力变弱,焦距变长,使像成在视网膜上;当看近处的物体时,晶状体变厚,折光能力变强,焦距变短,也能使像成在视网膜上.故正常的人眼,能将物体的像始终成在视网膜上,从而看清远近不同的物体,是由于不断改变晶状体的焦距.故选A.【点睛】注意理解,正常人的眼睛通过改变晶状体的厚度,即凸透镜的焦距可以使不同远处的物体成像在视网膜上,而通常的凸透镜焦距是不会改变的.9.某班同学在“探究凸透镜成像规律”的实验中,记录并绘制了像到凸透镜的距离v跟物体到凸透镜的距离u之间关系的图像,如图所示,下列判断正确的是A. 该凸透镜的焦距是16cmB. 当u=12cm时,在光屏上能得到一个缩小的像C. 物体从距凸透镜12cm处移动到1cm处的过程中,所成像的大小一直变大D. 当u=20cm时成缩小的像,照相机就是根据这一原理制成的【答案】D【解析】【详解】A.据凸透镜成像规律可知,当u=v=2f,凸透镜成倒立、等大的实像;由图可知,u=v=2f=16cm,所以f=8cm.故A错误。

泰州市姜堰区八年级(上)期末考试数学试题及答案(精美版)

泰州市姜堰区八年级(上)期末考试数学试题及答案(精美版)

2019~2020学年度第一学期期末考试八年级数学试题(考试时间:120分钟满分:150分)命题人:八年级数学命题组审校:初中数学学科工作室一、选择题(3分×6=18分)1.下列四个图形中,是轴对称图形的是A.B.C.D.2.点P(2,-5)关于x轴对称的点的坐标为A.(-2,5)B.(2,5)C.(-2,-5)D.(2,-5)3.线段a、b、c的长度分别如下,能够以a、b、c为边长构成直角三角形的一组是A.1,2,3 B.2,3,4 C.3,4,5 D.4,5,6 4.已知△ABC中AB=AC,∠B=50°,则∠C的度数为A.50°B.65°C.80°www D.50°或65°5.下列调查中,适宜采用普查方式的是A.了解一批圆珠笔的寿命B. 检查一枚用于发射卫星的运载火箭的各零部件C.考察人们保护海洋的意识D. 了解全国九年级学生的身高现状6.一次函数y=kx+b(k≠0)的图像如图所示,则不等式kx+b-2>0的解集为A.x>-1 B.x<-1 C.x>2 D.x>0二、填空题(3分×10=30分)7.比较大小:“>”或“<”).8.若分式15x有意义,则x的取值范围是.9.从某校七年级学生中抽取100名学生,调查该校七年级学生双休日用于做数学作业的时间,调查中的样本容量是________________.10.某市在一次扶贫助残活动中,共捐款3185800元,将3185800用科学记数法表示为________________(精确到万位).11.Rt △ABC 中,∠C =90°,点D 是AB 边的中点,则ABCD=__________. 12.若点A 的坐标(x ,y )满足条件(x -3)2+||y +2=0,则点A 在第________象限.13. 已知一次函数y =(m +4)x +2,若y 随x 的增大而减小,则m 的取值范围是__________. 14.某班围绕“舞蹈、乐器、声乐、其他四个项目中,你最喜欢哪项活动(每人限选一项)”的问题,对全班50名学生进行问卷调查,根据调查结果绘制成如图所示的扇形统计图,则该班喜欢乐器的学生有_______名.第14题图 第15题图 第16题图15.在长、宽都是3,高是8的长方体纸箱的外部,一只蚂蚁从顶点A 沿纸箱表面爬到顶点B ,那么它所爬行的最短路线的长是 .16.如图,点A 、B 的坐标分别为(0,3)、(4,6),点P 为x 轴上的一个动点,若点B 关于直线AP 的对称点B '恰好落在坐标轴上....,则点B '的坐标为________________. 三、解答题17.(12分)计算:(1 (2)222b a ab a b a b a b++-+-;18.(8分)解方程:12211x x x +=-+.19.(8分)小明用15元买软面笔记本,小丽用20元买硬面笔记本.每本硬面笔记本比软面笔记本贵1元,如果小明和小丽买到的笔记本数量相同,那么软面笔记本和硬面笔记本每本各多少元?20.(8分)如图,△ABC中,AB=AC,∠C=70°,作AB的垂直平分线交AB于E,交AC于D,求∠DBC的度数.21. (10分)如图,在△ABC中,CD是AB边上高,若AD=16,CD=12,BD=9.(1)求△ABC的周长.(2)判断△ABC的形状并加以证明。

泰州市姜堰区八年级上学期期末

泰州市姜堰区八年级上学期期末

2019~2020学年度第一学期期末考试八年级数学试题(满分:150分考试时间:120分钟)注意请将所有题目的答案填到答题纸上,答在试卷上无效。

一、选择题:(本大题共6小题,每小题3分,计18分)1.下列图案中不是轴对称图形的是A B C D2.我国2016年10月17日7时30分发射升空的神舟十一号载人飞船和天宫二号对接时的轨道高度是393000米,用科学计数法表示,其结果为A.3.93×105米B.3.9×105米C.3.93×104米D.3.9×104米3.如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是A.AB=AC B.BD=CDC.∠B=∠C D.∠BDA=∠CDA4.若分式11-x有意义,则的取值范围是A.≠1 B.=1 C.>1D.<15.一次函数y=m+|m﹣1|的图象过点(0,2),且y随的增大而减小,则m的值为A.﹣1 B.1 C.3 D.﹣1或36.下列命题:aa=33)1(;aa=2)2(;(3)无限小数都是无理数;(4)有限小数都是有理数;(5)实数包括正实数和负实数两类,其中正确命题的个数有A.1个B.2个C.3个D.4个二、填空题:(本大题共10小题,每小题3分,计30分)7.49的算术平方根是.8.如果分式xx--242的值为零,那么=.9.如图,分别以△ABC的三边为直径向外作3个半圆,它们的面积分别为4、5、9,则△ABC 直角三角形.(填“是”或“不是”)10.若031=-+-yx,则_____=xy.11.若点A(),21a a+在第一、三象限的两坐标轴夹角的平分线上,则a= .第3题图12.某班在一次适应性考试中,分数段在140-150分的频率为0.2,在此分数段共有8人,则该班有人.13.如图,平面直角坐标系oy 中,直线y 1=1+b 1的图像与直线y 2=2+b 2的图像相交于点(―1, ―3),当y 1<y 2时,实数的取值范围为 .14.底角为45°的等腰三角形一边长为4cm ,则此等腰三角形的底边长= cm .15.在△ABC 中,AB=2cm ,AC=1cm ,AD 平分∠BAC ,则△ABD 与△ACD 的面积之比是__________.16.如图,在平面直角坐标系oy 中,点A (0,6),点B (-8,0),过A 点的直线交轴于点C ,当△ABC 是以AB 为底的等腰三角形时,直线AC 对应的函数关系式为 .三、解答题(本大题共10小题,共102分.)17.(本题8分)(1)计算:()21333π-⎛⎫-+- ⎪⎝⎭(2)解方程:x x --21—21-x =318.(本题8分)已知3+81=0,求代数式423--x x ÷⎪⎭⎫ ⎝⎛--+252x x 的值.19.(本题10分)某初级中学围绕“每天30分钟的大课间,你最喜欢的体育活动项目是什么?(每位学生必须从“羽毛球、跳绳、足球、篮球、其他”五个选项中选一项且只能选填一项)”的问题,对在校学生进行随机抽样调查,从而得到一组数据.图1是根据这组数据绘制的条形统计图,请结合统计图回答下列问题:(1)该校对多少学生进行了抽样调查?第9题图x2x+b 2第13题图 第16题图(2)本次抽样调查中,最喜欢篮球活动的有多少名学生?占被调查人数的百分比是多少? (3)若该校九年级共有300名学生,图2是根据该校各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请你估计全校学生中最喜欢跳绳活动的人数约为多少?20.(本题10分)在平面直角坐标系oy 中,点A 、B 、C 的坐标分别为(-1,0)、(-2,3)、(-3,1). (1)作出△ABC 关于轴对称的 △A 1B 1C 1 ,直接写出B 1、C 1两点的坐标:B 1( , )C 1( , ) .(2)写出△ABC 的面积,S △ABC = . (3)在y 轴上找一点D ,使得BD+DA 的值最小, 求D 点的坐标.21.(本题10分)已知y 与4+2成正比例,当=3时,y =14. (1)求y 与之间的函数表达式;(2)若点),2(1y 与),1(2y 在该函数图像上,比较1y 与2y 的大小关系.图2七年级22.(本题10分)如图,在△ABE 中,AB=AE ,C 、D 是BE 边上两点且AC=AD , 求证:BC=DE .23.(本题10分)网购已成为时下最热的购物方式,同时也带动了快递业的发展.某快递公司更新了包裹分拣设备后,平均每人每天比原先要多分拣50件包裹,现在分拣600件包裹所需的时间与原分拣450件包裹所需时间相同,求现在平均每人每天分拣多少件包裹?24.(本题10分)如图,△ABC 中,AD 是△ABC 的边BC 上的高,E 、F 分别是AB 、AC 的中点,AC=13、AB=20、BC=21. (1)求四边形AEDF 周长; (2)求△ABC 的面积.25.(本题12分)某蔬菜基地要把一批新鲜蔬菜运往外地,有汽车和火车两种运输方式可供选择,其中汽车运输的主要参考数据如下表:第24题图火车运输总费用y 2(元)与运输路程(m)之间的函数图像如上图所示:(1)请分别写出汽车、火车运输的总费用y 1(元)、y 2(元)与运输路程(m)之间的函数关系; (2)若蔬菜基地先由汽车把蔬菜运往60m 外的中转站再用火车运送(中转时间忽略不计),写出运输总费用y 与运输总路程(m)之间的函数关系,并求出当运输总路程为200m 时的总费用; (3)若只选择一种运输方式,你认为哪种运输方式运输的总费用较少?并说明理由.26.(本题14分)如图所示,在平面直角坐标系oy 中,直线y =3+3交轴于点B ,交y 轴于点A ,过点C (1,0)作轴的垂线l ,将直线l 绕点C 按逆时针方向旋转,旋转角为α(0°<α<180°). (1)当直线l 与直线y =3+3平行时,求出直线l 的解析式;(2)若直线l 经过点A ,①求线段AC 的长;②直接写出旋转角α的度数;(3)若直线l在旋转过程中与y 轴交于D 点,当△ABD 、△ACD 、△BCD 均为等腰三角形时,直接写出符合条件的旋转角α的度数.备用图(1)备用图(2)八上期末数学参考答案一、 选择题1、B2、A3、B4、A5、A6、B 二、填空题7、78、-29、是 10、3 11、-1 12、40 13、<-114、4或24(或写成82) 15、21 16、6724+=x y 三、解答题17、(1)()21333π-⎛⎫-+- ⎪⎝⎭759351=-+-+=(2)=2 检验:当=2时,-2=0. ∴=2是增根,原方程无解。

江苏省泰州市姜堰区2019-2020学年八年级上学期期末数学试题(word无答案)

江苏省泰州市姜堰区2019-2020学年八年级上学期期末数学试题(word无答案)

江苏省泰州市姜堰区2019-2020学年八年级上学期期末数学试题(word无答案)一、单选题(★) 1 . 下列图案中,不是轴对称图形的是()A.B.C.D.(★★) 2 . 在、、、中,无理数的个数有()A.1个B.2个C.3个D.4个(★) 3 . 下列各组数不是勾股数的是()A.,,B.,,C.,,D.,,(★★) 4 . 已知点P(1+m,3)在第二象限,则的取值范围是()A.B.C.D.(★★) 5 . 如图,已知△ABC的三条边和三个角,则甲、乙、丙三个三角形中和△ABC全等的是()A.甲和乙B.甲和丙C.乙和丙D.只有乙(★★) 6 . 下列图象中,可以表示一次函数与正比例函数(,为常数,且)的图象的是()A.B.C.D.二、填空题(★) 7 . 4的平方根是.(★★) 8 . 3.145精确到百分位的近似数是____.(★) 9 . 点(−1,3)关于轴对称的点的坐标为____.(★★) 10 . 已知一次函数,若y随x的增大而减小,则的取值范围是___.(★★) 11 . 若等腰三角形的顶角为80°,则这个等腰三角形的底角为____度;(★★) 12 . 已知一次函数与的图像交点坐标为(−1,2),则方程组的解为____.(★★) 13 . 如图,△ 中,,边的垂直平分线分别交、于点、,边的垂直平分线分别交、于点、,则△ 周长为____.(★★) 14 . 如图,函数和的图像相交于点A(m,3),则不等式的解集为____.(★★) 15 . 若点P(2−a,2a+5)到两坐标轴的距离相等,则a的值为____.(★★) 16 . 如图,长方形中,,,点在边上,且,点是边上一点,连接,将四边形沿折叠,若点的对称点恰好落在边上,则的长为____.三、解答题(★★) 17 . (1)计算:(2)解方程:(★★) 18 . 已知与成正比例,且当时,.(1)求与的函数表达式;(2)当时,求的取值范围.(★★) 19 . 在每个小正方形的边长为1的网格中,建立如图所示的平面直角坐标系.(1)在网格中画出△ ,使它与△ 关于轴对称;(2)点的对称点的坐标为;(3)求△ 的面积.(★★) 20 . 如图,△ 中,,点、在边上,且,求证:(★★) 21 . 如图,四边形ABCD中,AC=5,AB=4,CD=12,AD=13,∠B=90°.(1)求BC边的长;(2)求四边形ABCD的面积.(★★) 22 . 一次函数的图像为直线.(1)若直线与正比例函数的图像平行,且过点(0,−2),求直线的函数表达式;(2)若直线过点(3,0),且与两坐标轴围成的三角形面积等于3,求的值.(★★) 23 . 如图,某斜拉桥的主梁AD垂直于桥面MN于点D,主梁上两根拉索AB、AC长分别为13米、20米.(1)若拉索AB⊥AC,求固定点B、C之间的距离;(2)若固定点B、C之间的距离为21米,求主梁AD的高度.(★★) 24 . 小明骑自行车从甲地到乙地,图中的折线表示小明行驶的路程与所用时间之间的函数关系.试根据函数图像解答下列问题:(1)小明在途中停留了____ ,小明在停留之前的速度为____ ;(2)求线段的函数表达式;(3)小明出发1小时后,小华也从甲地沿相同路径匀速向乙地骑行,时,两人同时到达乙地,求为何值时,两人在途中相遇.(★★★★) 25 . 已知△ .(1)在图 中用直尺和圆规作出的平分线和边的垂直平分线交于点(保留作图痕迹,不写作法).(2)在(1)的条件下,若点、分别是边和上的点,且,连接求证:;(3)如图 ,在(1)的条件下,点、分别是、边上的点,且△ 的周长等于边的长,试探究与的数量关系,并说明理由.(★★★★) 26 . 如图,一次函数的图像与轴交于点,与轴交于点,且经过点.(1)当时;①求一次函数的表达式;② 平分交轴于点,求点的坐标;(2)若△ 为等腰三角形,求的值;(3)若直线也经过点,且,求的取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019~2020学年度第一学期期末考试
八年级数学试题
(满分:150分考试时间:120分钟)
注意:请将所有题目的答案填到答题纸上,答在试卷上无效。

一、选择题:(本大题共6小题,每小题3分,计18分)
1.下列图案中不是轴对称图形的是
A B C D
2.我国2016年10月17日7时30分发射升空的神舟十一号载人飞船和天宫二号对接时的轨道高度是393000米,用科学计数法表示,其结果为
A.3.93×105米B.3.9×105米
C.3.93×104米D.3.9×104米
3.如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是
A.AB=AC B.BD=CD
C.∠B=∠C D.∠BDA=∠CDA
4.若分式
1
1
-
x
有意义,则x的取值范围是
A.x≠1 B.x=1 C.x>1D.x<1
5.一次函数y=mx+|m﹣1|的图象过点(0,2),且y随x的增大而减小,则m的值为A.﹣1 B.1 C.3 D.﹣1或3
6.下列命题:a
a=
33
)1(;a
a=
2
)2(;(3)无限小数都是无理数;(4)有限小数都是有理数;(5)实数包括正实数和负实数两类,其中正确命题的个数有
A.1个B.2个C.3个D.4个
二、填空题:(本大题共10小题,每小题3分,计30分)
7.49的算术平方根是.
8.如果分式
x
x
-
-
2
4
2
的值为零,那么x =.
9.如图,分别以△ABC的三边为直径向外作3个半圆,它们的面积分别为4、5、9,则△ABC 直角三角形.(填“是”或“不是”)
10.若0
3
1=
-
+
-y
x,则_____
=
xy.
11.若点A()
,21
a a+在第一、三象限的两坐标轴夹角的平分线上,则a= .
12.某班在一次适应性考试中,分数段在140-150分的频率为0.2,在此分数段共有8人,则该班有
第3题图
1
2
人.
13.如图,平面直角坐标系xoy 中,直线y 1=k 1x+b 1的图像与直线y 2=k 2x+b 2的图像相交于点(―1, ―3),当y 1<y 2时,实数x 的取值范围为 .
14.底角为45°的等腰三角形一边长为4cm ,则此等腰三角形的底边长= cm .
15.在△ABC 中,AB=2cm ,AC=1cm ,AD 平分∠BAC ,则△ABD 与△ACD 的面积之比是__________.
16.如图,在平面直角坐标系xoy 中,点A (0,6),点B (-8,0),过A 点的直线交x 轴于点C ,当△ABC 是以AB 为底的等腰三角形时,直线AC 对应的函数关系式为 .
三、解答题(本大题共10小题,共102分.)
17.(本题8分)
(1)计算:(
)2
1333π-⎛⎫
-+- ⎪⎝⎭
(2)解方程:x x --21—2
1
-x =3
18.(本题8分)已知x 3+81=0,求代数式423--x x ÷⎪⎭⎫ ⎝

--+252x x 的值.
19.(本题10分)某初级中学围绕“每天30分钟的大课间,你最喜欢的体育活动项目是什么?(每位学生必须从“羽毛球、跳绳、足球、篮球、其他”五个选项中选一项且只能选填一项)”的问题,对在校学生进行随机抽样调查,从而得到一组数据.图1是根据这组数据绘制的条形统计图,请结合统计图回答下列问题:
(1)该校对多少学生进行了抽样调查?
(2)本次抽样调查中,最喜欢篮球活动的有多少名学生?占被调查人数的百分比是多少?
(3)若该校九年级共有300名学生,图2是根据该校各年级学生人数占全校学生总人数的百分比绘
第9题图
x
2x+b 2
第13题图 第16题图
3 制的扇形统计图,请你估计全校学生中最喜欢跳绳活动的人数约为多少?
20.(本题10分)
在平面直角坐标系xoy 中,点A 、B 、C 的坐标分别为(-1,0)、(-2,3)、(-3,1). (1)作出△ABC 关于x 轴对称的 △A 1B 1C 1 ,直接写出B 1、C 1两点的坐标:
B 1( , )
C 1( , ) .
(2)写出△ABC 的面积,S △ABC = . (3)在y 轴上找一点D ,使得BD+DA 的值最小, 求D 点的坐标.
21.(本题10分)已知y 与4x +2成正比例,当x =3时,y =14. (1)求y 与x 之间的函数表达式;
(2)若点),2(1y 与),1(2y 在该函数图像上,比较1y 与2y 的大小关系.
4
22.(本题10分)如图,在△ABE 中,AB=AE ,C 、D 是BE 边上两点且AC=AD , 求证:BC=DE .
23.(本题10分)网购已成为时下最热的购物方式,同时也带动了快递业的发展.某快递公司更新了包裹分拣设备后,平均每人每天比原先要多分拣50件包裹,现在分拣600件包裹所需的时间与原来分拣450件包裹所需时间相同,求现在平均每人每天分拣多少件包裹?
24.(本题10分)如图,△ABC 中,AD 是△ABC 的边BC 上的高,E 、F 分别是AB 、AC 的中点,AC=13、AB=20、BC=21. (1)求四边形AEDF 周长; (2)求△ABC 的面积.
25.(本题12分)某蔬菜基地要把一批新鲜蔬菜运往外地,有汽车和火车两种运输方式可供选择,其中汽车运输的主要参考数据如下表:
运输方式
第24题图
火车运输总费用y2(元)与运输路程x(km)之间的函数图像如上图所示:
(1)请分别写出汽车、火车运输的总费用y1(元)、y2(元)与运输路程x(km)之间的函数关系;
(2)若蔬菜基地先由汽车把蔬菜运往60k m外的中转站再用火车运送(中转时间忽略不计),写出运输总费用y与运输总路程x(km)之间的函数关系,并求出当运输总路程为200km时的总费用;
(3)若只选择一种运输方式,你认为哪种运输方式运输的总费用较少?并说明理由.
26.(本题14分)如图所示,在平面直角坐标系xoy中,直线y=3x+3交x轴于点B,交y轴于点A,过点C(1,0)作x轴的垂线l,将直线l绕点C按逆时针方向旋转,旋转角为α(0°<α<180°). (1)当直线l与直线y=3x+3平行时,求出直线l的解析式;
(2)若直线l经过点A,①求线段AC的长;②直接写出旋转角α的度数;
(3)若直线l在旋转过程中与y轴交于D点,当△ABD、△ACD、△BCD均为等腰三角形时,直接写出符合条件的旋转角α的度数.
备用图(1)备用图(2)
5
6
八上期末数学参考答案
一、
选择题
1、B
2、A
3、B
4、A
5、A
6、B 二、填空题
7、7
8、-2
9、是 10、3 11、-1 12、40 13、x <-1
14、4或24(或写成82) 15、2:1 16、67
24
+=
x y 三、解答题
17、(1)(
)2
1333π-⎛⎫
-+- ⎪⎝⎭
7
59351=-+-+=
(2)x=2 检验:当x=2时,x-2=0. ∴x=2是增根,原方程无解。

18、()5
1
321,21-=+-=-
=x x 原式 19、(1)50 (2)18、36% (3)1000
20、(1)B 1(-2,-3),C 1(-3, 1) (2)2.5 (3)D(0,1) 21、
2
1)2(24)1(y y x y 〉+=
22、证明:作AF ⊥BE
∵AB=AE ∴BF=EF ∵AC=AD ∴CF=DF ∴BF-CF=EF-DF ∴
BC=DE
7 (或 证明△ABC ≌△AED ) 23、200 (所列分式方程需要检验) 24、(1)33 (2)126 25、(1)4003200521+=+=x y x y
(2)
()720
3400
603500+=+-+=x x y 当x=200时,y=1320
(3)当里程小于100千米时,选择汽车;当里程等于100千米时,选择汽车或火车;当里程大于100千米时,选择火车;
26、(1)33-=x y (2)AC=2,α=30° (3)15°或60°或150°。

相关文档
最新文档