二次型的性质及应用
二次型的正定性与半正定性判定

二次型的正定性与半正定性判定在线性代数中,二次型是一种重要的数学工具,广泛应用于各个领域。
正定性与半正定性是二次型的两个重要性质,对于理解和解决实际问题起着至关重要的作用。
本文将深入探讨二次型的正定性与半正定性的判定方法,以及它们在实际问题中的应用。
一、二次型的定义与基本性质二次型是一个关于n个变量的二次齐次多项式,可以表示为:$$Q(x_1,x_2,...,x_n) = \sum_{i=1}^{n}\sum_{j=1}^{n}a_{ij}x_ix_j$$其中,$a_{ij}$为二次型的系数,$x_1,x_2,...,x_n$为变量。
二次型的基本性质有:1. 对称性:$a_{ij} = a_{ji}$2. 齐次性:$Q(kx_1,kx_2,...,kx_n) = k^2Q(x_1,x_2,...,x_n)$,其中k 为常数。
3. 定义正定性与半正定性的前提:二次型必须是实二次型,即系数$a_{ij}$为实数。
二、正定性的判定正定性是指对于任意非零向量$x=(x_1,x_2,...,x_n)$,二次型$Q(x)$的取值都大于零。
正定性的判定方法有以下几种常用方式:1. 惯性定理: 二次型的惯性定理指出,通过变换二次型的系数矩阵,可以得到一个对角阵,该对角阵的主对角线上元素个数为二次型的正惯性指数。
- 若正惯性指数为n,则二次型正定;- 若正惯性指数为0,则二次型半正定;- 若正惯性指数非0非n,则二次型不定。
2. Sylvester定理: Sylvester定理是另一种判定二次型正定性的方法,通过判断二次型的所有顺序主子式是否大于零来确定。
- 若所有顺序主子式大于零,则二次型正定;- 若所有顺序主子式非负但存在某个顺序主子式为零,则二次型半正定;- 若存在某个顺序主子式小于零,则二次型不定。
三、半正定性的判定半正定性是指对于任意非零向量$x=(x_1,x_2,...,x_n)$,二次型$Q(x)$的取值都大于等于零。
二次型的规范形与标准形

二次型的规范形与标准形在线性代数中,二次型是由一组变量的二次多项式构成的一类函数。
它在数学和应用领域都有广泛的应用。
对于任意二次型,可以通过适当的线性变换将其化为规范形或标准形。
本文将介绍二次型的规范形和标准形,并探讨它们的性质和应用。
1. 二次型的定义和性质二次型是由变量x1,x2,...,xn 的二次多项式构成的函数。
通常表示为Q(x) = x^T A x,其中x = (x1, x2, ..., xn)^T 是变量向量,A 是实对称矩阵。
二次型具有以下性质:- 对称性:Q(x) = Q(x^T)- 齐次性:Q(kx) = k^2 Q(x),对任意实数k- 加性:Q(x + y) = Q(x) + Q(y),对任意向量x,y2. 二次型的规范形对于任意二次型Q(x),可以通过合适的变量变换将其化为规范形。
规范形是一种特殊的形式,使得无法再通过线性变换进一步简化。
规范形的形式如下:Q(x) = λ1 y1^2 + λ2 y2^2 + ... + λn yn^2其中,λ1,λ2,...,λn 是实数,y1,y2,...,yn 是规范变量。
通过矩阵的特征值分解,可以得到二次型的规范形。
具体步骤如下:- 求出二次型Q(x)对应的对称矩阵A的特征值λ1,λ2,...,λn- 对应每个特征值λi,求出对应的特征向量yi- 将特征向量yi按列排列得到矩阵P = (y1, y2, ..., yn)- 规范形为Q(x) = P^T Δ P,其中,Δ = diag(λ1, λ2, ..., λn) 是特征值对角矩阵3. 二次型的标准形二次型的标准形是规范形的一种特殊情况,对应于所有特征值都是1或-1的情况。
标准形的形式如下:Q(x) = y1^2 + y2^2 + ... + yn^2对于特征值λi = 1,取对应的特征向量yi作为标准变量;对于特征值λi = -1,取对应的特征向量yi的相反数作为标准变量。
相比规范形,标准形更加简洁,且易于分析和计算。
二次型的标准形与规范形

二次型的标准形与规范形引言在线性代数中,二次型是一个重要的概念。
它在解决优化问题、矩阵分析以及其他数学领域中有广泛的应用。
二次型可以通过变换来改变其表达形式,其中标准形和规范形是常用的两种变换形式。
本文将重点介绍二次型的标准形和规范形,并探讨它们的性质和应用。
二次型的定义在矩阵和向量的帮助下,我们可以定义二次型。
给定一个实对称矩阵A和一个实列向量$\\mathbf{x}$,一个二次型可以表示为$\\mathbf{x}^TA\\mathbf{x}$。
其中,A是一个$n\\times n$的实对称矩阵,$\\mathbf{x}$是一个n维实列向量。
二次型可以看作是向量$\\mathbf{x}$和矩阵A的乘积的形式。
二次型的标准形二次型的标准形是一个最简化的表达形式,可以通过合适的变换将任意的二次型转化为标准形。
标准形的特点是只有对角线上有非零元素,其余位置上都是零。
为了找到这样的标准形,我们需要进行特征值分解。
特征值分解根据实对称矩阵特征值的性质,矩阵A可以通过特征值分解表示为A=PDP T,其中P是由A的特征向量组成的正交矩阵,D是由特征值组成的对角矩阵。
将特征值代入二次型$\\mathbf{x}^TA\\mathbf{x}$中,可以得到$\\mathbf{x}^T(PDP^T)\\mathbf{x}$。
根据矩阵乘法的结合律,上式可以变为$(P^T\\mathbf{x})^TD(P^T\\mathbf{x})$。
标准形的规定为了将矩阵A转化为标准形,需要定义一个新的变量$\\mathbf{y} =P^T\\mathbf{x}$,其中$\\mathbf{y}$和$\\mathbf{x}$的关系可以写为$\\mathbf{x} = P\\mathbf{y}$。
带入二次型的表达式中,可以得到$\\mathbf{x}^TA\\mathbf{x} = \\mathbf{y}^TD\\mathbf{y}$。
根据特征值分解的性质,可以进一步将$\\mathbf{y}^TD\\mathbf{y}$化简为$y_1^2 + y_2^2 +\\ldots + y_n^2$。
二次型的基本理论和应用

二次型的基本理论和应用二次型是高等数学中的一个重要概念,具有广泛的应用。
本文将针对二次型的基本理论和应用进行探讨。
一、二次型的定义二次型指的是$x_1,x_2,\cdots,x_n$的二次齐次多项式$Q(x_1,x_2,\cdots,x_n)$,即:$$Q(x_1,x_2,\cdots,x_n)=\sum_{i=1}^n \sum_{j=1}^na_{ij}x_ix_j $$其中$a_{ij}$为常数项,且矩阵$\boldsymbol{A}=(a_{ij})_{n\times n}$称为二次型的矩阵。
二、二次型的矩阵二次型的矩阵有很多重要性质:1. 对称矩阵二次型的矩阵$\boldsymbol{A}$是对称矩阵,即对于任意$i,j$都有$a_{ij}=a_{ji}$。
2. 正定矩阵若$\forall x \neq 0$,都有$x^T\boldsymbol{A}x>0$,则称矩阵$\boldsymbol{A}$为正定矩阵。
若$\forall x \neq 0$,都有$x^T\boldsymbol{A}x\geq 0$,则称矩阵$\boldsymbol{A}$为半正定矩阵。
正定矩阵可用来定义内积、距离和角度等概念,具有广泛的应用。
3. 特征值和特征向量二次型的矩阵$\boldsymbol{A}$存在$n$个特征值$\lambda_1,\cdots,\lambda_n$,并且存在对应于每个特征值的特征向量$\boldsymbol{x}_1,\cdots,\boldsymbol{x}_n$,满足:$$\boldsymbol{A}\boldsymbol{x}_i=\lambda_i\boldsymbol{x}_i$$其中,若$\lambda_i>0$,则$\boldsymbol{x}_i$为正特征向量;若$\lambda_i=0$,则$\boldsymbol{x}_i$为零特征向量;若$\lambda_i<0$,则$\boldsymbol{x}_i$为负特征向量。
二次型在经济管理中的应用简介

二次型在经济管理中的应用简介一、引言二次型是高等数学中的一个重要概念,其在经济管理中有着广泛的应用。
本文将从二次型的定义、性质及应用方面进行详细介绍。
二、二次型的定义及性质1. 二次型的定义二次型是指具有形如 $Q(x)=x^T A x$ 的函数,其中 $x$ 是 $n$ 维列向量,$A$ 是 $n \times n$ 的实对称矩阵。
2. 二次型的性质(1)对于任意非零向量 $x$,有 $Q(x)>0$ 或 $Q(x)<0$ 或$Q(x)=0$。
(2)若矩阵 $A$ 正定,则对于任意非零向量 $x$,有 $Q(x)>0$。
(3)若矩阵 $A$ 半正定,则对于任意非零向量 $x$,有 $Q(x)\geqslant 0$。
(4)若矩阵 $A$ 半负定,则对于任意非零向量 $x$,有 $Q(x)\leqslant 0$。
三、经济管理中的应用1. 最小二乘法最小二乘法是一种常见的回归分析方法,在经济管理中广泛应用。
最小二乘法可以转化为求解一个二次型的最小值问题,即$\min\limits_{\beta} \sum_{i=1}^{n}(y_i-\beta_0-\sum_{j=1}^{p}\beta_j x_{ij})^2$,其中 $y_i$ 是因变量,$x_{ij}$ 是自变量,$\beta_j$ 是回归系数。
将其转化为矩阵形式为$\min\limits_{\beta} (Y-X\beta)^T(Y-X\beta)$,其中$Y=(y_1,y_2,\cdots,y_n)^T$,$X=\begin{pmatrix} 1 & x_{11} & \cdots & x_{1p}\\ 1 & x_{21} & \cdots & x_{2p}\\ \vdots & \vdots & \ddots & \vdots\\ 1 & x_{n1} & \cdots & x_{np}\\\end{pmatrix}$。
二次型_精品文档

二次型引言二次型是数学中的一个重要概念,它在线性代数、微分方程、优化问题等领域都有广泛的应用。
本文将介绍二次型的定义、性质和常见应用,并且给出一些例题以帮助读者更好地理解和应用二次型。
一、二次型的定义1.1 二次型的概念在线性代数中,二次型是指一个关于n个变量的二次齐次多项式,其形式可表示为:Q(x) = x^T·A·x其中,x = (x1, x2, ..., xn)为n维列向量,A为一个n×n的实对称矩阵。
1.2 二次型的矩阵表示对于一个二次型Q(x),其矩阵表示为A = (aij),其中aij表示二次型中xixj的系数,即Q(x)中二次项的系数。
1.3 二次型的基本性质二次型具有以下基本性质:(1)二次型的值域对于任意非零向量x,Q(x) = x^T·A·x > 0,则称Q(x)为正定二次型;若Q(x) = x^T·A·x < 0,则称Q(x)为负定二次型;若Q(x) = x^T·A·x >= 0,则称Q(x)为半正定二次型;若Q(x) = x^T·A·x <= 0,则称Q(x)为半负定二次型;若存在一组非零向量使得Q(x) = x^T·A·x既大于0又小于0,则称Q(x)为不定二次型。
(2)二次型的规范形式通过合适的变量变换,可以将任意二次型Q(x)化为其规范形式,即Q(x) = λ1y1^2 + λ2y2^2 + ... + λny^n^2,其中λi为实数(i = 1, 2, ..., n)。
(3)二次型的秩二次型的秩等于其非零特征值的个数。
如果二次型的秩为k,则存在可逆矩阵P,使得P^T·AP = D,其中D为对角矩阵,D的前k 个非零元素为二次型的非零特征值。
二、二次型的应用2.1 矩阵的正定性判定二次型的正定性与实对称矩阵的正定性等价。
二次型判别式

二次型判别式二次型判别式是线性代数中的重要概念之一,它在矩阵和向量的运算中起到了很大的作用。
在本文中,我们将介绍二次型判别式的定义、性质以及应用。
一、二次型判别式的定义二次型是指一个关于n个变量的二次齐次多项式,可以用矩阵的形式表示为Q(x)=x^TAX,其中x=(x1,x2,...,xn)^T是n维列向量,A 是一个n×n的实对称矩阵。
二次型判别式即为二次型的判别标准,用于判断二次型的正负性质。
1. 对于任意非零向量x,二次型Q(x)的值始终大于0、小于0或等于0。
2. 二次型Q(x)的符号由矩阵A的特征值决定。
若A的所有特征值均大于0,则Q(x)>0;若A的所有特征值均小于0,则Q(x)<0;若A的特征值既有正值又有负值,则Q(x)既可以大于0也可以小于0。
三、二次型判别式的应用1. 最优化问题:在求解约束最优化问题时,常常需要判断目标函数的正负性质。
二次型判别式可以帮助我们确定目标函数的极值点。
2. 特征值分析:二次型判别式与矩阵的特征值密切相关。
通过求解二次型的特征值,我们可以得到矩阵的特征向量,从而进一步研究矩阵的性质。
3. 物理学应用:二次型判别式在物理学中也有广泛的应用。
例如,通过分析二次型判别式可以判断力学系统的稳定性,帮助我们理解物理现象。
四、二次型判别式的例子考虑一个二次型Q(x)=x^TAx,其中A是一个2×2的实对称矩阵。
我们可以计算二次型的判别式D=det(A),根据判别式的值可以判断二次型的正负性质。
1. 当D>0时,二次型Q(x)的值为正。
这表示A的特征值均为正,二次型对应的椭圆曲线在坐标系中的图像是一个椭圆。
2. 当D<0时,二次型Q(x)的值为负。
这表示A的特征值均为负,二次型对应的椭圆曲线在坐标系中的图像是一个双曲线。
3. 当D=0时,二次型Q(x)的值可能为正也可能为负。
这表示A的特征值既有正值又有负值,二次型对应的椭圆曲线在坐标系中的图像是一个抛物线。
二次型的标准型及其应用

二次型的标准型及其应用二次型在数学中具有重要的地位和广泛的应用。
在二次型的研究过程中,标准型是一个关键的概念。
本文将介绍二次型的标准型及其应用,并对其进行深入的探讨。
一、二次型的定义和性质首先,我们来定义什么是二次型。
二次型是指一个关于n个变量x1, x2, ..., xn的二次多项式,可以表示为Q(x) = x^TAX,其中x为n维列向量,A为一个n×n的实对称矩阵。
在这个定义下,二次型有以下几个性质:1. 对称性:二次型与矩阵A的选择无关,只与矩阵A的对称性有关。
也就是说,如果存在一个实对称矩阵B,使得B = P^TAP,其中P 为一个非奇异矩阵,那么二次型Q(x) = x^TAX与Q(x) = x^T(Bx)是等价的。
2. 可负定性:如果对于任意的非零向量x,有x^TAX<0,那么称二次型Q(x)为负定的。
3. 可正定性:如果对于任意的非零向量x,有x^TAX>0,那么称二次型Q(x)为正定的。
4. 可半负定性:如果对于任意的非零向量x,有x^TAX≤0,那么称二次型Q(x)为半负定的。
5. 可半正定性:如果对于任意的非零向量x,有x^TAX≥0,那么称二次型Q(x)为半正定的。
6. 不定性:如果二次型既不是正定的也不是负定的,则称其为不定的。
二、二次型的标准型在研究和应用二次型时,将其转化为标准型是一个常见的方法。
标准型是指经过合适的线性变换将原二次型化为一个特殊的形式,使得计算和分析更加简洁明确。
对于任意的实对称矩阵A,存在一个非奇异矩阵P,使得PTAP = D,其中D为对角矩阵,其对角线上的元素为二次型的特征值。
设x = Py,则有Q(x) = x^TAx = (Py)^T A (Py) =y^TP^TAPy = y^TDy。
标准型的存在可以简化二次型的分析和计算过程,使得我们能够更加直观地理解和处理二次型的相关问题。
三、二次型的应用二次型作为一种重要的数学工具,在各个领域都有广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
唐山师范学院本科毕业论文题目二次型的正定性及其应用学生王倩柳指导教师张王军讲师年级 2012级数学专接本专业数学与应用数学系别数学与信息科学系唐山师范学院数学与信息科学系2014 年5月郑重声明本人的毕业论文(设计)是在指导教师张王军的指导下独立撰写完成的。
如有剽窃、抄袭、造假等违反学术道德、学术规范和侵权的行为,本人愿意承担由此产生的各种后果,直至法律责任,并愿意通过网络接受公众的监督。
特此郑重声明。
毕业论文(设计)作者(签名):2014 年月日目录摘要 0前言 01 二次型的历史及概念 (2)二次型的历史 (2)二次型的矩阵形式 (1)正定二次型与正定矩阵的概念 (3)2 二次型的正定性判别方法及其性质 (2)3 二次型的应用 (6)多元函数极值 (6)证明不等式 (12)因式分解..................................... (错误!未定义书签。
)二次曲线. (13)结论 (13)参考文献 (13)致谢 (13)二次型的正定性及其应用学生:王倩柳指导老师:张王军摘要:二次型是高等代数中的主要内容之一, 其理论的应用非常广泛。
在中学数学的不等式的证明、求极值及因式分解等问题中, 用初等数学方法处理会相当麻烦, 而如果利用高等代数中二次型的性质去解决, 就会使很多问题化繁为简, 由难转易。
因此, 讨论二次型理论在证明不等式、多项式的因式分解、求极值、计算椭圆面积、判断二次曲线的形状等实际例题中的应用, 是很有意义的。
关键词:二次型;矩阵;正定性;应用The second type of positive definite matrix and itsapplicationsStudent: Wang qianliuInstructor: Zhang wangjunAbstract: Quadratic form is one of its main content in Higher Algebra, Quadratic form theory is widely used in the middle school mathematics-the proof of inequality, extremum and the factorization problem, It is too cumbersome often using elementary mathematics method, but if solve them using of advanced algebra quadratic form properties, will make a lot of problems change numerous for brief, from difficult to easy. For our students, more should learn to use the knowledge of higher mathematics to guide or understanding of elementary mathematics knowledge content, a deeper understanding of the essence of higher algebra. This paper will discuss quadratic form theory to prove inequality, polynomial factorization, calculation of elliptical area, judge two the shape of the curve and actual examples ofKey words: Quadratic; Quadratic matrix; Qualitative; Application前言二次型是高等代数中的主要内容之一, 其理论的应用非常广泛。
在中学数学的不等式的证明、求极值及因式分解等问题中, 用初等数学方法处理会相当麻烦, 而如果利用高等代数中二次型的性质去解决, 就会使很多问题化繁为简, 由难转易。
因此, 讨论二次型理论在证明不等式、多项式的因式分解、求极值、计算椭圆面积、判断二次曲线的形状等实际例题中的应用, 是很有意义的。
其中实二次型中的正定二次型占用特殊的位置. 二次型的有定性与其矩阵的有定性之间具有一一对应关系.因此,二次型的正定性判别可转化为对称矩阵的正定性判别,因此,对正定矩阵的讨论有重要的意义.1 二次型的历史及概念二次型的历史二次型的系统是从18世纪开始的,它起源于对二次曲线和二次曲面的分类问题的讨论,将二次曲线和二次曲面的方程变形,选有主轴方向的轴作为坐标轴以简化方程的形状,这个问题是在18世纪引进的。
柯西在其著作中给出结论:当方程式标准型时,二次曲面用二次型的符号来进行分类。
然而,那并不太清楚,在化简成标准型时,为何总是得到同样数目的正项和负项。
西尔维斯特回答了这个问题,他给出了n 个变数的二次型的惯性定律,但没有证明。
这个定律后被雅克比重新发现和证明。
1801年,高斯在《算数研究》中引进了二次型的正定,负定,半正定和半负定等术语。
二次型化简的进一步研究设计二次型或行列式的特征方程的概念。
特征方程的概念隐含地出现在欧拉的著作中,拉格朗日在其关于线性微分方程组的著作中首先明确地给出了这个概念。
而三个变数的二次型的特征值的实性则由阿歇特、蒙日和泊松建立的。
二次型常常出现在许多实际应用和理论研究中,有很大的实际使用价值。
它不仅在数学的许多分支中用到,而且在物理学中也会经常用到,其中实二次型中的正定二次型占用特殊的位置. 二次型的有定性与其矩阵的有定性之间具有一一对应关系.因此,二次型的正定性判别可转化为对称矩阵的正定性判别,并将其实现应用价值.二次型的矩阵形式定义 设P 是一个数域,ij a ∈p,n 个文字1x ,2x ,…, n x 的二次齐次多项式2121111212131311(,,,)222n n n f x x x a x a x x a x x a x x =++++222223232222n n a x a x x a x x +++++2nn n a x +11n n ij i ji j a x x ===∑∑ 其中),...,2,1,,(n j i a a ji ij ==称为数域p 上的一个n 元二次型,简称二次型.当ij a 为实数时,f 称为实二次型.当ij a 为复数时,称 f 为复二次型.如果二次型中只含有文字的平方项,即12(,,...,)n f x x x =2221112...n n d x d x d x +++称f 为标准型.二次型12(,,...,)n f x x x 可唯一表示成12(,,...,)n f x x x =T x Ax ,其中12(,,...,)T n x x x x =,()ij n n A a ⨯=为对称矩阵,称上式为二次型的矩阵形式,称A 为二次型的矩阵(必是对称矩阵),称A 的秩为二次型f 的秩.正定二次型与正定矩阵的概念定义 设12(,,...,)n f x x x =T x Ax 是n 元实二次型(A 为实对称矩阵),如果对任意不全为零的实数12,,...,n c c c 都有12(,,...)0n f c c c >,则称f 为正定二次型,称A 为正定矩阵;如果12(,,...)0n f c c c ≥,则称f 为半正定二次型,称A 为半正定矩阵;如果12(,,...)0n f c c c <,则称f 为负定二次型,称A 为负定矩阵;如果12(,,...)0n f c c c ≤,称f 为半负定二次型,称A 为半负定矩阵;既不是正定又不是负定的实二次型称为不定的二次型,称A 为不定矩阵.定义 另一种定义 具有对称矩阵A 的二次型,AX X f T =(1) 如果对任何非零向量X , 都有0>AX X T (或0<AX X T )成立,则称AX X f T =为正定(负定)二次型,矩阵A 称为正定矩阵(负定矩阵).(2) 如果对任何非零向量X , 都有0≥AX X T (或0≤AX X T )成立,且有非零向量0X ,使000=AX X T ,则称AX X f T =为半正定(半负定)二次型,矩阵A 称为半正定矩阵(半负定矩阵).注:二次型的正定(负定)、半正定(半负定)统称为二次型及其矩阵的有定性.不具备有定性的二次型及其矩阵称为不定的.二次型的有定性与其矩阵的有定性之间具有一一对应关系.因此,二次型的正定性判别可转化为对称矩阵的正定性判别.2 二次型的正定性的判别方法及其性质定理实二次型12(,,...,)n f x x x =T x Ax 为正定的充要条件为(若A 是负定矩阵,则A -为正定矩阵):1)矩阵A 的各阶顺序主子式都大于零;2)矩阵A 与单位矩阵合同;3)A 的全部特征值是正的。
4)n 级实对称矩阵A 是正定的充分必要条件是, 存在n 级实可逆矩阵C ,使A = C ′C .定理实二次型12(,,...,)n f x x x =T x Ax 为半正定(半负定)的充要条件为:1)A 的所有主子式大于(小于)或等于零;2)A 的全部特征值大于(小于)或等于零.3)A 与矩阵⎪⎪⎭⎫ ⎝⎛-000)(r r E E 合同,这里r 是矩阵A 的秩 4)n 级实对称矩阵A 是半正定的充分必要条件是, 存在n 级实矩阵C 使A = C ′C (A = —C ′C ).推论 若A 为正定矩阵,则0||>A .定理 秩为r 的n 元实二次型AX X f T =, 设其规范形为22122221r p p z z z z z ---++++则:(1)f 负定的充分必要条件是,0=p 且.n r =(即负定二次型,其规范形为22221n z z z f ----= )(2)f 半正定的充分必要条件是.n r p <=(即半正定二次型的规范形为n r z z z f r <+++=,22221 ) (3)f 半负定的充分必要条件是,0=p .n r < (即n r z z z f r <----=,22221 ) (4)f 不定的充分必要条件是.0n r p ≤<< (即22122221r p p z z z z z f ---+++=+ )定义 n 阶矩阵)(ij a A =的k 个行标和列标相同的子式)1(21212221212111n i i i a a a a a a a a a k i i i i i i i i i i i i i i i i i i k k k k k k ≤<<<≤称为A 的一个k 阶主子式.而子式),,2,1(||212222111211n k a a a a a a a a a A kkk k k k k== 称为A 的k 阶顺序主子式.定理证明n 阶矩阵)(ij a A =为正定矩阵的充分必要条件是A 的所有顺序主子式 ),,2,1(0||n k A k =>.例 设A B 分别是m 级、n 级正定矩阵,证明⎪⎪⎭⎫ ⎝⎛=B O O A c 正定矩阵。