1.用表格表示变量之间的关系

合集下载

北师大版数学七年级下册:第三章 变量之间的关系 同步练习

北师大版数学七年级下册:第三章 变量之间的关系  同步练习

第三章变量之间的关系1 用表格表示的变量间关系1.李师傅到单位附近的加油站加油,如图是所用的加油机上的数据显示牌,则其中的常量是(C)A.金额B.数量C.单价D.金额和数量2.在利用太阳能热水器来加热水的过程中,热水器里的水温会随着太阳照射时间的长短而变化,这个问题中,因变量是(A)A.水的温度B.太阳光强弱C.太阳照射时间D.热水器的容积3.当前,雾霾严重,治理雾霾的方法之一是将已产生的PM2.5吸纳降解,研究表明:雾霾程度随城市中心区立体绿化面积的增大而减小,在这个问题中,自变量是(D)A.雾霾程度B.PM2.5C.雾霾D.城市中心区立体绿化面积4.某品牌电饭锅成本价为70元,销售商对其销量与定价的关系进行了调查,结果如下:定价(元) 100 110 120 130 140 150销量(个) 80 100 110 100 80 60在这个问题中,下列说法正确的是(C)A.定价是常量,销量是变量B.定价是变量,销量是常量C.定价与销量都是变量,定价是自变量,销量是因变量D.定价与销量都是变量,销量是自变量,定价是因变量5.某数学兴趣小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据(如下表),下列说法错误的是(C)温度/℃-20 -10 0 10 20 30声速/(m/s) 318 324 330 336 342 348A.在这个变化中自变量是温度,因变量是声速B.当温度每升高10 ℃,声速增加6 m/sC.当空气温度为20 ℃,5 s的时间声音可以传播1 740 mD.温度越高声速越快6.(教材P63随堂练习T2变式)已知某易拉罐厂设计一种易拉罐,在设计过程中发现符合要求的易拉罐的底面半径与用铝量有如下关系:底面半径x(cm) 1.6 2.0 2.4 2.8 3.2 3.6 4.0用铝量y(cm3) 6.9 6.0 5.6 5.5 5.7 6.0 6.5(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当易拉罐底面半径为2.4 cm时,易拉罐需要的用铝量是多少?(3)根据表格中的数据,你认为易拉罐的底面半径为多少时比较合适?说说你的理由.解:(1)反映了易拉罐的底面半径和用铝量的关系,其中,易拉罐的底面半径为自变量,用铝量为因变量.(2)当底面半径为2.4 cm时,易拉罐需要的用铝量为5.6 cm3.(3)易拉罐的底面半径为2.8 cm时比较合适,因为此时用铝量较少,成本低.7.在圆周长的计算公式C=2πr中,变量有(B)A.C,πB.C,rC.C,π,rD.C,2π,r8.如图是用火柴棒拼成的图案,需用火柴棒的根数m随着拼成的正方形的个数n的变化而变化,在这一变化过程中,下列说法中错误的是(C)A.m,n都是变量B.n是自变量,m是因变量C.m是自变量,n是因变量D.m随着n的变化而变化9.“早穿皮袄午穿纱,围着火炉吃西瓜.”这句谚语反映了我国新疆地区一天中,温度随时间变化而变化,其中自变量是时间,因变量是温度.10.在一次实验中,小明把一根弹簧的上端固定,在其下端悬挂物体,下表是测得的弹簧长度y与所挂物体的重量x 的几组对应值.所挂物体重量x/kg 0 1 2 3 4 5弹簧长度y/cm 18 20 22 24 26 28(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当所挂物体重量为3 kg时,弹簧的长度为多长?不挂物体呢?(3)若所挂物体重量为6 kg时(在弹簧的允许范围内),你能说出此时弹簧的长度吗?解:(1)上表反映了弹簧长度与所挂物体重量之间的关系,其中所挂物体重量是自变量,弹簧长度是因变量.(2)所挂物体重量为3 kg时,弹簧长24 cm.不挂物体时,弹簧长18 cm.(3)根据上表可知所挂物体重量为6 kg(在弹簧的允许范围内)时的弹簧长度为18+2×6=30(cm).11.(教材P64习题T5变式)某公交车每月的支出费用为4 000元,每月的乘车人数x(人)与每月利润(利润=收入费用-支出费用)y(元)的变化关系如下表所示(每位乘客的公交票价是固定不变的):(1)在这个变化过程中,每月的乘车人数x是自变量;每月的利润y是因变量;(2)观察表中数据可知,每月乘客量达到2_000人以上时,该公交车才不会亏损;(3)请你估计当每月乘车人数为3 500人时,每月利润为多少元?解:由表中数据可知,每月的乘车人数每增加500人,每月的利润可增加1 000元,当每月乘车人数为2 000人时,每月利润为0元,则当每月乘车人数为3 500人时,每月利润为3 000元.12.心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间有如下关系(其中2≤x≤20):(注:接受能力值越大,说明学生的接受能力越强)(1)上表中反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当提出概念所用时间是10分钟时,学生的接受能力是多少?(3)根据表格中的数据,你认为提出概念所用时间为几分钟时,学生的接受能力最强?(4)从表格中可知,当提出概念所用时间x在什么范围内时,学生的接受能力逐步增强?当提出概念所用时间x在什么范围内时,学生的接受能力逐步降低?解:(1)反映了提出概念所用时间x和对概念的接受能力y两个变量之间的关系,其中x是自变量,y是因变量.(2)由表格可知,当提出概念所用时间是10分钟时,学生的接受能力是59.(3)由表格可知,当提出概念所用时间为13分钟时,学生的接受能力最强.(4)当x在2分钟至13分钟的范围内时,学生的接受能力逐步增强;当x在13分钟至20分钟的范围内时,学生的接受能力逐步降低.2 用关系式表示的变量间关系1.若一辆汽车以50 km/h的速度匀速行驶,行驶的路程为s(km),行驶的时间为t(h),则用t表示s的关系式为(B)A.s=50+50tB.s=50tC.s=50-50tD.以上都不对2.一名老师带领x名学生到动物园参观,已知成人票每张30元,学生票每张10元.设门票的总费用为y元,则y 与x的关系式为(A)A.y=10x+30B.y=40xC.y=10+30xD.y=20x3.一个正方形的边长为3 cm,它的各边边长减少x cm后,得到的新正方形的周长为y cm,y与x之间的关系式是(A)A.y=12-4xB.y=4x-12C.y=12-xD.以上都不对4.从A地向B地打长途电话,按时收费,3分钟内收费2.4元,以后每超过1分钟加收1元.若通话t分钟(t≥3),则需付电话费y(元)与t(分钟)之间的关系式是(B)A.y=t-0.5B.y=t-0.6C.y=3.4t-7.8D.y=3.4t-85.(2019·上海)在登山过程中,海拔每升高1千米,气温下降6 ℃,已知某登山大本营所在的位置的气温是2 ℃,登山队员从大本营出发登山,当海拔升高x千米时,所在位置的气温是y ℃,那么y关于x的关系式是y=2-6x.6.如图所示,在三角形ABC中,已知BC=16,高AD=10,动点Q由点C沿CB向点B移动(不与点B重合).设CQ的长为x,三角形ACQ的面积为S,则S与x之间的关系式为S=5x.7.在关系式y=2x+5中,当自变量x=6时,因变量y的值为(C)A.7B.14C.17D.218.根据图中的程序,当输入x=3时,输出的结果y=2.9.有一棵树苗,刚栽下去时树高为2.1米,以后每年长0.3米.(1)写出树高y(米)与年数x(年)之间的关系式:y=0.3x+2.1;(2)3年后的树高为3米;(3)10年后树苗的高度将达到5.1米.10.圆柱的底面半径为10,当圆柱的高变化时圆柱的体积也随之变化. (1)在这个变化过程中,自变量是什么?因变量是什么?(2)设圆柱的体积为V ,圆柱的高为h ,则V 与h 的关系式是什么? (3)当h 每增加2,V 如何变化?解:(1)由于圆柱的高变化时圆柱的体积也随之变化,所以自变量是圆柱的高,因变量是圆柱的体积. (2)圆柱的体积V 与圆柱的高h 的关系式:V =100πh. (3)因为V =100π(h +2)=100πh +200π, 所以当h 每增加2时,V 增加200π.11.有一种粗细均匀的电线,为了确定其长度,从一捆中剪下1 m ,称得它的质量是0.06 kg. (1)写出这种电线的长度l(m)与质量m(kg)之间的关系式;(2)如果一捆电线剪下1 m 后的质量为b kg ,请写出这捆电线的总长度. 解:(1)由题知,l =m0.06.(2)设这捆电线的总长度为L m ,则L =b +0.060.06,所以这捆电线的总长度为(50b3+1)m.12.目前,全球水资源日益减少,提倡全社会节约用水.据测试:拧不紧水龙头每分钟滴出100滴水,每滴水约0.05毫升.小欢同学洗手后,没有把水龙头拧紧,水龙头以测试的速度滴水,当小欢离开x 分钟后,水龙头滴出y 毫升的水,请写出y 与x 之间的关系式是(A)A.y =5xB.y =0.05xC.y =100xD.y =0.05x +10013.(2020·烟台改编)按如图所示的程序,若输入的x 值为-3,则输出y 的结果为-3.14.有的温度计有华氏、摄氏两种温标,华氏F()、摄氏C (℃)温标的转换公式是F =1.8C +32,请填写下表:华氏() 摄氏(℃) 温度描述 212 100 水沸腾的温度 98.6 37 人体温度 68 20 舒适室温 32水结冰的温度15.“十一”期间,小明和父母一起开车到距家200 km 的景点旅游,出发前,汽车油箱内储油45 L ,当行驶150 km时,发现油箱余油量为30 L(假设行驶过程中汽车的耗油量是均匀的).(1)求该车平均每千米的耗油量,并写出行驶路程x(km)与剩余油量Q(L)的关系式;(2)当x=280时,求剩余油量Q.解:(1)该车平均每千米的耗油量为(45-30)÷150=0.1(L/km),行驶路程x(km)与剩余油量Q(L)的关系式为Q=45-0.1x.(2)当x=280时,Q=45-0.1×280=17.故当x=280时,剩余油量Q为17 L.16.多边形的内角和随着边数的变化而变化.设多边形的边数为n,内角和为N°,则变量N与n之间的关系可以表示为N=(n-2)·180.(1)在这个关系式中,自变量、因变量各是什么?(2)在这个关系式中,n能取什么样的值?(3)利用这个关系式计算六边形的内角和;(4)当边数每增加1时,多边形的内角和如何变化?解:(1)n是自变量,N是因变量.(2)n取大于2的整数.(3)当n=6时,N=(6-2)×180=720,故六边形的内角和为720°.(4)当边数每增加1时,多边形的内角和增加180°.17.将长为40 cm、宽为15 cm的长方形白纸,按如图所示的方法黏合起来,黏合部分宽为5 cm.…(1)根据上图,将表格补充完整:白纸张数 1 2 3 4 5 …纸条长度/cm 40 75 110 145 180 …(2)设x张白纸黏合后的总长度为y cm,则y与x之间的关系式是什么?(3)你认为白纸黏合起来总长度可能为2 020 cm吗?为什么?解:(2)y=40x-5(x-1)=35x+5.(3)不可能.理由:令2 020=35x+5,解得x≈57.6.因为x为整数,所以总长度不可能为2 020 cm.3用图象表示的变量间关系第1课时曲线型图象1.二十四节气是中国古代劳动人民长期经验积累的结晶,它与白昼时长密切相关,当春分、秋分时,昼夜时长大致相等;当夏至时,白昼时长最长.根据下图,在下列选项中指出白昼时长低于11小时的节气(D)A.惊蛰B.小满C.立秋D.大寒2.某市春天经常刮风,给人们的出行带来很多不便,小明观测了4月6日连续12个小时风力变化的情况,并画出了风力随时间变化的图象如图所示,则下列说法正确的是(D)A.在8时至14时,风力不断增大B.在8时至12时,风力最大为7级C.8时风力最小D.20时风力最小3.光合作用是指绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存能量的有机物,并释放出氧气的过程.如图是夏季的白天7时~18时的一般的绿色植物的光合作用强度与时间之间的关系的曲线,分析图象回答问题:(1)大约几时的光合作用最强?大约几时的光合作用最弱?(2)说一说绿色植物光合作用的强度从7时到18时是怎样变化的.解:(1)大约10时的光合作用最强,大约7时和18时的光合作用最弱.(2)绿色植物的光合作用从7时至10时逐渐增强,从10时至12时逐渐减弱,从12时至14时30分左右逐渐增强,从14时30分至18时逐渐减弱.4.在池塘里藻类的数量与温度有关,如图所示是藻类数量与水温的关系图.(1)藻类在什么温度下数量最多?(2)藻类在什么温度下基本不能生存?(3)在什么情况下藻类数量上升?在什么情况下藻类数量下降?(4)根据如图所示,请说一说藻类的数量是怎样随温度变化的?解:(1)藻类在30 ℃温度下数量最多.(2)藻类在0 ℃及以下或60 ℃及以上的温度下基本不能生存.(3)0 ℃~30 ℃时,藻类数量上升,30 ℃~60 ℃时,藻类数量下降.(4)0 ℃~30 ℃时,藻类数量随温度的上升而增加,30 ℃~60 ℃时,藻类数量随温度的上升而减少,0 ℃及以下或60 ℃及以上基本不能生存.5.从某容器口以均匀的速度注入酒精,若液面高度h随时间t的变化情况如图所示,则对应容器的形状为(C)A BC D第2课时折线型图象1.下列各情境分别可以用哪幅图来近似刻画?(1)凉水逐渐加热转化为水蒸气跑掉(水温与时间的关系);(2)匀速行驶的火车(速度与时间的关系);(3)运动员推出去的铅球(高度与时间的关系);(4)小明匀速从A地走到B地后逗留一段时间,然后按原速返回(小明距A地的距离与时间的关系).A B C DA是(3)的图象,B是(4)的图象,C是(2)的图象,D是(1)的图象.(填序号)2.均匀的向一个容器内注水,在注满水的过程中,水面的高度h与时间t的关系如图所示,则该容器是下列四个中的(D)A BC D3.已知林茂的家、体育场、文具店在同一直线上,图中的信息反映的过程是:林茂从家跑步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家.图中x表示时间,y表示林茂离家的距离.依据图中的信息,下列说法错误的是(C)A.体育场离林茂家2.5 kmB.体育场离文具店1 kmC.林茂从体育场出发到文具店的平均速度是50 m/minD.林茂从文具店回家的平均速度是60 m/min4.新龟兔赛跑的故事:龟兔从同一地点同时出发后,兔子很快把乌龟远远甩在后头.骄傲自满的兔子觉得自己遥遥领先,就躺在路边呼呼大睡起来.当它一觉醒来,发现乌龟已经超过它,于是奋力直追,最后同时到达终点.用s1,s2分别表示乌龟和兔子赛跑的路程,t为赛跑时间,则下列图象中与故事情节相吻合的是(C)5.一个有进水管和出水管的容器,从某时刻开始4 min 内只进水不出水,在随后的8 min 内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y(L)与时间x(min)之间的关系如图所示,则每分钟的出水量为(B)A.5 LB.3.75 LC.2.5 LD.1.25 L6.如图分别表示甲步行与乙骑自行车(在同一路上)行走的路程s 甲,s 乙与时间t 的关系,观察图象并回答下列问题: (1)乙出发时,乙与甲相距10千米;(2)走了一段路程后,乙的自行车发生故障,停下来修车的时间为1小时; (3)乙从出发起,经过3小时与甲相遇;(4)乙骑自行车出故障前的速度与修车后的速度一样吗?为什么?解:乙骑自行车出故障前的速度与修车后的速度不一样. 乙骑自行车出故障前的速度为7.50.5=15(千米/时),修车后的速度为22.5-7.53-1.5=10(千米/时),因为15>10,所以乙骑自行车出故障前的速度与修车后的速度不一样.回顾与思考(三) 变量之间的关系1.在三角形ABC 中,它的底边是a ,底边上的高是h ,则三角形面积S =12ah ,当a 为定长时,在此式子中(A)A.S ,h 是变量,12,a 是常量B.S ,h ,a 是变量,12是常量C.a ,h 是变量,12,S 是常量D.S 是变量,12,a ,h 是常量2.小亮帮母亲预算家庭4月份电费开支情况,下表是小亮家4月初连续8天每天早上电表显示的读数:日期/日 1 2 3 4 5 6 7 8 电表读数/度2124283339424649表格中反映的变量是日期和电表读数,自变量是日期,因变量是电表读数. 3.日常生活中,我们经常要烧开水,下表是对烧水的时间与水的温度的记录:时间(分) 12 3 4 5 6 7 8 9 10 11 12 13温度(℃)2529 32 43 52 61 72 81 90 98 100 100 100(1)上表反映了哪些变量之间的关系?(2)根据表格的数据判断:在第15分钟时,水的温度为多少? (3)随着加热时间的增加,水的温度是否会一直上升? 解:(1)烧水的时间与水的温度. (2)100 ℃.(3)随着加热时间的增加,在1到11分钟时,水的温度一直上升,在11分钟后温度保持不变,都为100 ℃. 4.如图,一轮船从离A 港10千米的P 地出发向B 港匀速行驶,30分钟后离A 港26千米(未到达B 港).设x 小时后,轮船离A 港y 千米(未到达B 港),则y 与x 之间的关系式为y =10+32x.5.球的体积V 与半径R 之间的关系式是V =43πR 3.(1)在这个式子中,常量、变量分别是什么?(2)利用这个式子分别求出当球的半径为2 cm ,3 cm ,4 cm 时球的体积; (3)若R >1,当球的半径增大时,球的体积如何变化?解:(1)在这个式子中,常量是43π,变量是球的体积V 和半径R.(2)当球的半径为2 cm 时,球的体积是4 3π×23=323π(cm3);当球的半径为3 cm时,球的体积是43π×33=36π(cm3);当球的半径为4 cm时,球的体积是4 3π×43=2563π(cm3).(3)若R>1,当球的半径增大时,球的体积也增大.6.“漏壶”是一种古代计时器,在它内部盛一定量的水,不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,壶内壁有刻度.人们根据壶中水面的位置计算时间,用x表示漏水时间,y表示壶底到水面的高度,下列图象适合表示y与x的对应关系的是(A)A BC D7.如图所示是某港口某天从8 h到20 h的水深情况,根据图象回答下列问题:(1)在8 h到20 h这段时间内,大约什么时间港口的水位最深,深度是多少米?(2)大约什么时候港口的水位最浅,是多少?(3)在这段时间里,水深是如何变化的?解:(1)13 h,7.5 m.(2)8 h,2 m.(3)8 h~13 h,水位不断上升;13 h~15 h,水位不断下降;15 h~20 h,水位又开始上升.8.小颖画了一个边长为5 cm的正方形,如果将正方形的边长增加x(cm),那么面积的增加值y(cm2)与边长的增加值x(cm)之间的关系式为y=x2+10x.9.(2020·青海)将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯水面的高度h(cm)与注水时间t(min)的图象大致为图中的(B)10.小明从家出发步行至学校,停留一段时间后乘车返回,则下列图象最能体现他离家的距离(s)与出发时间(t)之间的对应关系的是(B)11.一空水池现需注满水,水池深4.9 m,现以不变的流量注水,数据如下表.其中不变的量是流量,可以推断注满水池所需的时间是3.5_h.水的深度h/m 0.7 1.4 2.1 2.8注水时间t/h 0.5 1 1.5 212.如图反映了某出租公司乘车费用y(元)与路程x(千米)之间的关系,请你根据图中信息回答下列问题:(1)公司规定的起步价是10元;(2)该公司规定除起步价外,超过5千米的每增加1千米多收1.7元;(3)若你是一名乘客,共付了44元钱,则你的行程是25千米.13.如图1,在直角梯形ABCD中,动点P从点B出发,沿B→C→D→A匀速运动,设点P运动的路程为x,三角形ABP 的面积为y,图象如图2所示.(1)在这个变化中,自变量、因变量分别是x、y;(2)当点P运动的路程x=4时,三角形ABP的面积y=16;(3)求AB的长和梯形ABCD的面积.解:根据图象,得BC =4,三角形ABC 的面积为16, 所以12AB·BC=16,即12×AB×4=16,解得AB =8. 由图象,得DC =9-4=5,则S 梯形ABCD =12BC·(DC+AB)=12×4×(5+8)=26.14.一游泳池长90 m ,甲、乙两人分别从两对边同时向所对的另一边游去,到达对边后,再返回,这样往复数次.图中的实线和虚线分别表示甲、乙与游泳池固定一边的距离随游泳时间变化的情况,根据图形回答: (1)甲、乙两人分别游了几个来回? (2)甲游了多长时间?游泳的速度是多少? (3)在整个游泳过程中,甲、乙两人相遇了几次?解:(1)甲游了三个来回,乙游了两个来回. (2)甲游了180 s ,速度为3 m/s.(3)在整个游泳过程中,甲、乙两人相遇了5次.15.2020年初以来,红星消毒液公司生产的消毒液在库存量为m 吨的情况下,日销售量与产量持平.自1月底抗击“新冠病毒”以来,消毒液需求量猛增,该厂在生产能力不变的情况下,消毒液一度脱销,下面表示2020年初至脱销期间,该厂库存量y(吨)与时间t(天)之间关系的大致图象是(D)。

第三章第01讲 用表格表示的变量间关系(3类热点题型讲练)(解析版)--初中数学北师大版7年级下册

第三章第01讲 用表格表示的变量间关系(3类热点题型讲练)(解析版)--初中数学北师大版7年级下册

第01讲用表格表示的变量间关系(3类热点题型讲练)1.从表格的数据中分清什么是变量,自变量、因变量以及因变量随自变量的变化情况.(重点)2.对表格所表达的两个变量关系的理解.(难点)知识点01常量与变量一般地,在某一变化过程中,数值发生变化的量叫做变量.在变化过程中,数值始终不变的量叫做常量.知识点02自变量与因变量如果在一变化过程中含有两个变量,并且其中一个变量随着另一个变量的变化而变化,那么主动变化的量是自变量,随着自变量变化而变化的量叫做因变量.区别自变量和因变量有以下三种方法:(1)看变化的先后顺序,自变量是先发生变化的量,因变量是后发生变化的量;(2)看变化的方式,自变量是一个主动变化的量,因变量是一个被动变化的量;(3)看因果关系,自变量是起因,因变量是结果.知识点03用表格表示的变量间关系把自变量x的一系列取值和因变量的对应值列成一个表格来表示变量之间的关系,像这种表示变量之间关系的方法叫做表格法.观察表格要分三步:一是通过表格确定自变量与因变量;二是纵向观察每一列,发现因变量与自变量的对应关系;三是分别横向观察两栏,从中发现因变量随自变量的变化呈现的变化趋势,题型01常量与变量【例题】(2022下·甘肃白银·七年级统考期末)刘老师到加油站加油,如图,这是他所用的加油机上某一时刻的数据显示牌,则其中的常量是()A.金额B.单价C.数量D.金额和数量【答案】B【分析】根据常量和变量的定义即可求解.【详解】解:∵常量是固定不变的量,变量是变化的量,∴单价是不变的量,而金额随着数量的变化而变化,故选:B.【点睛】本题考查常量和变量,正确理解常量与变量的定义是解题的关键.【变式训练】A.重量和金额B.单价和金额C.重量和单价D.重量、单价和金额【答案】A【分析】根据常量与变量的定义即可判断.【详解】解:常量是固定不变的量,变量是变化的量,单价9.98是不变的量,而金额是随着数量的变化而变化,∴变量是:重量和金额.故选:A.【点睛】本题考查常量与变量,解题的关键是正确理解常量与变量,本题属于基础题型.题型02自变量与因变量题型03用表格表示的变量间关系【例题】(2023上·甘肃兰州·八年级校考期中)下表是某同学做的“观察水的沸腾”实验时所记录的数据:y与所挂物体质量1.(2023下·陕西西安·七年级校考期中)弹簧挂上物体后会伸长,测得一弹簧的长度()cm的时间x在13分到20分时,y值逐渐减小,学生的接受能力逐步减弱【分析】(1)根据自变量与因变量的定义即可求解;(2)根据表格中数据即可求解;x=时,y的值最大是59.9,即可求解;(3)根据表格中13(4)根据表格中的数据即可求解.【详解】(1)解:上表反映了提出概念所用的时间x和对概念的接受能力y两个变量之间的关系;(2)解:由表中数据可知:当提出概念所用的时间是7min时,学生的接受能力是56.3;当提出概念所用的时间是17min时,学生的接受能力是58.3;故答案为:56.3,58.3;x=时,y的值最大,是59.9,(3)解:当13所以当提出概念所用时间为13分时,学生的接受能力最强;(4)解:由表中数据可知:当提出概念所用的时间x在2分到13分时,y值逐渐增大,学生的接受能力逐步增强;当提出概念所用的时间x在13分到20分时,y值逐渐减小,学生的接受能力逐步减弱.【点睛】本题主要考查了变量及变量之间的关系,理解题意,分析出表格中的数据变化规律,是解题的关键.一、单选题1.(2023上·山西运城·八年级山西省运城中学校校考期中)假期小敏一家自驾游山西,爸爸开车到加油站加油,小敏发现加油机上的数据显示牌(如图)金额随着数量的变化而变化,则下列判断正确的是()A.金额是自变量B.单价是自变量下列说法错误的是((5)假设第二天持续下雨(基本与当天降水量一样),则第二天12时超警戒水位__米.【答案】(1)超警戒水位,时间,超警戒水位(2)25.4米(3)25.2米,26米(4)12,20(5) 1.5+【分析】(1)上表反映了超警戒水位与时间之间的关系,其中时间是自变量,超警戒水位是因变量;(2)由表格数据即可得;(3)观察表格,计算出0时水位,24时水位即可得;(4)借助表格,算出在4至8时,警戒水位上升,在8至12时,警戒水位上升,从12时到20时,在12至16时,警戒水位上升,在16至20时,警戒水位上升,在20至24时,警戒水位上升,即可得;(5)观察表格得,第一天12时超警戒水位0.5+米,24时警戒水位 1.0+米,假若第二天持续下雨(基本与第一天降水情况一样),则估计第二天12时超警戒水位 1.5+米.【详解】(1)解:上表反映了超警戒水位随着时间的变化而变化,其中时间是自变量,超警戒水位是因变量;(2)解:估计上午10时超警戒水位0.4米,则估计上午10时的水位是:250.425.4+=(米),故答案为:25.4米;(3)解:0时水位:250.225.2+=(米)24时水位:25126+=(米),即从0时到24时,水位从25.2米上升到26米,故答案为:25.2米,26米;(4)解:观察表格得,在0至4时,警戒水位上升:()0.250.20.05+-+=(米),在4至8时,警戒水位上升:()0.350.250.1+-+=(米),在8至12时,警戒水位上升:()0.50.350.15+-+=(米),在12至16时,警戒水位上升:0.7(0.5)0.2+-+=(米),在16至20时,警戒水位上升:0.9(0.7)0.2+-+=(米),在20至24时,警戒水位上升: 1.0(0.9)0.1+-+=(米),即从12时到20时,水位上升的最快,故答案为:12,20;(5)解:观察表格得,第一天12时超警戒水位0.5+米,24时警戒水位 1.0+米,假若第二天持续下雨(基本与第一天降水情况一样),则估计第二天12时超警戒水位10.5 1.5++=(米),∴气温每升高1℃,声音在空气中传播的速度就提高350.6÷=m /s .故答案为:0.6.(3)解:根据题意:当0C =︒t 时,声音在空气中传播的速度为331m /s ,气温每升高1℃,声音在空气中传播的速度就提高0.6m /s .∴声音在空气中的传播速度v ()m/s 与气温t (℃)的关系式可以表示为v =0.6y +331故答案为:v =0.6y +331.(4)解:当t =22℃时,v =220.6t+331=344.2⨯m /s ,344.251721⨯=m ,答:小乐与燃放烟花所在地大约相距1721m .【点睛】本题考查了函数的表示方法,常量与变量,理解常量与变量的定义,求出函数的关系式是解题的关键.。

1.《用表格表示的变量间关系》课件ppt北师大版七年级下 2

1.《用表格表示的变量间关系》课件ppt北师大版七年级下 2

认 知 篇
在《小车下滑的时间》 中: 支撑物的高度h和小车下滑的时间t都在变化, 它们都是变量(variable). 其中小车下滑的时间t随支撑物的高度h的 变化而变化。 支撑物的高度h是自变量 (independent variale)。 小车下滑的时间t是因变量 (dependent variale)。
(1)上表反映了哪两个变量之间的关系? 氮肥施用量 是自变量, 土豆产量 是因变量. (2)当氮肥的施用量是101千克/公顷时,土豆的产量 是 32.29吨/公顷,如果不施氮肥呢?15.18吨/公顷 (3)根据表格,你认为氮肥的施用量是 比较适宜?说说你的理由。 (4)粗略说一说氮肥的施用量对土豆产量的影响。 时
北师大教材七年级(下)第三章 变量之间的关系
初 中 乔 智
§3.1 用表格表示的变量间关 系
学习目标
1、在具体情境中理解什么是变量、自变量、 因变量。 2、能从表格中获得变量之间关系的信息, 能用表格表示变量之间的关系,尝试对变 化趋势进行初步的预测。 3、经历观察、实验、猜想、验证等数学活 动,发展合理推理能力,并能有条理地、 清晰地阐述自己的观点。
时间/分
前3分钟
4
6 8 10
计费/元
夏天房中的温度高达39℃,现打开空调降温,室内
的温度与空调打开的时间有如下关系:
时间/分 0
2
4
6
8
10
12
14
16
18
温度/℃ 39 38.6 38 37 35.8 34.5 33.1 31.8 30.5 29.2
①上表反映了哪两变量之间的关系? 自变量和因变量各是什么?
闯关B
我国从1949年到1999年的人口统计数据如下:(精确到0.01亿):

1 用表格表示的变量间关系

1 用表格表示的变量间关系

【导学探究】 1.观察表格可知,在销售过程中, 销量 随着 定价 2.在销售过程中,每台豆浆机 成本 不变.
的变化而变化.
在某一变化过程中,常量是始终不变的量,变量是发生变化的量;常量 可能不止一个,变量通常有两个,一个是自变量,一个是因变量.
探究点二:用表格法表示变量间的关系 【例2】 在烧开水时,水温达到100 ℃就会沸腾,下表是某同学做“观察水的沸 腾”实验时记录的数据:
1.当前,雾霾严重,治理雾霾的方法之一是将已产生的PM2.5吸纳降解.研究表明: 雾霾的程度随城市中心区立体绿化面积的增大而减小.在这个变化过程中,自变 量是( D ) (A)雾霾程度 (B)PM2.5 (C)雾霾 (D)城市中心区立体绿化面积 2.将一个底面直径是10厘米,高为36厘米的圆柱体锻压成底面直径为20厘米的 圆柱体,在这个过程中不改变的是( C ) (A)圆柱的高 (B)圆柱的侧面积 (C)圆柱的体积 (D)圆柱的底面积
时间 (分)
0
2
4
6
8
10 12 14 …
温度 (℃)
30
44
58
72
86 100 100 100 …
(1)上表反映了哪两个量之间的关系?哪个是自变量?哪个是因变量? (2)水的温度是如何随着时间的变化而变化的? (3)时间为8分钟,水的温度为多少?你能得出时间为9分钟和15分钟时,水的温 度吗?
【导学探究】 由表格可得,时间每过2分钟,温度上升 14 ℃,10分钟后,温度固定在 100 ℃.
x(页)
100
200
400
1 000

y(元)
40
80
160
400

(1)随着复印页数x的逐渐增加,其收费y的变化趋势是什么? (2)复印页数x每增加100页,收费y怎样变化? (3)当复印页数为2 000页时,其收费y是多少元?

七年级数学下册 用表格表示的变量间关系

七年级数学下册 用表格表示的变量间关系

3.1 用表格表示的变量间关系基础训练1.某人要在规定时间内加工100个零件,则工作效率y与时间t之间的关系中,下列说法正确的是( )A.y,t和100都是变量B.100和y都是常量C.y和t是变量D.100和t都是常量2.下表是某报纸公布的世界人口数情况:上表中的变量是( )A.仅有一个,是年份B.仅有一个,是人口数C.有两个变量,一个是人口数,另一个是年份D.一个变量也没有3.某种报纸的价格是每份0.4元,买x份报纸的总价为y元,填写下表.在这个问题中,___________是常量; __________是变量.4.王老师开车去加油站加油,发现加油表如图所示.加油时,单价其数值固定不变,表示“数量”、“金额”的量一直在变化,在数量(升)金额(元)单价元/升)这三个量中, 是常量, 是自变量, 是因变量.5.在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是( )A.太阳光强弱B.水的温度C.所晒时间D.热水器6.一个圆柱的高h为10 cm,当圆柱的底面半径r由小到大变化时,圆柱的体积V也发生了变化,在这个变化过程中( )A.r是因变量,V是自变量B.r是自变量,V是因变量C.r是自变量,h是因变量D.h是自变量,V是因变量7.声音在空气中传播的速度y(m/s)(简称声速)与气温x(℃)的关系如下表所示.上表中___________是自变量, __________是因变量.照此规律可以发现,当气温x为__________℃时,声速y达到346 m/s.8.弹簧挂上物体后会伸长,测得一弹簧的长度 y(cm)与所挂的物体的质量x(kg)间有下面的关系:下列说法不正确的是( )A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为0 cmC.在弹性限度内,物体质量每增加1 kg,弹簧长度y增加0.5 cmD.在弹性限度内,所挂物体质量为7 kg时,弹簧长度为13.5 cm9.某烤鸭店在确定烤鸭的烤制时间时,主要依据的是下表的数据:设烤鸭的质量为x kg,烤制时间为t min,估计当x=3.2时,t的值为( )A.140B.138C.148D.16010.赵先生手中有一张记录他从出生到24岁期间的身高情况表(如下表所示):对于赵先生从出生到24岁期间身高情况下列说法错误的是( )A.赵先生的身高增长速度总体上先快后慢B.赵先生的身高在21岁以后基本不长了C.赵先生的身高从0岁到21岁平均每年约增高5.8 cmD.赵先生的身高从0岁到24岁平均每年增高7.1 cm提升训练11.父亲告诉小明:“距离地面越高,气温越低.”并给小明出示了下面的表格:根据上表,父亲还给小明出了下面几个问题,你和小明一起回答.(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果用h表示距离地面的高度,用t表示温度,那么随着h的变化,t 是怎么变化的?(3)你知道距离地面6 km的高空气温是多少吗?12.在烧水时,水温达到100 ℃就会沸腾,下表是某同学做“观察水的沸腾”试验时记录的数据:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)水的温度是如何随着时间的变化而变化的?(3)时间每推移2 min,水的温度如何变化?(4)时间为8 min时,水的温度为多少?你能得出时间为9 min时水的温度吗?(5)根据表格,你认为时间为16 min和18 min时水的温度分别为多少?(6)为了节约能源,你认为应在什么时间停止烧水?13.心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:min)之间有如下关系(其中0≤x≤20):(注:接受能力值越大,说明学生的接受能力越强)(1)上表中反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当提出概念所用时间是10 min时,学生的接受能力是多少?(3)根据表格中的数据,你认为提出概念所用时间为多少时,学生的接受能力最强?(4)从表格中可知,当提出概念所用时间x在什么范围内时,学生的接受能力逐步增强?当提出概念所用时间x在什么范围内时,学生的接受能力逐步降低?参考答案1.【答案】C2.【答案】C3.【答案】0.4;0.8;1.2;1.6;0.4;x,y4.【答案】单价;数量;金额5.【答案】B解:所晒时间和水的温度都是变量,但水的温度随所晒时间的变化而变化,所以所晒时间是自变量,水的温度是因变量.6.【答案】B7.【答案】气温;声速;25解:气温是自变量,声速是因变量,气温每上升5 ℃,声速增加3 m/s,而x=20时,y=343,所以当x=25时,y=346.8.【答案】B9.【答案】C10.【答案】D解:(170.4-48)÷24=5.1(cm),从0岁到24岁平均每年增高7.1 cm是错误的.11.解:(1)反映了距离地面高度与气温之间的关系.距离地面高度是自变量,气温是因变量.(2)随着h的升高,t逐渐降低.(3)观察表格,可得距离地面高度每上升1 km,气温下降6 ℃.当距离地面 5 km时,气温为-10 ℃,故当距离地面 6 km时,气温为-16 ℃.12.解:(1)上表反映了水的温度与时间的关系,时间是自变量,水的温度是因变量.(2)水的温度随着时间的增加而增加,到100 ℃时恒定.(3)时间每推移2 min,水的温度增加14 ℃,到10 min时恒定.(4)时间为8 min时,水的温度是86 ℃,时间为9 min时,水的温度是93 ℃.(5)根据表格,时间为16 min和18 min时水的温度均为100 ℃.(6)为了节约能源,应在第10 min后停止烧水.13.解:(1)反映了提出概念所用的时间x和对概念的接受能力y两个变量之间的关系;其中x是自变量,y是因变量.(2)由表格可知,当提出概念所用时间是10 min时,学生的接受能力是59.(3)由表格可知提出概念所用时间为13 min时,学生的接受能力最强.(4)当x在2至13的范围内,学生的接受能力逐步增强;当x在13至20的范围内,学生的接受能力逐步降低.。

北师大版七年级数学下册《三章 变量之间的关系 1 用表格表示的变量间关系》公开课教案_0

北师大版七年级数学下册《三章 变量之间的关系  1 用表格表示的变量间关系》公开课教案_0

第三章变量之间的关系一、课标与教材分析课标要求:探索现实生活中简单实例的数量关系和变化规律,了解常量、变量的意义。

结合实例,了解变量的概念和三种表示法——表格法、解析式法和图象法(本节为第一种即:表格法),能举出变量之间关系的实例。

在孩子们目前的知识基础上,本节的教学及学习任务是鼓励孩子用表格整理数据并充分地从表格中获取信息,运用自己的语言进行描述,与同伴进行交流,提高孩子合作交流的意识。

孩子通过对表格中数据的分析,进一步体会变量之间的关系,明确自变量与因变量的概念,并能通过资料分析进行预测。

本节课是本章的起始课,与后面三个课时合起来分别呈现的是表示变量之间关系的三种方式——表格法、解析式法和图象法。

本章作为研究变量和函数的起始章节,重在让孩子感受和体会生活中的“变量”。

同时,在第一课时还要教给孩子用表格呈现实验中变量的数据的方法。

依据变量之间关系的数学表示(表格、解析式和图象)进行预测或推测已知中没有给出的量,也是研究变量之间关系的重要目标之一。

二、孩子们的学情分析孩子们已经知道的: 本节课是孩子们在北师大版七年级上册教材中学习了探索规律,从统计图中获取信息的基础上,通过表格形式来理解变量、自变量、因变量这些概念。

我们生活在变化的世界中,变量与变量的关系,在生活生产中无处不在,通过对实际问题的理解,在表格信息中发现两个变化的量,通过了解哪一个是主动变化的,哪一个是随着变化的,来识别自变量和因变量,这对今后学习函数知识是非常重要的。

孩子们想知道的:通过表格形式来理解变量、自变量、因变量这些概念。

变量与变量的关系,在生活生产中无处不在,通过对实际问题的理解,在表格信息中发现两个变化的量,通过了解哪一个是主动变化的,哪一个是随着变化的,来识别自变量和因变量。

孩子们能自己解决的:在以前的学习中,孩子们已经经历了分组学习、合作交流等形式,可以解决一些实际问题,具备了合作学习的能力。

三、教学任务分析在孩子们现有的知识基础上,本节的教学及学习任务是鼓励他们用表格整理数据并充分地从表格中获取信息,运用自己的语言进行描述,与同伴进行交流,提高孩子合作交流的意识。

初一变量之间的关系知识点归纳实用-变量之间的关系知识点

变量之间的关系【基础知识】知识网络自变量变量的概念因变量变量之间的关系 1.表格法2.关系式法变量的表达方法速度时间图象3.图象法路程时间图象知识点一、变量、自变量、因变量1、在某一变化过程中,不断变化的量叫做变量。

2、如果一个变量y随另一个变量x的变化而变化,则把x叫做自变量,y叫做因变量。

3、自变量与因变量如何确定:(方法技巧)(1)自变量是先发生变化的量;因变量是后发生变化的量。

(2)自变量是主动发生变化的量,因变量是随着自变量的变化而发生变化的量。

(3)利用具体情境来体会两者的依存关系。

知识点二:变量的表示方法1.列表法1.定义:表格是采用数表相结合的形式,运用表格表示两个变量之间的关系,从中获取信息、研究不同量之间的关系。

(1)首先要明确表格中所列的是哪两个变量;(2)分清哪一个量为自变量,哪一个量为因变量;列表时一般第一行代表自变量,第二行代表因变量.(3)自变量从小到大的顺序列出,再分别求出对应的因变量的值。

结合实际情境理解它们之间的关系。

特点:优点:直观,可以直接从表中找出自变量与因变量的对应值,缺点:具有局限性,只能表示因变量的一部分。

2.关系式法(又叫解析式法)1、定义:关系式(即解析式)是利用数学式子来表示变量之间关系的等式,通常是用含有自变量(用字母表示)的代数式表示因变量(也用字母表示),这样的数学等量关系式叫做关系式。

2、本质:是数学等量关系式3.写法注意,必须将因变量单独写在等号的左边。

3、求关系式的方法:--(就是找等量关系)类型:(1)将自变量和因变量看作两个未知数,根据等量关系,并最终写成关系式的形式。

(2)根据表格中所列的数据相同的变化关系写出变量之间的关系式;(例如:y变化一样都和第一个比)(3)根据实际问题中的基本数量关系写出变量之间的关系式;(4)根据图象写出与之对应的变量之间的关系式。

注:有些表达式要分段写出(分类讨论思想),例如:分段收水费(煤气费、电话费)等.4、关系式的应用:(代入法)(1)利用关系式能根据任何一个自变量的值求出相应的因变量的值;代入法格式:当x= ,y=(2)同样也可以根据任何一个因变量的值求出相应的自变量的值;当y= ,x=5.特点:优点:关系简洁,清楚、准确,知一变量可求另一变量。

用表格表示变量之间的关系


5
-10
(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?
(2)如果用h表示距离地面的高度,t表示温度,那么随着h的变化,t是怎样变化的?
(3)你能猜出距离地面6 km的高空温度是多少吗?
解:(1)题表反映了温度和距离地面高度两个变量之间的关系.距离地面高度是自变量,温度是因变
量.
(2)如果用h表示距离地面的高度,t表示温度,那么随着h的增大,t逐渐减小.
令地点 68.6
m.
9.一辆小汽车在高速公路上从静止到启动 10 s 内的速度经测量如下表:
时间
(s)
速度
(m/s)
0
1
2
3
4
5
6
7
8
9
10
0
0.3
1.3
2.8
4.9
7.6
11.0
14.1
18.4
24.2
28.9
(1)题表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?
(2)如果用t表示时间,v表示速度,那么随着t的变化,v的变化趋势是什么?
C.随着种子浸泡时间的增加,种子发芽率在降低
D.由表格可以看出,种子浸泡时间为12 h左右比较适宜
7.一个蓄水池有50 m3水,打开放水闸门匀速放水,水池中水量和放水时间的关系如表所示,下面说
法不正确的是(
D )
放水时间(min)
1
2
3
4

水池中水量(m3)
48
46
44
42

A.放水时间是自变量,水池中水量是ቤተ መጻሕፍቲ ባይዱ变量
这个上限.
解:(3)当t每增加1 s,v的变化情况不相同,在8 s~9 s时间段内,v增加得最快.

《用表格表示的变量间关系》教案

《用表格表示的变量间关系》教案一、教学目标1. 让学生理解什么是变量,能够识别常量和变量。

2. 让学生掌握表格表示变量间关系的方法。

3. 培养学生运用表格解决实际问题的能力。

二、教学重点与难点1. 教学重点:识别变量和常量。

运用表格表示变量间的关系。

2. 教学难点:理解变量间关系的表达方式。

将实际问题转化为表格表示。

三、教学方法1. 采用问题驱动的教学方法,引导学生通过观察、思考、操作、交流等活动,发现变量间的关系。

2. 利用实例讲解,让学生在实际问题中体验变量间关系的表达方法。

3. 组织小组讨论,培养学生合作学习的能力。

四、教学准备1. 教学课件或黑板。

2. 实例材料。

3. 纸张、笔等学习用具。

五、教学过程1. 导入新课利用生活中的实例,如身高、体重等,引导学生认识变量。

讲解常量和变量的概念。

2. 讲解变量间关系通过实例,讲解变量间的关系,如身高与体重之间的关系。

引导学生观察、分析实例,发现变量间的规律。

3. 学习用表格表示变量间关系讲解如何用表格表示变量间的关系。

示例:以身高和体重为例,制作一个表格,展示身高和体重之间的对应关系。

4. 实践操作让学生分组,每组选择一个实际问题,如“某班级学生的身高和体重数据”,用表格表示变量间的关系。

学生分组讨论、操作,教师巡回指导。

5. 总结与拓展对学生进行总结,巩固所学知识。

提出拓展问题,激发学生思考,如“如何用表格表示复杂的多变量关系?”6. 布置作业让学生完成课后练习,运用表格表示变量间关系。

选择一个实际问题,制作表格,并分析变量间的关系。

六、教学评价1. 评价内容:学生对变量和常量的理解程度。

学生运用表格表示变量间关系的能力。

学生解决实际问题的能力。

2. 评价方法:课堂提问,检查学生对概念的理解。

作业批改,评估学生的实际操作能力。

小组讨论,观察学生的合作和问题解决能力。

七、教学反思1. 教师在课后应对本节课的教学效果进行反思,包括:学生对课堂内容的掌握情况。

六年级数学下册9.1用表格表示变量之间的关系-优秀课件鲁教版五四制


((132))上 根某述据婴的表儿哪中在些的出量 数生在 据时发 ,的生 说体变 一重化 说是? 儿3童.5千从克出,生请到把10 周他岁在之发间育体过重程是中怎的样体随重着情年况龄填的入增下长表而:变化的.
年龄 刚出 6个月 1周岁 2周岁 6周岁 10周

岁体Leabharlann / 千克3.57.0
10.5 14.0 21.0
像这种在变化过程中数值始终不变
的量叫做常量.
始终不变
的量
练习:
• 例题1. 指出下列各题中,哪些量在发生改 变?其中的自变量与因变量各是什么?
(1) 用总长为60m的篱笆围成一个长为a, 面积为S的长方形场地.
(2) 正方形的边长为3,若边长增加x,则面 积增加y.
议一议:
我国从1949年到1999年的人口统计数据如下: (精确到0.01亿):
合作学习
1.圆的面积公式为 S r2, 取 r 的些不同的值,
算出相应的 S 的值:
r _2__ cm
S __4___ cm2
r __3_ cm
S __9___ cm2
r __5_ cm
3
r __2_ cm
S __5___ cm2
S __94___ cm2
在计算半径不同的圆的面积的过程中,哪些 量在改变,哪些量不变?
(2)当圆锥的高由1 厘米变化到10 厘米时,圆锥的体积由 ( V=4π /3 ) 厘米3变化到(V=40π /3 )厘米3。
2厘米
1、到今天为止我们一共学了几种方法来表示自变量与 因变量之间的关系?
列表格与列关系式两种方法
2、列表与列关系式表示变量之间的关系各有什么特点?
通过列表格,可以较直观地表示因变量随自变量 变化而变化的情况。 利用关系式,我们可以根据一个自变量的值求出 相应的因变量的值 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用表格表示变量之间的关系
一、选择题(共3小题,每小题3分,满分9分)
1.我们知道,圆的周长公式是:C=2πr,那么在这个公式中,以下
7.下表是小华做观察水的沸腾实验时所记录的数据:
8.下表给出了橘农王林去年橘子的销售额(元)随橘子卖出质量(千克)的变化的有关数据:
(1) 上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?
(2)当橘子卖出5千克时,销售额是多少?
(3)估计当橘子卖出50千克时,销售额是多少?
9.一次试验中,小明把一根弹簧的上端固定,在其下端悬挂砝码,下面是测得的弹簧长度y(cm)与所挂砝码的质量x(g)的一组对应值:
(1)表中反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?
(2)弹簧的原长是多少?当所挂砝码质量为3g时,弹簧的长度是多少?
(3)砝码质量每增加1g,弹簧的长度增加 c m.
10.在烧开水时,水温达到l00℃就会沸腾,下表是某同学做“观察
水的沸腾”实验时记录的数据:
(1)上表反映了哪两个量之间的关系?哪个是自变量?哪个是因变量?
(2)水的温度是如何随着时间的变化而变化的?
(3) 时间推移2分钟,水的温度如何变化?
(4)时间为8分钟,水的温度为多少?你能得出时间为9分钟时,水的温度吗?
(5)根据表格,你认为时间为16分钟和18分钟时水的温度分别为多少?
(6)为了节约能源,你认为应在什么时间停止烧水?
11.金融危机虽然给世界各国带来不小的冲击,但某公司励精图治,决定投资开发新项目,通过考察确定有6个项目可供选择,各项目所需资金及预计年利润如下表:
所需资金/亿元124678
预计年利润/千
万元0.20.350.550.70.91
(1) 上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?
(2)如果投资一个4亿元的项目,那么其年利润预计有多少?(3)如果要预计获得0.9千万元的年利润,投资一个项目需要多少资金?
(4)如果该公司可以拿出10亿元进行多个项目的投资,可以有几种投资方案?哪种方案年利润最大?最大是多少?。

相关文档
最新文档