交流供电电缆线径选择的十个误区

合集下载

电缆截面选择规则

电缆截面选择规则

电缆、电线等截面选择的原则:电缆、电线等截面选择,应考虑的因素很多,如多根在空中并列敷设,直埋地下并列敷设,穿管敷设、架空敷设,环境温度变化等,都对它们的允许载流量有影响,但主要的应遵循经济电流密度,线路电压降,导线机械强度等原则选取导线。

1)经济电流密度原则电缆、电线的额定长期连续负荷允许载流量不应小于用电负荷的最大计算电流,能保证其工作在允许温升范围之内,如果电缆、电线的截面选小了,允许载流量小于负荷电流,温升将超过允许值,加速绝缘老化,使线间绝缘程度降低,威胁用电安全;反之电缆、电线的截面选大了,将加大工程成本,造成材料资金的浪费。

①首先确定计算容量单相负荷主要指照明和单相用电设备,计算容量是把所有额定容量加在一起乘以同时使用系数Ke,一般可取0.6Pj=P总*Ke单相负荷采用三相电源供电时,应将所有单相符合均匀分配到各相,如分配不平衡时,以最大负荷相功率乘以3进行计算。

长期工作设备,如水泵等,其计算容量包所有额定容量加在一起乘以同时使用系数Ke,一般可取0.7Pj=P总*Ke反复时工作制设备,如焊机等,其视在容量Se和负荷持续率Zce。

计算容量时应进行换算,换算至负荷持续率为100%时的有功功率,在乘以利用系数Ke,一般可取0.45,功率因数COSφ;一般取0.45。

(Pj/ Se总*COSφ*Ke)2= Zce②在确定计算电流单相电流计算:I=P/Ue* COSφ式中Ue为额定电压,考虑各方面因素,单相负荷每千瓦估算为4.5A。

三相电流计算:I=P/3Ue* COSφ式中Ue为线电压,考虑各方面因素,三相负荷每千瓦估算为2A。

③确定导线截面按照计算电流敷设方式和使用条件查“500V铜芯绝缘导线长期连续符合允许载流量表”,“500V铝芯绝缘导线长期连续符合允许载流量表”等表确定电缆电线截面。

2)线路电压原则电压计算公式:ΔU=Ue-Ui式中Ue为额定电压,Ui为设备端电压线路电压降原则选择电缆电线截面积公式:S=Pj*L/C*ΔU%式中S导线截面,单位mm2;Pj为计算容量,单位kW; L为线路长度,单位m;C为材料内部系数,铜取77,铝取46.3;ΔU%为电压损耗百分比,一般取5%。

电线、电缆截面如何选择?看完此文竟变得如此简单!

电线、电缆截面如何选择?看完此文竟变得如此简单!

电线、电缆截面如何选择?看完此文竟变得如此简单!温馨提示:如您无时间阅读此文或非专业人士,可选择黑体部分选择性阅读电力电缆截面选择是一个大家十分关心的问题,因为它是电气设计的主要内容之一。

传统的电缆截面选择方法是按技术体选择,可分为4类:①按允许发热条件选择,也就是按允许载流量选择;②按经济电流密度选择;③按允许电压损失校验;④按短路热稳定校验。

⑤按机械强度选择导线。

主要指架空线路,电缆不需要。

1 .按长期允许载流量选择电缆截面为了保证电缆的使用寿命,运行中的导体电缆温度应不超过规定的长期允许工作温度:聚氯乙烯绝缘电缆为70℃,交联聚乙烯绝缘电缆为90℃。

根据这一原则,在选择电缆截面时,必须满足下列条件:Imax≤I0K式中:Imax——通过的最大连续负荷载流量(A);I0 —指定条件下的长期允许载流量(A),见附表1;K —长期允许载流量修正系数,见附表2.举例:某工厂主变压器容量S为12000KVA,若以直埋35KV交联电缆供电,试问应选择多大电缆截面?(土壤温度最高30℃,土壤热阻系数2.5)解:按下列计算电缆线路应通过的电流值查附表1-12得:1.铜芯交联电缆8.7/10KV 3×95mm²,最大连续负荷载流量为220A,25℃。

2.由于敷设土壤温度最高为30℃,应进行温度修正,查附表2-2得修正系数为0.96. I修=220(A)×0.96=211(A)3.通过土壤温度的修正后该电缆的连续负荷载流量虽只有211(A),仍能满足电缆线路198(A)的要求。

2.按经济电流密度选择电缆截面国际电工委员会标准IEC287-3-2/1995提出了电缆尺寸即导体截面经济最佳化的观点:电缆导体截面的选择,不仅要考虑电缆线路的初始成本,而且要同时考虑电缆在寿命期间的电能损耗成本。

因此要从经济电流密度来选择电缆截面。

按载流量选择线芯截面时,只计算初始投资;按经济电流选择线芯截面时,除计算初始投资外,还要考虑经济寿命期内导体损耗费用,二者之和应最小。

工程上怎样选择电缆的直径(附超全对照表)

工程上怎样选择电缆的直径(附超全对照表)

工程上怎样选择电缆的直径(附超全对照表)1、综述铜芯线的压降与其电阻有关,其电阻计算公式:20℃时:17.5÷截面积(平方毫米)=每千米电阻值(Ω)75℃时:21.7÷截面积(平方毫米)=每千米电阻值(Ω)其压降计算公式(按欧姆定律):V=R×A线损是与其使用的压降、电流有关。

其线损计算公式:P=V×A P-线损功率(瓦特) V-压降值(伏特) A-线电流(安培)2、铜芯线电源线电流计算法1平方毫米铜电源线的安全载流量--17A。

1.5平方毫米铜电源线的安全载流量--21A。

2.5平方毫米铜电源线的安全载流量--28A。

4平方毫米铜电源线的安全载流量--35A 6平方毫米铜电源线的安全载流量--48A 10平方毫米铜电源线的安全载流量--65A。

16平方毫米铜电源线的安全载流量--91A 25平方毫米铜电源线的安全载流量--120A。

单相负荷按每千瓦4.5A(COS&=1),计算出电流后再选导线。

3、铜芯线与铝芯线的电流对比法2.5平方毫米铜芯线等于4平方毫米铝芯线 4平方毫米铜芯线等于6平方毫米铝芯线 6平方毫米铜芯线等于10平方毫米铝芯线 <10平方毫米以下乘以五> 即: 2.5平方毫米铜芯线=<4平方毫米铝芯线×5>20安培=4400 瓦;4平方毫米铜芯线=<6平方毫米铝芯线×5>30安培=6600 瓦;6平方毫米铜芯线=<10平方毫米铝芯线×5>50安培=11000 瓦土方法是铜芯线1个平方1KW,铝芯2个平方1KW.单位是平方毫米就是横截面积(平方毫米)电缆载流量根据铜芯/铝芯不同,铜芯你用2.5(平方毫米)就可以了其标准:0.75/1.0/1.5/2.5/4/6/10/16/25/35/50/70/95/120/150/185/240 /300/400... 还有非我国标准如:2.0 铝芯1平方最大载流量9A,铜芯1平方最大载流量13.5A二点五下乘以九,往上减一顺号走。

电缆直径的选择

电缆直径的选择

电缆直径及电缆桥架的选择电气控制2010-09-22 07:40:50 阅读152评论0 字号:大中小订阅ZA-KVVRP 2*1.5直径:10mm面积:79mm2ZA-KVVRP 3*1.5直径:12mm面积:113mm2YJV22-0.6/1kv3*6+1*4YJV22-0.6/1kv3*10+1*6直径:23mm面积:412mm2YJV22-0.6/1kv3*16+1*10直径:30mm面积:707mm2YJV22-0.6/1kv3*25+1*10YJV22-0.6/1kv3*35+1*16YJV22 3*95+1*50 直径:37mm面积:1075mmYJV22 3*240+1 直径::60mm面积:2826mm以上仅为参考值电缆截面积总和不能超过桥架的40 %1、根据电缆外径(可以从你订购的厂家样本查找),计算你要在桥架内敷设的电缆截面:Sc1=3.14 XDcXDc-4。

(De 为电缆外直径)。

2、将桥架内敷设的所有电缆的截面相加,即刀Sc=Sc1+Sc2+Sc3+....。

3、计算需要的电缆桥架截面积:St=刀Sc- 0.44、根据St的值选择桥架,只要桥架的高X宽的值大于St就行,但要注意:若电缆单层布置,则高度应大于最大电缆的直径的2倍(考虑会有交叉),根据定好的高度在计算宽度。

若电缆可以多层敷设,则根据现场安装条件选择。

电缆的规格,通信电缆规格直径对照表价格绝缘导线载流量估算电缆的规格,直径对照表铝芯绝缘导线载流量与截面的倍数关系导线截面(mm 2 )1、1.5、2.5、4、6、10、16、25、35、50、70、95、120、150、185、240平方等。

10 (平方毫米)以下的一般叫电线,10 (平方)以上的叫电缆。

载流是截面倍数9、8、7、6、5、4、3.5、3、2.5载流量(A) 9、14、23、32、48、60、90、100、123、150、210、238、300BV是指塑料铜线,LBV是指塑料铝线,电线电缆都分为铝线和铜线两种材质。

电线粗细选择口诀

电线粗细选择口诀

电线粗细选择口诀在电气工程中,正确选择电线的粗细非常重要。

电线粗细与所需负载电流以及电线所能承受的电流密度有关。

过于粗细的电线会造成浪费,而过于细小的电线则会导致电线过热,甚至引发安全事故。

下面是一个简单易记的电线粗细选择口诀,用以帮助我们做出恰当的选择:一、先确定负载电流,再查表查资料,电线粗细不再纠结。

二、负载电流小于表规定,更细一号更省钱。

三、负载电流大于表规定,询问专业工程师再选定。

四、电线负载最大流量,电线需满足大流量。

五、电线的截面面积,电线选择需合理。

六、环境温度要考虑,电线的选择不该忽略。

七、长距离输送电,电线粗细要再估。

根据上述电线粗细选择口诀,我们来举几个例子,以帮助大家更好地理解并应用这些规则。

首先,假设我们需要为一个照明灯具选取电线。

根据口诀,我们先确定负载电流。

假设负载电流为5安培。

然后我们查表或者咨询专业工程师,得知5安培电流对应的电线规格为2.5平方毫米。

所以我们可以选择2.5平方毫米的电线来连接这个照明灯具。

再举一个例子,假设我们需要为一台大功率家用电器选取电线。

负载电流根据家用电器的功率和额定电压计算得出为25安培。

根据口诀,我们询问专业工程师以确定合适的电线规格。

工程师告诉我们,对于25安培负载电流,建议使用6平方毫米的电线来确保安全并满足大电流需求。

在实际选择电线粗细的过程中,还有一些其他因素需要考虑。

比如环境温度,一般来说,环境温度较高时,电线的输电能力会下降,因此需要选择更粗的电线来应对。

另外,长距离输送电时,由于电线电阻会造成线损,也需要选择较粗的电线以减少线损。

总结一下,选择合适粗细的电线是电气工程中的重要任务。

通过上述电线粗细选择口诀,我们可以在大部分情况下做出合理的选择。

但是在特殊情况下,我们还是需要咨询专业工程师以确保电线选择的准确性和安全性。

希望这个口诀能帮助大家更好地理解电线粗细选择的原则,并在实际应用中起到指导作用。

最实用电缆线径选择心得

最实用电缆线径选择心得

电缆线径选择心得根据本人多年的工程经验,对电缆线径选择有以下几点心得,供大家参考;一、负载电流大小与周围环境对于铝电缆的载流量有这样一个较流行的口决:10平方以下的按5A计算;16、25平方的按4倍计算;35、50平方的按三倍计算;70、95平方的按2.5倍计算;穿管的按8折计算。

如果是铜导线就按上述铝导线的安全载流量的线号长一级计算。

其实在实际应用过程中,如果你按照该口诀去选择电缆,你会发现电缆在使用过程中发热严重,这样不但影响到用电的安全性,还增加了设备的运行费用。

其实在工程中常用的都是铜芯电缆,我自己总结出一个经验公式:10以下按每平方3.5A计算;16、25按每平方3A计算;35、50按每平方2.5A计算;70、95、120按每平方2A计算;150、185按每平方1.8A计算;240以上按每平方1.5A计算;举个例子:一台循环水泵的功率为55KW,额定电流为108A,实际电流为100A,如果按照口决我们用25平方的铜芯电缆即可,而用我的经验用50平方的铜芯电缆,两者都可以用,前者对于设备投入就很少,但以后的运行费用前者就很高,我们来计算一下两者每年所损耗的电费。

假设这段电缆长度为50米,W损耗=3I²*R*t/1000,其中I为电缆所通过的电流(A),R为每一相电缆的直流电阻值(Ω),t 为运行时间(小时H,一年为8760小时),W损耗为一年所损耗的电度(KW.H)数。

25平方电缆每年的损耗:先计算直流电阻:R=ρ*L/S 其中ρ为铜的电阻率0.0175Ω.mm²/m,L 为长度单位为m,S为电缆面积单位mm².所以R=0.0175*50/25=0.035Ω,W损耗=3*100²*0.035*8760/1000=9198KW.h即为9198度电50平方电缆每年的损耗:R=0.0175*50/50=0.0175ΩW损耗=3*100²*0.0175*8760/1000=4599KW.h即为4599度电,则一年使用下来多损耗9198-4599=4599度电,按每度电0.75元计算,则每年多损耗4599*0.75=3449元钱,这些钱基本上就可以再买一根50平方的电缆了。

线径选型标准

线径选型标准

线径选型标准在进行电线、电缆选择时,线径的选型是一个重要的考虑因素。

线径的选择直接影响到电气系统的安全性、性能以及经济性。

本文将介绍一些线径选型的标准和方法,帮助您做出正确的选择。

一、线径选型的重要性线径选型直接关系到电气系统的安全性和性能。

若线径选得过小,则电流密度过大,容易引起过载、过热,甚至导致线缆烧毁。

若线径选得过大,则会造成资源的浪费和额外的成本支出。

因此,在选择线径时需综合考虑电流负载、环境温度、电线长度等因素,以确保系统正常运行。

二、线径选型的标准和方法1. 标准选项法许多国家和地区都制定了线径选型的标准,如国际电工委员会(IEC)的相关标准和中国国家标准。

这些标准中通常提供了一份线径与电流负载的对应关系表格,可根据系统的负载情况和环境条件,选取相应的线径。

2. 计算法线径选型也可以通过计算来进行。

根据电流负载、导体材料、环境温度等参数,利用公式或计算软件进行计算。

这种方法需要一定的电气专业知识,并且需要准确的参数输入,以得到可靠的结果。

在计算时,还需考虑短路能力、电压降、温升等因素,以满足系统的要求。

3. 经验法经验法是一种基于实践和经验的线径选型方法。

根据类似的应用场景和经验数据,可以选择合适的线径。

这种方法相对简便,但仍需注意距离和降温因素对线径的影响。

三、线径选型的主要考虑因素在线径选型时,需考虑以下几个主要因素:1. 电流负载:根据实际负载电流大小来选择线径。

一般来说,线径与负载电流成正比。

2. 环境温度:环境温度越高,导线导体的温度上升会越大,需选择较大的线径以降低温度升高对系统的影响。

3. 导体材料:不同材料的导线导体具有不同的导电能力和散热能力,需根据导体材料的特性来选择合适的线径。

4. 电线长度:电线长度越长,电压降越大,需选择较大的线径以减小电压降。

5. 短路能力:为确保系统的安全性,需考虑电线的短路能力,以选择足够的线径来承受短路电流。

四、线径选型的实际案例以下是一个线径选型的实际案例,以帮助读者更好地理解线径选型的过程。

配电交流供电电缆线径选择

配电交流供电电缆线径选择

交流供电电缆线径选择的十个误区机房供配电系统设计有一定的规范,用户新建机房供配电系统时,应通过设计单位选择合适的交流线径,严格按设计文件施工。

对于现有机房新增一般性负载,往往由用户自行设计并安装。

安全用电是动力设备安装与维护人员的基本要求,所有安装与维护人员都有必要了解交流电缆线径选择的方法和原则。

维护人员在日常工作中不局限于发现设备潜在故障,也应关注线缆等配套设备存在的风险,实现精细化维护。

在具体的安装与维护工作中,不少工程师对电缆线径的选择存在着一些误区,需要对这些误区进行分析。

选择了错误的电缆线径,轻则增加了建设或运行成本,重则可能带来巨大的安全隐患。

本文列出的十个误区都是工程与维护人员容易发生的,事实上导线线径选择还有更多的影响因素,具体选择线径时应根据环境温度、允许温升、敷设方式等查询电工手册或其它相关设计规范。

误区一:经济电流密度2~4A/mm2,选2偏安全,选4偏经济按照经济电流密度选择交流线径是通行的方法,铜质电缆经济电流密度为2~4A/mm2。

显然,取经济电流密度为2A/mm2时,线径较粗,投资成本较高;取经济电流密度为4A/mm2时,线径较细较经济。

一些工程人员认为,按照经济电流密度选择电缆即可,选2A/mm2偏安全,选4A/mm2偏经济,都是可行的选择。

当电缆较细时,电缆比表面积大,对散热有利;当电缆较粗时,电缆比表面积小,热量不易散发,单位截面积导线通过相同的电流时,粗电缆温度较高。

如果电缆温度超过允许值,就会发生危险。

下表为在空气中敷设的塑料绝缘铜芯电线长期连续负荷载流量(《电工手册》第14章第99页,上海科学技术出版社第四版,吕如良等主编,2002年1月),周围环境温度为25℃,线芯长期允许工作温度为70℃。

由上表可见,较细的电缆每平方载流量远大于4A,随着电缆线径的增加,每单位mm2载流量明显下降。

由于电缆不应一直运行于最高温度,同时存在可能的过流或其它因素影响,选择时导线载流量应小于上表载流量数值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

交流供电电缆线径选择的十个误区机房供配电系统设计有一定的规范,用户新建机房供配电系统时,应通过设计单位选择合适的交流线径,严格按设计文件施工。

对于现有机房新增一般性负载,往往由用户自行设计并安装。

安全用电是动力设备安装与维护人员的基本要求,所有安装与维护人员都有必要了解交流电缆线径选择的方法和原则。

维护人员在日常工作中不局限于发现设备潜在故障,也应关注线缆等配套设备存在的风险,实现精细化维护。

在具体的安装与维护工作中,不少工程师对电缆线径的选择存在着一些误区,需要对这些误区进行分析。

选择了错误的电缆线径,轻则增加了建设或运行成本,重则可能带来巨大的安全隐患。

本文列出的十个误区都是工程与维护人员容易发生的,事实上导线线径选择还有更多的影响因素,具体选择线径时应根据环境温度、允许温升、敷设方式等查询电工手册或其它相关设计规范。

误区一:经济电流密度2~4A/mm2,选2偏安全,选4偏经济按照经济电流密度选择交流线径是通行的方法,铜质电缆经济电流密度为2~4A/mm2。

显然,取经济电流密度为2A/mm2时,线径较粗,投资成本较高;取经济电流密度为4A/mm2时,线径较细较经济。

一些工程人员认为,按照经济电流密度选择电缆即可,选2A/mm2偏安全,选4A/mm2偏经济,都是可行的选择。

当电缆较细时,电缆比表面积大,对散热有利;当电缆较粗时,电缆比表面积小,热量不易散发,单位截面积导线通过相同的电流时,粗电缆温度较高。

如果电缆温度超过允许值,就会发生危险。

下表为在空气中敷设的塑料绝缘铜芯电线长期连续负荷载流量(《电工手册》第14章第99页,上海科学技术出版社第四版,吕如良等主编,2002年1月),周围环境温度为25℃,线芯长期允许工作温度为70℃。

由上表可见,较细的电缆每平方载流量远大于4A,随着电缆线径的增加,每单位mm2载流量明显下降。

由于电缆不应一直运行于最高温度,同时存在可能的过流或其它因素影响,选择时导线载流量应小于上表载流量数值。

由此看来,经济电流密度理解为粗电缆取2、细电缆取4,比理解为选2偏安全、选4偏经济更合乎实际。

误区二:只按经济电流密度,不复核电缆压降信假定某单相交流负载最大电流不超过16A(单相负载电流通常不超过20A),按经济电流密度法选用4mm2电缆,如果负载距离100米,铜电导率σ为57,电缆电阻为:R=L/(σS)=100×2/(57×4)=0.88Ω电缆上电压降ΔU为ΔU=IR=16×0.88=14.1V连接回路在最大工作电流作用下的电压降,不得超过该回路允许值(《电力工程电缆设计规范》第6页,GB50217-94),该例电缆上电压降达到14.1/220=6.4%,超过多数设备线路上压降不应大于5%的要求。

负载工作电压下降6.4%,相应的工作电流上升1A,需要选用更粗的电缆(如6mm2),重新计算电压降,直至电压降小于5%。

误区三:只选择电线线径,不考虑电线类型计算电缆线径时,只确定了电缆金属介质的截面积。

只要截面积相同,不论何种绝缘层与护套,电缆本身性质完全相同(铜质,通信机房电力电缆一般不用铝芯电线)。

但正是由于绝缘层与护套的不同,散热性能、允许温升就有区别,如常用的VV(聚氯乙烯绝缘)电缆与JYV(交联聚乙烯绝缘)电缆,前者允许温度为70℃,后者可达90℃,因此JYV电缆允许的截流量更大,同样的负载电流条件下,可以选择较小的线径。

此外,单芯与多芯电缆(指内部含互相绝缘的多芯成套电缆)散热条件不同,截流量也有区别。

例如,铜芯导体截面为50mm2,单芯与多芯明敷电缆在环境温度为25℃、导体温度分别为70℃(VV电缆)和90℃(JYV电缆)时载流量规格如下表所示由上表可知,多芯电缆载流量较单芯为小,VV电缆载流量较YJV电缆为小,设计电缆时需要计入这些因素。

多根单芯电缆平行捆扎敷设时,计算载流量也应在单芯电缆的基础上乘以一个小于1的降额矫正系数。

下表为《工厂供电》中多根电缆并列时载流修正系数,电缆相距100mm。

误区四:优先选择长期安全载流量大的电缆一般地,从电缆的绝缘性能、环保性能和耐候性能等方面看,YJV电缆载流量大,在各方面比VV电缆性能更优异,应在工程设计中优先考虑。

事实上,YJY电缆虽然具有载流量大、电缆直径小、重量轻、方便安装等优点,但在同等截面积条件下,YJY电缆比VV电缆流量大的原因仅仅是因为能承受的温度高而已。

截面积相同,铜的质量、导电率也相同,因而在输送同等电流的情况下,选择YJY电缆可以比选择VV电缆细一些的线径,但线路电阻增加,线损和电压降也增加,长期运行不一定合算。

电缆选择必须全面考虑环境条件、使用场所、敷设方式、供电距离、长期运行的费用和电压降,能用VV电缆的场所一般仍推荐用VV电缆。

如果原行线架上已敷设VV电缆,新设计增加耐受温升更高的JYV电缆是没有意义的,平行捆扎走线的电缆只能按耐受温升最低的电缆计算载流量。

误区五:并联多大的导线,就相当于线径增大多少平方大型机房负载容量大,需要提供很大的电流,如果选择一根导线,无疑需要线径很粗的供电电缆,施工并不方便,甚至没有足够粗的导线可供使用。

多根导线并联是允许的,由于线径小的电线每平方载流量大于粗电线,并联方式可能在经济上更合算。

并联电线之间的电流在理论上按截面积分配,只要是相同材质电线(如铜线),都可以直接并联。

但实际工程中,最好使用相同的线径。

如果线径相差悬殊,可能由于接线端子存在一定电阻,以及与电缆截面积不成正比的感抗作用,导致电流分配偏差,一根导线可能分配电流过大,超过安全载流量。

此外,如果采用不一致的线径,需仔细复核电线上的电流是否小于安全载流量,细导线的单位载流量只能按粗导线计算。

因此,大小相差悬殊的电缆并联使用,电缆载流量往往并不按照理想条件下的电流分配规律来分配,小电缆相对发热明显。

两线并联时,粗的电缆不应大于细电缆的两倍。

只根据负载电流选择交流输入电缆的线径,事实上存在着安全风险。

例如,某大楼由功率S 为315KVA的变压器供电,变压器Z值为5%。

现欲在配电室增加一台3P空调(单相),发现配电柜内有一额定容量为500A的断路器CB3空闲未用,拟通过该断路器为空调引入一相交流电,如下图所示。

工程人员按经济电流密度法选择线径,取经济电流密度为4A/mm2,空调工作电流12A,选择电缆的截面积S为4mm2,并在空调侧安装16A空开作为空调输入开关。

A16A315KVA/Z=5% 信息来自:输配电设备网CB1/500A 信息来自:输配电设备网CB2/500A 信息来源:CB3/500ACB4/500A其它负载50米信息来自:输配电设备网3P空调空调距离配电柜较远,电缆长度L为50米,导线电阻R为R=L/(σS)=50×2/(57×4)=0.44Ω假定电网供电能力为无穷大,变压器短路电流IST为:IST=S/(3U×Z)=315×1000/(220×3×5%)=9545A变压器副卷单相等效电阻RT为:RT=U/I=220/9545=0.023Ω假定变压器输出端至CB3所有导体与接头电阻之和为0.05Ω,如果电缆末端A点发生短路,短路电流为ISIS=U/R=220/(0.023+0.05+0.44)=429A由于断路器跳闸电流为500A,因此电缆末端短路后断路器不跳闸,电缆烧断甚至起火。

由以上例子可以看出,在选用电缆时,需要校验短路电流。

在检查供配电系统时,如果发现大型断路器后端连接细电线,就应重点关注。

(注:除短路电流需要核算外,还应计算接地故障电流,校验断路器是否符合要求。

因本文只讨论电缆选型问题,不在此讨论如何选用断路器。

) 信息来自:误区七:按负载电流选线,不考虑断路器容量根据负载性质不同,断路器容量一般选择为负载电流的1.15~1.5倍。

断路器选定以后,过载跳闸电流即已确定(大型断路器往往允许整定跳闸电流)。

过流的产生与供电质量、负载质量及运行状态有关,也与漏电流有关。

在通信机房供电系统中,通常并不安装漏电保护器,如果漏电流与负载电流之和不超过断路器额定电流,断路器不跳闸,负载继续运行。

在有较大漏电流的情况下,如果线径只按负载电流设计,可能导致线径偏小,超过导线安全载流量,电缆发热过温,存在的安全风险比漏电流更甚。

正确的做法是:根据负载电流选择断路器(包括微断,熔丝等过流保护装置也是类似的)容量,再根据断路器容量选择导线线径,再复核压降是否符合规范要求。

误区八:只考虑建设成本,不核算运行总成本设计单位进行配电设计时,会计算负载电流、线路压降等,按建设投资最低的原则设计,较少考虑运行成本。

仍以3P空调为例,如果选用4mm2的电缆,消耗在电缆上的功率为:P=I2R=122×0.44=63W如果改选用6mm2的电缆,电缆电阻值为:R=L/(σS)=50×2/(57×6)=0.29Ω消耗在电缆上的功率为P=I2R=122×0.29=42W损耗降低21W。

假定电费每度1元,一年运行下来,选用6mm2的电缆可以节约电费C为C=21×24×365/1000×1=184元。

按北京电缆价格,2×6mm2的电缆比2×4mm2的电缆贵2.2元/米,50米的电缆差价仅为110元,选用6mm2的电缆初期投资大于选用4mm2的电缆,但不到1年即可收回投资,显然更为经济,总运行费用更节省。

选用更粗的电缆是否更经济,需要按同样的方法进行核算,如果三到五年可以收回投资,宜选用较粗的电缆。

误区九:零线选择未考虑三次谐波与不平衡电流当负载三相不平衡时,零线将有电流流过;当三相严重不平衡时,零线电流甚至大于相电流。

计算机、节能灯等电子设备多产生三次及三的倍次谐波,谐波电流通过零线。

对于谐波抑制不佳的电子设备来说,三次谐波电流可能大于相电流,零线电流很大。

此外,三次及以上谐波频率较高,在导线内流过时有趋肤效应,即电流主要从导体表面流过,相当于缩小了导线截面积,热效应更加明显。

现行IDC机房建设过程中,普遍采用3+2电缆,即一根圆形绝缘电缆中包括三根相线、一根零线和一根保护地线,如3×50+2×25电缆,零线线径为相线的一半。

如果为普通计算机或照明供电,当负载达到设计容量后,存在一定的安全风险,三次谐波导致零线过热甚至着火。

除非负载谐波抑制效果好,或进行了谐波整治,否则零线线径不应小于相线线径。

误区十:保护地线目的是等电位连接,线径细一点也可以交流设备与机房接地排之间、设备内部部件与机柜之间连接有保护接地线,一方面是等电位连接的要求,使所有设备和部件外壳保持等电位,预防触电以及由于雷电侵入导致的内部放电;另一方面用于泄放接地故障电流。

相关文档
最新文档