2019-2020 年北京初中数学竞赛 九年级 比例与相似专题(含答案)

合集下载

北师大版九年级数学上册第四章图形的相似 4.1成比例线段第1课时比例线段同步练习及答案

北师大版九年级数学上册第四章图形的相似  4.1成比例线段第1课时比例线段同步练习及答案

1 第1课时 成比例线段知识点 1 线段的比1.下列说法中正确的有( )①两条线段的比是两条线段的长度之比,比值是一个正数;②两条线段的长度之比是同一单位下的长度之比;③两条线段的比值是一个数量,不带单位;④两条线段的比有顺序,a b 与b a 不同,它们互为倒数.A .1个B .2个C .3个D .4个2.已知线段AB ,在BA 的延长线上取一点C ,使CA =3AB ,则线段CA 与线段CB 之比为( )A .3∶4B .2∶3C .3∶5D .1∶2知识点 2 成比例线段3.下列各组线段(单位:cm)中,是成比例线段的是( )A .1,2,3,4B .1,2,2,4C .3,5,9,13D .1,2,2,34.教材随堂练习第3题变式题若线段a ,b ,c ,d 成比例,其中a =3 cm ,b =6 cm ,c =2 cm ,则d =__________.知识点 3 比例的基本性质5.已知x 2=y 3,那么下列式子中一定成立的是( ) A .2x =3y B .3x =2yC .x =2yD .xy =66.若3a =5b ,则a b=________.7.等边三角形的一边与这条边上的高的比是( ) A.3∶2 B.3∶1C .2∶ 3D .1∶ 38.如果a +2b b =52,那么a b的值是( ) A.12 B .2 C.15D .5 9.如图4-1-1所示,已知矩形ABCD 和矩形A ′B ′C ′D ′,AB =8 cm ,BC =12 cm ,A ′B ′=4 cm ,B ′C ′=6 cm.(1)求A ′B ′AB 和B ′C ′BC的值; (2)线段A ′B ′,AB ,B ′C ′,BC 是成比例线段吗?图4-1-110.教材习题4.1第2题变式题如图4-1-2,已知AD DB =AE EC,AD =6.4 cm ,DB =4.8 cm ,EC =4.2 cm ,求AC 的长.图4-1-211.已知三条线段的长度分别是4,8,5,试写出另一条线段的长度,使这四条线段为成比例线段.1.D.2.A .3.B 4.4 cm 5.B 6.53 7.C8.A9.解:(1)∵AB =8 cm ,BC =12 cm ,A ′B ′=4 cm ,B ′C ′=6 cm , ∴A ′B ′AB =48=12,B ′C ′BC =612=12.(2)由(1)知A ′B ′AB =12,B′C ′BC =12,∴A ′B ′AB =B ′C′BC ,∴线段A ′B ′,AB ,B ′C ′,BC 是成比例线段.10.解:∵AD DB =AE EC ,∴6.44.8=AE 4.2,解得AE =5.6(cm),则AC =AE +EC =5.6+4.2=9.8(cm).11.解:设所求的线段长度为x .当x ∶4=8∶5时,可求得x =325;当x ∶4=5∶8时,可求得x =208=52;当4∶8=5∶x 时,可求得x =404=10.所以所求的线段长度可能为325或52或10.。

2019—2020年北京课改版九年级数学第一学期《相似三角形》章节检测题.docx

2019—2020年北京课改版九年级数学第一学期《相似三角形》章节检测题.docx

相似三角形章节题检测一、耐心填一填:(每空格2分,共14×2=28分)1、如果4x =5y ,那么x y = 。

2、若340x y -=,则x y = , ______,=-+yx y x 3、在比例尺为1∶5 000 000的地图上,量得甲、乙两地的距离是25厘米,则两地的实际距离是______________km 。

4、如右图3,铁道口的栏杆短臂长1m ,长臂长16m ,当短臂端点下降0.5m , 长臂端点升高_________m 。

5、如图2所示(在上面),DE ∥BC ,AB =6,AD =4,AE =3,则AC = 。

6、 如图3所示(在上面),要使△ACD ∽△ABC ,需要增加的一个条件是 。

M?0.5m图3EAB CD O7、如果两个相似三角形的相似比为5:3,则周长比是___________;面积比是_________.8、如果一个三角形的三边长分别为3,4,5,与其相似的三角形的最长边为15,则较大三角形的周长为_______________________9、两个相似三角形的相似比为4:5,其中较小的三角形面积为16,则较大三角形面积是_____. 5,2,3,△A ’10、如果△ABC ∽△A ’B ’C ’,且△ABC 的三边长分别为B ’C ’的两边长分别为10,6,△A ’B ’C ’的第三边长为 。

11、如右图,ABCD 中,E 为DC 的中点,AE 交BD于点O ,212DOE S cm ∆=,则AOB S ∆=12. 如图,将一副三角板按图叠放,则△AOB 与△DOC 的面积之比等于 .二、细心选一选:(每题3分,共30分)13.下列各组长度的线段,是成比例线段的是( )( A ) 2 cm , 8 cm , 4 cm , 10 cm ( B ) 6 cm , 8 cm , 15 cm , 25 cm ( C ) 1.5cm 、3cm 、4cm 、1cm ( D ) 1cm 、2cm 、2cm 、4cm 14.下列说法正确的是( )A 、有一个角为40°的两个等腰三角形相似B 、有一个角为120°的两个等腰三角形相似C 、底角是35°的两个等腰梯形相似D 、邻边之比是4的两个平行四边形相似15.如图6,DE ∥BC ,在下列比例式中,不成立的是 ( ) (A)AB AE AC AD =;(B)DC AD BC DE =;(C)CD AC BE AB =;(D)ACABAD AE =;OABCDE16.如右图,CD 是Rt △ABC 斜边上的高,则图中相似三角形的对数有( ) A.0对 B.1对 C. 2对 D.3对17.如图,△ABC 中,若BC ∥DE ,AD=2,DB=3,则BCDE的值是( ) A .32 B .52 C .25 D .23 18.顺次连接三角形各边中点所得三角形面积与原三角形面积的比是( ) (A )1:2 (B )2:1 (C )1:4(D )4:119.如右图,在Rt △ABC 中,∠C=90°,CD ⊥AB ,垂足为D ,AD=8,DB=2,则CD 的长为( )A. 4B. 16C. 25D. 4520.如图,在大小为4×4的正方形网格中,是相似三角形的是( )④③②①A.①和②B. ②和③C. ①和③D. ②和④ 21.如图,已知DE // BC , CD 与 BE 相交于点 O ,并且S △DOE :S △COB =4:9则 AE : AC =( ).( A ) 4:9 ( B ) 16: 81 ( C ) 2: 3 ( D ) l : 2FDBCAEO AB CDA 1B 1C 1A 2C 2B 2 xy22. 如图,△ABC 中,AD 为BC 边的中线,F 是AD 上的一点,且AF:DF=1:5,连接CF 并延长交AB 于点E,则AE:EB 等于( )A. 1:6B. 1:8C. 1:9D. 1:1023.在平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为(1,0),点D 的坐标为(0,2).延长CB 交x 轴于点A 1,作正方形A 1B 1C 1C ;延长C 1B 1交x 轴于点A 2,作正方形A 2B 2C 2C 1…按这样的规律进行下去,第2010个正方形的面积为 ( )A .2009235⎪⎭⎫⎝⎛B .2010495⎪⎭⎫ ⎝⎛C .2008495⎪⎭⎫ ⎝⎛D .4018235⎪⎭⎫ ⎝⎛四、用心想一想:(共59分)24、如图所示,△ABC 在网格A 中,请在网格B 中画出与△ABC 相似的一个三角形,要求所画的两个三角形相似比不等于1,并求出相似比。

精品北师大版2019-2020九年级数学上册第四章图形的相似单元检测卷答案解析

精品北师大版2019-2020九年级数学上册第四章图形的相似单元检测卷答案解析

第四章 图形的相似单元检测卷一、选择题(每题3分,共30分)1.已知7x =9y(y ≠0),那么下列比例式中正确的是( )A.7x =9y B.9x =7yC.y x =97D.7x=y 92.下列各组图形中有可能不相似的是( )A .各有一个角是45°的两个等腰三角形B .各有一个角是60°的两个等腰三角形C .各有一个角是105°的两个等腰三角形D .两个等腰直角三角形3.如图,直线a ,b ,c 被直线l 1,l 2所截,交点分别为点A ,C ,E 和点B ,D ,F .已知a ∥b∥c ,且AC =3,CE =4,则BDBF 的值是( ) A.34B.43C.37D.47(第3题) (第4题) (第6题) (第7题)4.如图,在平面直角坐标系中,有点A (6,3),B (6,0),以原点O 为位似中心,相似比为13,在第一象限内把线段AB 缩小后得到线段CD ,则点C 的坐标为( ) A .(2,1)B .(2,0)C .(3,3)D .(3,1)5.对于平面图形上的任意两点P ,Q ,如果经过某种变换得到新图形上的对应点P ′,Q ′,保持PQ =P ′Q ′,我们把这种变换称为“等距变换”.下列变换中不一定是等距变换的是( ) A .平移B .旋转C .轴对称D .位似6.如图,为估算河的宽度(河两岸平行),在河对岸选定一个目标点A ,在近岸取点B ,C ,D ,使得AB ⊥BC ,CD ⊥BC ,点E 在BC 上,并且点A ,E ,D 在同一条直线上,若测得BE =20 m ,CE =10 m ,CD =20 m ,则河的宽度AB 等于( ) A .60 mB .40 mC .30 mD .20 m7.如图,在平面直角坐标系中,已知点O (0,0),A (6,0),B (0,8),以某点为位似中心,作出△CDE ,使它与△AOB 位似,且相似比为k ,则位似中心的坐标和k 的值分别为( ) A .(0,0),2 B .(2,2),12 C .(2,2),2D .(1,1),128.如图,在矩形ABCD 中,AB =2,BC =3,点E 是AD 的中点,CF ⊥BE 于点F ,则CF 等于( ) A .2B .2.4C .2.5D .2.259.如图,在▱ABCD 中,E 是CD 上的一点,DE ∶EC =2∶3,连接AE ,BE ,BD ,且AE ,BD交于点F ,则S △DEF ∶S △EBF ∶S △ABF 等于( ) A .2∶5∶25B .4∶9∶25C .2∶3∶5D .4∶10∶2510.如图,在矩形ABCD 中,点E 为AD 上一点,且AB =8,AE =3,BC =4,点P 为AB 边上一动点,连接PC ,PE ,若△P AE 与△PBC 是相似三角形,则满足条件的点P 的个数为( ) A .1个B .2个C .3个D .4个(第8题) (第9题) (第10题) (第13题) (第14题) 二、填空题(每题3分,共24分)11.假期,爸爸带小明去A 地旅游,小明想知道A 地与他所居住的城市的距离,他在比例尺为1∶500 000的地图上测得所居住的城市距A 地32 cm ,则小明所居住的城市与A 地的实际距离为________.12.若a +b c =b +c a =c +ab =k (a +b +c ≠0),则k =________.13.如图,已知点C 是线段AB 的黄金分割点,且BC >AC .若S 1表示以BC 为边的正方形的面积,S 2表示长为AD (AD =AB )、宽为AC 的矩形的面积,则S 1与S 2的大小关系为____________.14.如图,在△ABC 中,D ,E 分别是AB 和AC 的中点,F 是BC 延长线上一点,DF 平分CE于点G ,CF =1,则BC =________,△ADE 与△ABC 的周长之比为________,△CFG 与△BFD 的面积之比为________.15.如图,以点A 为位似中心,把正方形ABCD 的各边缩小为原来的一半,得到正方形A ′B ′C ′D ′,则点C 的对应点C ′的坐标为________.(第15题) (第16题) (第17题) (第18题)16.如图,阳光通过窗口AB 照射到室内,在地面上留下4 m 宽的区域DE ,已知点E 到窗口下的墙脚C 的距离为5 m ,窗口AB 高2 m ,那么窗口底端B 距离墙脚C ________m. 17.如图,已知点P 是边长为4的正方形ABCD 内一点,且PB =3,BF ⊥BP ,垂足是点B ,若在射线BF 上找一点M ,使以点B ,M ,C 为顶点的三角形与△ABP 相似,则BM 的长为________.18.如图,正三角形ABC 的边长为2,以BC 边上的高AB 1为边作正三角形AB 1C 1,△ABC 与△AB 1C 1公共部分的面积记为S 1,再以正三角形AB 1C 1的边B 1C 1上的高AB 2为边作正三角形AB 2C 2,△AB 1C 1与△AB 2C 2公共部分的面积记为S 2,……,以此类推,则S n =________(用含n 的式子表示,n 为正整数).三、解答题(19,20题每题8分,24题14分,其余每题12分,共66分)19.如图,矩形ABCD 为一密封的长方体纸盒的纵切面的示意图,AB 边上的点E 处有一小孔,光线从点E 处射入,经纸盒底面上的平面镜反射,恰好从点D 处的小孔射出.已知AD =26 cm ,AB =13 cm ,AE =6 cm. (1)求证:△BEF ∽△CDF ; (2)求CF 的长.(第19题)20.如图,△ABC 三个顶点的坐标分别为A (1,2),B (3,1),C (2,3),以原点O 为位似中心,将△ABC放大为原来的2倍得△A′B′C′.(1)在图中第一象限内画出符合要求的△A′B′C′(不要求写画法);(2)计算△A′B′C′的面积.(第20题)21.如图,在▱ABCD中,过点A作AE⊥BC于点E,连接DE,点F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=8,AD=63,AF=43,求AE的长.(第21题) 22.如图,某水平地面上有一建筑物AB,在点D和点F处分别竖有2米高的标杆CD和EF,两标杆相距52米,并且建筑物AB、标杆CD和EF在同一竖直平面内,从标杆CD后退2米到点G处,点G与建筑物顶端A和标杆顶端C在同一条直线上;从标杆EF后退4米到点H处,点H与建筑物顶端A和标杆顶端E在同一条直线上,求建筑物AB的高度.(第22题)23.如图,在矩形ABCD中,AB=12 cm,BC=6 cm,点P沿AB边从点A开始向点B以2 cm/s 的速度移动,点Q沿DA边从点D开始向点A以1 cm/s的速度移动.如果P,Q同时出发,用t(s)表示移动的时间(0≤t≤6),那么:(1)当t为何值时,△QAP为等腰直角三角形?(2)对四边形QAPC的面积,提出一个与计算结果有关的结论.(3)当t为何值时,以点Q,A,P为顶点的三角形与△ABC相似?24.如图①,在R t△ABC中,∠B=90°,BC=2AB=8,点D,E分别是边BC,AC的中点,连接DE. 将△EDC绕点C按顺时针方向旋转,记旋转角为α.(1)当α=0°和α=180°时,求AEBD的值.(2)试判断当0°≤α<360°时,AEBD的大小有无变化?请仅就图②的情况给出证明.(3)当△EDC旋转至A,D,E三点共线时,求线段BD的长.答案一、1.B 2.A3.C 点拨:因为a ∥b ∥c ,所以BD BF =AC AE =33+4=37.4.A 5.D6.B 点拨:∵AB ⊥BC ,CD ⊥BC ,∴∠ABE =∠DCE =90°. 又∵∠AEB =∠DEC , ∴△ABE ∽△DCE . ∴AB DC =BE CE ,即AB 20=2010. ∴AB =40 m . 7.B8.B 点拨:由∠A =90°,CF ⊥BE ,AD ∥BC ,易证△ABE ∽△FCB . ∴AB BE =CF BC .由AE =12×3=1.5, AB =2,易得BE =2.5, ∴22.5=CF3.∴CF =2.4. 9.D10.C 点拨:设AP =x ,则BP =8-x ,当△P AE ∽△PBC 时, AE BC =P A PB ,∴AE ·PB =BC ·P A ,即3(8-x )=4x ,解得x =247. 当△P AE ∽△CBP 时,AE PB =P A BC ,∴AE ·BC =P A ·PB ,即3×4=x (8-x ),解得x =2或6. 故满足条件的点P 的个数为3个.二、11.160 km 点拨:设小明所居住的城市与A 地的实际距离为x km ,根据题意可列比例式为1500 000=32x ×105,解得x =160. 12.2 点拨:∵a +b c =b +c a =c +ab =k ,∴2a +2b +2ca +b +c=k ,故k =2.易错提醒:在运用等比性质时,注意分母的和不等于0这个条件. 13.S 1=S 2 点拨:∵点C 是线段AB 的黄金分割点,且BC >AC ,∴BC 2=AC ·AB .又∵S 1=BC 2,S 2=AC ·AD =AC ·AB ,∴S 1=S 2. 14.2;;15.(2,1)或(0,-1) 点拨:如图,以点A 为位似中心,把正方形ABCD 的各边缩小为原来的一半,得正方形A ′B ′C ′D ′,根据图形可得点C ′的坐标为(2,1)或(0,-1).(第15题)易错提醒:此类题要注意多种可能:位似图形可能位于位似中心的同侧,也可能位于位似中心的两侧,要分情况进行讨论.16.2.5 点拨:由题意得CE =5 m ,AB =2 m ,DE =4 m.∵AD ∥BE , ∴BC AB =CE ED , ∴BC 2=54,解得BC =2.5 m ,即窗口底端B 距离墙脚C 2.5 m.17.163或3 点拨:∵∠ABC =∠FBP =90°,∴∠ABP =∠CBF .当△MBC ∽△ABP 时,BM ∶AB=BC ∶BP ,得BM =4×4÷3=163;当△CBM ∽△ABP 时,BM ∶BP =CB ∶AB ,得BM =4×3÷4=3.18.32×⎝ ⎛⎭⎪⎫34n点拨:在正三角形ABC 中,AB 1⊥BC , ∴BB 1=12BC =1.在R t △ABB 1中,AB 1=AB 2-BB 21=22-12=3,根据题意可得△AB 2B 1∽△AB 1B ,记△AB 1B 的面积为S ,∴S 1S =⎝ ⎛⎭⎪⎫322.∴S 1=34S .同理可得S 2=34S 1,S 3=34S 2,S 4=34S 3,…. 又∵S =12×1×3=32, ∴S 1=34S =32×34,S 2=34S 1=32×⎝ ⎛⎭⎪⎫342,S 3=34S 2=32×⎝ ⎛⎭⎪⎫343,S 4=34S 3=32×⎝ ⎛⎭⎪⎫344,…,S n =32×⎝ ⎛⎭⎪⎫34n. 三、19.(1)证明:∵FG ⊥BC ,∠EFG =∠DFG ,∴∠BFE =∠CFD . 又∵∠B =∠C =90°, ∴△BEF ∽△CDF .(2)解:设CF =x cm ,则BF =(26-x )cm , ∵AB =13 cm ,AE =6 cm , ∴BE =7 cm ,由(1)得,△BEF ∽△CDF , ∴BE CD =BF CF ,即713=26-xx , 解得x =16.9, 即CF =16.9 cm.20.解:(1)如图.(2)S △A ′B ′C ′=4×4-12×2×2-12×2×4-12×2×4=6.(第20题)21.(1)证明:∵四边形ABCD 为平行四边形,∴AD ∥BC ,∠B +∠C =180°, ∴∠ADE =∠DEC .又∵∠AFE =∠B ,∠AFE +∠AFD =180°, ∴∠AFD =∠C , ∴△ADF ∽△DEC .(2)解:在▱ABCD 中,CD =AB =8. ∵△ADF ∽△DEC , ∴AF CD =AD DE ,即438=63DE ,解得DE =12. ∵AE ⊥BC ,AD ∥BC , ∴AE ⊥AD .在Rt △AED 中,由勾股定理,得AE =122-(63)2=6. 22.解:由题意得,CD =DG =EF =2,DF =52,FH =4.∵AB ⊥BH ,CD ⊥BH ,EF ⊥BH , ∴∠ABH =∠CDG =∠EFH =90°. 又∵∠CGD =∠AGB ,∠EHF =∠AHB , ∴△CDG ∽△ABG ,△EFH ∽△ABH , ∴CD AB =DG BG ,EF AB =FH BH , 即CD AB =DGDG +BD,EF AB =FH FH +DF +BD , ∴2AB =22+BD ,2AB =44+52+BD, ∴22+BD =44+52+BD, 解得BD =52, ∴2AB =22+52,解得AB =54. 答:建筑物AB 的高度为54米.23.解:(1)由题意知AP =2t ,DQ =t ,QA =6-t ,当QA =AP 时,△QAP 是等腰直角三角形,所以6-t =2t ,解得t =2.(2)四边形QAPC 的面积=S △QAC +S △APC =12AQ ·CD +12AP ·BC =(36-6t )+6t =36(cm 2).在P ,Q 两点移动的过程中,四边形QAPC 的面积始终保持不变.(3)分两种情况:①当AQ AB =AP BC 时,△QAP ∽△ABC ,则6-t 12=2t 6,即t =1.2;②当QA BC =AP AB 时,△P AQ ∽△ABC ,则6-t 6=2t 12,即t =3.所以当t =1.2或3时,以点Q ,A ,P 为顶点的三角形与△ABC 相似.24.解:(1)当α=0°时,∵BC =2AB =8,∴AB =4.∵点D ,E 分别是边BC ,AC 的中点,∴BD =4,AE =EC =12AC .∵∠B =90°,∴AC =82+42=4 5.∴AE =CE =2 5.∴AE BD =254=52.当α=180°时,如图①,易得AC =45,CE =25,CD =4,∴AE BD =AC +CE BC +CD =45+258+4=52.(第24题)(2)无变化.证明:在题图①中,∵DE 是△ABC 的中位线,∴DE ∥AB .∴CE CA =CDCB ,∠EDC =∠B =90°.在题图②中,∵△EDC 在旋转过程中形状大小不变,∴CE CA =CD CB 仍然成立.又∵∠ACE =∠BCD =α,∴△ACE ∽△BCD .∴AE BD =AC BC .由(1)可知AC =4 5.∴AC BC =458=52.∴AE BD =52.∴AE BD 的大小不变.(3)当△EDC 在BC 上方,且A ,D ,E 三点共线时,四边形ABCD 为矩形,如图②,∴BD =AC =45;当△EDC 在BC 下方,且A ,E ,D 三点共线时,△ADC 为直角三角形,如图③,由勾股定理可得AD =AC 2-CD 2=8.又易知DE =2,∴AE =6.∵AE BD =52,∴BD =1255.综上,BD 的长为45或1255.。

北京市海淀区2019届中考数学《相似多边形》专项复习训练含答案

北京市海淀区2019届中考数学《相似多边形》专项复习训练含答案

北京市海淀区普通中学2019届初三数学中考复习 相似多边形 专项复习训练1.下列图形不相似的是( )A .所有的圆B .所有的正方形C .所有的等边三角形D .所有的菱形 2.下列说法中,错误的是( )A .正六边形都相似B .等腰直角三角形都相似C .矩形都相似D .正方形都相似 3.如图,下列各组图形是相似形的是( )A .①③④B .①②③C .②③④D .①②④ 4.在研究相似问题时,甲、乙两同学的观点如下:甲:将边长为3,4,5的三角形按如图的方式向外扩张,得到新三角形,它们的对应边间距均为1,则新三角形与原三角形相似.乙:将邻边为3和5的矩形按如图的方式向外扩张,得到新矩形,它们的对应边间距均为1,则新矩形与原矩形不相似.对于两人的观点,下列说法正确的是( )A .两人都对B .两人都不对C .甲对,乙不对D .甲不对,乙对5.如图,六边形ABCDEF ∽六边形GHIJKL ,相似比为2∶1,则下列结论正确的是( )A .∠E =2∠KB .BC =2HIC .六边形ABCDEF 的周长=六边形GHIJKL 的周长D .S 六边形ABCDEF =2S 六边形GHIJKL6.如图,内外两个矩形相似,且对应边平行,则下列结论中正确的是( )A.x y =1B.x y =a bC.x y =ba D .以上答案都不对 7. 两个相似多边形的周长之比为3,面积之比为m ,则3m等于( )A .3 B.13 C.19D .无法确定8. 两个相似多边形的最长边分别为10 cm 和25 cm ,它们的周长之差为60 cm ,则这两个多边形的周长分别为 .9. 在一个矩形中剪去一个正方形,若所剩矩形与原矩形相似,则原矩形长与宽之比为 . 10. 在如图所示的两个相似的四边形中,求x ,y ,∠α的值.11. 公园里有块草坪,其平面图如图所示,∠A =90°,其比例尺为1∶2000,根据图中标注的数据(单位:cm),求该草坪的实际周长和面积.12. 如图,在矩形ABCD 中,AB =2AD ,线段EF =10,在EF 上取一点M ,分别以EM ,MF 为一边作矩形EMNH ,矩形MFGN ,使矩形MFGN ∽矩形ABCD.令MN =x ,当x 为何值时,矩形EMNH 的面积S 有最大值?最大值是多少?13. 某村有两个形状相似的鱼塘,承包金分别为9000元和15000元,王老汉准备承包其中一个,在没有任何测量工具的情况下,不知道承包哪个合算(单位面积的承包金越低越合算).他让孙子小华给他计算一下,于是小华想了一个办法,以同样的速度绕鱼塘转一周,分别用了10分钟和15分钟,你知道小华会给爷爷提出什么建议吗?说明理由.14.如图,四边形ABCD 是矩形,AB =a ,BC =2a ,点F 在AD 上,四边形AEFG∽四边形ABCD ,且AE =23a.(1)求AG 的长;(2)求证:△ABE∽△ADG;(3)如果S 矩形ABCD =630 cm 2,求S 矩形AEFG .答案:1---7 DCBAB BB 8. 40cm 100cm9.1+5210. 解:x =20,y =12,α=80°11. 解:640 m 14400 m 212. 解:当x =52时,S 最大=25213. 解:两鱼塘的周长之比为10∶15=2∶3,故其面积比为4∶9,而两鱼塘的承包金为9000元与15000元,故大鱼塘单位面积的承包金低,承包大鱼塘较为合算 14. 解:(1)四边形AEFG∽四边形ABCD ,∵ABCD 是矩形,∴四边形AEFG 是矩形,∴AE AB =AGAD ,∵AE =23a ,AB =a ,AD =2a ,∴AG =43a(2)∵∠1+∠3=∠2+∠3=90°,∴∠1=∠2,又∵AB AD =AEAG, ∴△ABE ∽△ADG (3)S 矩形AEFG =280(cm 2)2019-2020学年数学中考模拟试卷一、选择题1.学校为创建“书香校园”购买了一批图书.已知购买科普类图书花费10000元,购买文学类图书花费9000元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普书的数量比购买文学书的数量少100本.求科普类图书平均每本的价格是多少元?若设科普类图书平均每本的价格是x 元,则可列方程为( )A.10000x ﹣90005x -=100 B.90005x -﹣10000x =100 C.100005x -﹣9000x=100D.9000x ﹣100005x -=1002.下列事件中,是随机事件的是( ) A .任意抛一枚图钉,钉尖着地 B .任意画一个三角形,其内角和是180oC .通常加热到100℃时,水沸腾D .太阳从东方升起3.将抛物线y =﹣3x 2+1向左平移2个单位长度,再向下平移3个单位长度,所得到的抛物线为( ) A .y =﹣3(x ﹣2)2+4 B .y =﹣3(x ﹣2)2﹣2 C .y =﹣3(x+2)2+4 D .y =﹣3(x+2)2﹣24.下列计算正确( )A .222a b a b +=+() B .235a a a ⋅=C .822a a a ÷=D .325a a a +=5.已知1,3a b ==,而且b 和a 的方向相反,那么下列结论中正确的是( ) A .3a b =B .3a b =-C .3b a =D .3b a =-.6.从长度分别为2,4,6,8的四条线段中任选三条作边,能构成三角形的概率为( ) A .12B .13C .14D .347.下列关于统计与概率的知识说法正确的是( )A .武大靖在2018年平昌冬奥会短道速滑500米项目上获得金牌是必然事件B .检测100只灯泡的质量情况适宜采用抽样调查C .了解北京市人均月收入的大致情况,适宜采用全面普查D .甲组数据的方差是0.16,乙组数据的方差是0.24,说明甲组数据的平均数大于乙组数据的平均数 8.有一张矩形ABCD 的纸片(AB <BC ),按如图所示的方式,在A ,C 两端截去两个矩形AEFG 和CE′F′G′,且AE =CE′,AG =CG′,再分别过EF ,FG ,E′F′,F′G′四边的中点,沿平行于原矩形各边的方向剪裁,得到如图的阴影部分,分别记为L 1,L 2.若L 1的周长是矩形ABCD 的34,L 2的周长是矩形ABCD 的35,则AEAG的值为( )A .54B .85C .32D .2099.如图,矩形ABCD 的长AD =9cm ,宽AB =3cm ,将它折叠,使点D 与点B 重合,求折叠后DE 的长和EF 的长分别是( )A .5cm ,3cmB .5cm cmC .6cm cmD .5cm ,4cm10.下列命题正确的是( ) A .矩形对角线互相垂直 B .方程214x x =的解为14x = C .六边形内角和为540°D .一条斜边和一条直角边分别相等的两个直角三角形全等11.如图1,在矩形ABCD 中,AB <BC ,点E 为对角线AC 上的一个动点,连接BE ,DE ,过E 作EF ⊥BC 于F .设AE =x ,图1中某条线段的长为y ,若表示y 与x 的函数关系的图象大致如图2所示,则这条线段可能是图1中的( )A.线段BEB.线段EFC.线段CED.线段DE12.如图,要测量小河两岸相对的两点P ,A 的距离,可以在小河边取PA 的垂线PB 上的一点C ,测得PC =8米,cos ∠PCA =45,则PA 等于( )A .5米B .6米C .7.5米D .8米二、填空题13.如图,两同心圆的圆心为O ,大圆的弦AB 切小圆于P ,两圆的半径分别为2和1,若用阴影部分围成一个圆锥,则该圆锥的底面半径为_____.14.某校九年级准备开展春季研学活动,对全年级学生各自最想去的活动地点进行了调查,把调查结果制成了如下扇形统计图,则“世界之窗”对应扇形的圆心角为_____度.15.时光飞逝,小学、中学的学习时光已过去,九年的在校时间大约有16200小时,请将数16200用科学记数法表示为________.16.如图,已知正方形ABCD的边长是4,点E是AB边上一动点,连接CE,过点B作BG⊥CE于点G,点P 是AB边上另一动点,则PD+PG的最小值为_____.17.如图,菱形ABCD,∠A=60°,AB=6,点E,F分别是AB,BC边上沿某一方向运动的点,且DE=DF,当点E从A运动到B时,线段EF的中点O运动的路程为_____.18.计算:⋅=_____.三、解答题19.如图,AB是半圆O的直径,点P是半圆上不与点A,B重合的动点,PC∥AB,点M是OP中点.(1)求证:四边形OBCP是平行四边形;(2)填空:①当∠BOP=时,四边形AOCP是菱形;②连接BP,当∠ABP=时,PC是⊙O的切线.20.如图,在四边形ABCD 中,AD ∥BC ,E 为CD 的中点,连接AE 、BE ,延长AE 交BC 的延长线于点F . (1)求证:△DAE ≌△CFE ; (2)若AB =BC+AD ,求证:BE ⊥AF ;(3)在(2)的条件下,若∠D =90°,AD AF =10,则点E 到AB 的距离是 .(直接写出结果即可,不用写出演推过程)21.甲骑电动车、乙骑摩托车都从M 地出发,沿一条笔直的公路匀速前往N 地,甲先出发一段时间后乙再出发.甲,乙两人到达N 地后均停止骑行,已知M ,N 两地相距1753km ,设甲行驶的时间为x (h ),甲、乙两人之同的距离为y (km ),表示y 与x 函数关系的图象如图所示.请你解决以下问题: (1)求线段BC 所在直线的函数表达式; (2)分别求甲,乙的速度; (3)填空:点A 的坐标是 .22.如图,自左向右,水平摆放一组小球,按照以下规律排列,如:红球,黄球,绿球,红球,黄球,绿球,…,嘉琪依次在小球上标上数字1,2,3,4,5,6,… 尝试:左数第三个黄球上标的数字是 ;应用:若某个小球上标的数字是101,则这个小球的颜色是什么?它左边共有多少个与它颜色相同的小球? 发现:试用含n 的代数式表示左边第n 个黄球所标的数字.23.计算:(﹣12)21)0+|1﹣2| 24.如图,已知矩形ABCD 是一空旷场地上的小屋示意图,其中AB :AD =2:1.拴住小狗的绳子一端固定在点A 处,请根据下面条件分别画出小狗在小屋外最大活动区域.(小狗的大小不计) (1)若拴小狗的绳子长度与AD 边长相等,请在图1中画出小狗在屋外可以活动的最大区域; (2)若拴小狗的绳子长度与AB 边长相等,请在图2中画出小狗在屋外可以活动的最大区域.25.我国古代数学著作《九章算术》中有如下问题:“今有牛五,羊二,直金十二两.牛二,羊五,直金九两,牛羊各直金几何?”意思是:5头牛,2只羊共价值12两“金”.2头牛,5只羊共价值9两“金”.求每头牛,每只羊各价值多少两“金”?【参考答案】*** 一、选择题二、填空题 13.4314.90 15.62×1041617.3或 18.-1 三、解答题19.(1)见解析;(2)①120°;②45° 【解析】 【分析】(1)由AAS 证明△CPM ≌△AOM ,得出PC=OA ,得出PC=OB ,即可得出结论;(2)①证出OA=OP=PA ,得出△AOP 是等边三角形,∠A=∠AOP=60°,得出∠BOP=120°即可; ②由切线的性质和平行线的性质得出∠BOP=90°,由等腰三角形的性质得出∠ABP=∠OPB=45°即可. 【详解】 (1)∵PC ∥AB ,∴∠PCM =∠OAM ,∠CPM =∠AOM . ∵点M 是OP 的中点,∴OM =PM ,在△CPM 和△AOM 中,PCM OAM CPM AOM PM OM ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CPM≌△AOM(AAS),∴PC=OA.∵AB是半圆O的直径,∴OA=OB,∴PC=OB.又PC∥AB,∴四边形OBCP是平行四边形.(2)①∵四边形AOCP是菱形,∴OA=PA,∵OA=OP,∴OA=OP=PA,∴△AOP是等边三角形,∴∠A=∠AOP=60°,∴∠BOP=120°;故答案为:120°;②∵PC是⊙O的切线,∴OP⊥PC,∠OPC=90°,∵PC∥AB,∴∠BOP=90°,∵OP=OB,∴△OBP是等腰直角三角形,∴∠ABP=∠OPB=45°,故答案为:45°.【点睛】本题是圆的综合题目,考查了全等三角形的判定与性质、平行四边形的判定、切线的性质、菱形的判定与性质、等边三角形的判定与性质等知识;本题综合性强,熟练掌握切线的性质和平行四边形的判定是解题的关键.20.(1)见解析;(2)见解析;(3【解析】【分析】(1)根据AD∥BC可知∠ADC=∠ECF,再根据E是CD的中点,可证明△ADE≌△FCE;(2)由(1)知△ADE≌△FCE,得到AE=EF,AD=CF,由于AB=BC+AD,等量代换得到AB=BC+CF,即AB=BF,证得△ABE≌△FBE,即可得到结论;(3)在(2)的条件下有△ABE≌△FBE,得到∠ABE=∠FBE,由勾股定理求DE的长,根据角平分线的性质即可得到结果.【详解】(1)∵AD∥BC,∴∠ADC=∠ECF,∵E 是CD 的中点, ∴DE =EC ,∵在△ADE 与△FCE 中,ADC ECF DE ECAED CEF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ADE ≌△FCE (ASA ); (2)由(1)知△ADE ≌△FCE , ∴AE =EF ,AD =CF , ∵AB =BC+AD ,∴AB =BC+CF ,即AB =BF , 在△ABE 与△FBE 中,AB BF AE EF BE BE =⎧⎪=⎨⎪=⎩, ∴△ABE ≌△FBE (SSS ), ∴∠AEB =∠FEB =90°, ∴BE ⊥AE ;(3)在(2)的条件下有△ABE ≌△FBE , ∴∠ABE =∠FBE ,∴E 到BF 的距离等于E 到AB 的距离, 由(1)知△ADE ≌△FCE , ∴AE =EF =12AF =5, ∵∠D =90°, ∴DE==∴CE =DE, ∵CE ⊥BF ,∴点E 到AB. 【点睛】本题考查了平行线的性质,全等三角形的判定与性质,等腰三角形的性质、勾股定理等知识.证明三角形全等是解题的关键. 21.(1)y =20x ﹣503;(2)甲的速度为30 km/h ,乙的速度为50km/h ;(3)(13,10). 【解析】 【分析】(1)根据函数图象中的数据可以求得线段BC 所在直线的函数表达式; (2)根据题意和函数图象中的数据可以求得甲和乙的速度;(3)由(2)的结论可以求得点A 的坐标并写出点A 表示的实际意义 【详解】解:(1)设线段BC 所在直线的函数表达式为y =kx+b (k≠0), ∵5,06B ⎛⎫⎪⎝⎭,340,23C ⎛⎫⎪⎝⎭在直线BC 上, 50634023k b k b ⎧+=⎪⎪⎨⎪+=⎪⎩,得k 2050b 3=⎧⎪⎨=-⎪⎩,即线段BC 所在直线的函数表达式为y =20x ﹣503; (2)设甲的速度为m km/h ,乙的速度为n km/h ,51563631340m 2323n m n ⎧⎛⎫-= ⎪⎪⎪⎝⎭⎨⎛⎫⎪-=+ ⎪⎪⎝⎭⎩,得3050m n =⎧⎨=⎩, 故甲的速度为30 km/h ,乙的速度为50km/h , (3)点A 的纵坐标是:130103⨯=, 即点A 的坐标为(13,10). 故答案为:(13,10) 【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答. 22.尝试:8; 应用:这个小球的颜色是黄色,它左边共有33个与它颜色相同的小球;发现:左边第n 个黄球所标的数字是3n ﹣1. 【解析】 【分析】尝试:根据题意可以得到左数第三个黄球上标的数字;应用:根据题意,可知,每三个球一个循环,从而可以解答本题;发现:根据题意,可以用含n 的代数式表示出左边第n 个黄球所标的数字. 【详解】 尝试:由题意可得,左边第一个黄球的数字是2,则第三个黄球上标的数字是2+3+3=8, 故答案为:8;应用:∵101÷3=33…2,∴若某个小球上标的数字是101,则这个小球的颜色是黄色,它左边共有33个与它颜色相同的小球; 发现:由题意可得, 左边第一个黄球的数字是2,左边第一个黄球的数字是2+3=5, 左边第一个黄球的数字是2+3×2=8, …则左边第n 个黄球的数字是2+3(n ﹣1)=3n ﹣1, 即左边第n 个黄球所标的数字是3n ﹣1. 【点睛】本题考查数字的变化类、列代数式,解答本题的关键是明确题意,发现题目中小球的变化规律.23.14【解析】 【分析】直接利用绝对值的性质以及二次根式的性质和零指数幂的性质分别化简得出答案. 【详解】解:原式=1114++=14. 【点睛】此题主要考查了实数运算,正确化简各数是解题关键. 24.(1)见解析;(2)见解析. 【解析】 【分析】(1)以A 为圆心,AD 为半径画弧即可解决问题.(2)分别以A ,D 为圆心,AB ,AD 为半径画弧即可解决问题. 【详解】解:(1)图1中,小狗在屋外可以活动的最大区域如图所示;(2)图2中,小狗在屋外可以活动的最大区域如图所示.【点睛】本题考查作图的应用与设计,解题的关键是理解题意,灵活运用所学知识解决问题.25.每头牛价值2两“金”,每只羊价值1两“金”.【解析】【分析】设每头牛价值x两“金”,每只羊价值y两“金”.由题意,得5212,259,x yx y+=⎧⎨+=⎩解方程组可得.【详解】设每头牛价值x两“金”,每只羊价值y两“金”.由题意,得5212,259,x yx y+=⎧⎨+=⎩解得2,1.xy=⎧⎨=⎩答:每头牛价值2两“金”,每只羊价值1两“金”.【点睛】考核知识点:二元一次方程组的应用.理解题意,列出方程是关键.2019-2020学年数学中考模拟试卷一、选择题1.如图,△ABC 的顶点都是正方形网格中的格点,则cos ∠ABC 等于( )A.5B.5D.232.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x 千米/小时,根据题意,得A. B.C.D.3.若二次函数y=ax 2+bx+c (a <0)的图象经过点(2,0),且其对称轴为x=﹣1,则使函数值y >0成立的x 的取值范围是( ). A.x <﹣4或x >2B.﹣4≤x≤2C.x≤﹣4或x≥2D.﹣4<x <24.下列运算正确的是( ) A .3a 2﹣a 2=3 B .a 8÷a 4=a 2C .(a+3)2=a 2+9D .(﹣3a 3)2=9a 65.抛物线y =x 2向下平移一个单位,向左平移两个单位,得到的抛物线关系式为( ) A .y =x 2+4x+3B .y =x 2+2x ﹣1C .y =x 2+2xD .y =x 2﹣4x+36.长为10米的木杆斜靠在墙壁上,且与地面的夹角∠OBA =60°,当木杆的上端A 沿墙壁NO 竖直下滑时,木杆AB 的中点P 也随之下落,则点P 下落的路线及路线长为( ) A.线段,5 B.线段,C.以点O 为圆心,以AB 为半径的一段弧,弧长为D.以点O 为圆心,以OP 为半径的一段弧,弧长为7.一副直角三角板按如图所示的方式摆放,其中点C 在FD 的延长线上,且AB ∥FC ,则∠CBD 的度数为( )A .15°B .20°C .25°D .30°8.关于x 的正比例函数,y=(m+1)23m x -若y 随x 的增大而减小,则m 的值为 ( )A .2B .-2C .±2D .-129.若x 是不等于1的实数,我们把11x -称为x 的差倒数,如2的差倒数是11x-=﹣1,﹣1的差倒数为11(1)--=12,现已知x 1=13,x 2是x 1的差倒数,x 3是x 2的差倒数,x 4是x 3的差倒数,…,依此类推,则x 2019的值为( ) A .﹣13B .﹣2C .3D .410.如图为二次函数y=ax 2+bx+c 的图象,给出下列说法:①ab <0;②方程ax 2+bx+c=0的根为x 1=-1,x 2=3;③a+b+c >0;④当x <1时,y 随x 值的增大而增大;⑤当y >0时,x <-1或x >3.其中,正确的说法有( )A .①②④B .①②⑤C .①③⑤D .②④⑤11.如图,已知反比例函数y =kx(x <0)的图象经过▱OABC 的顶点B ,点A 在x 轴上,AC ⊥x 轴交反比例函数图象于点D ,BE ⊥x 轴于点E ,则BE :AD =( )A .1:2B .1C .1:3D .112.如图,直线AD ∥BC ,若∠1=42°,∠BAC =78°,则∠2的度数为( )A.42°B.50°C.60°D.68°二、填空题13.二次函数y =ax 2+bx+c 的图象如图所示,给出下列说法:①abc <0;②方程ax 2+bx+c =0的根为x 1=﹣1、x 2=3;③当x >1时,y 随x 值的增大而减小;④当y >0时,﹣1<x <3.其中正确的说法是_____.A.①;B.①②;C.①②③;D.①②③④14.在正方形网格中,∠AOB的位置如图所示,则cos∠AOB的值是_____.15.如图,在□ABCD中,AB=6,BC=8,以C为圆心适当长为半径画弧分别交BC,CD于M,N两点,分别以M,N为圆心,以大于12MN的长为半径画弧,两弧在∠BCD的内部交于点P,连接CP并延长交AD于E,交BA的延长线于F,则AE+AF的值等于___________.16.如图,在矩形ABCD中,AB>BC,以点B为圆心,AB的长为半径的圆分别交CD边于点M,交BC边的延长线于点E.若DM=CE,»AE的长为2π,则CE的长______.17.因式分解:a2﹣a=_____.18.如图,直线l1与l2相交于点O,OM⊥l1,若α=52°,则β的度数是_____度.三、解答题19.已知反比例函数3ymx=-和一次函数y=kx﹣1的图象都经过点P(m,﹣3m).(1)求点P的坐标和这个一次函数的解析式;(2)若点M(a,y1)和点N(a+1,y2)都在这个一次函数的图象上.试通过计算或利用一次函数的性质,说明y1大于y2.20.为了解八年级学生双休日的课外阅读情况,学校随机调查了该年级25名学生,得到了一组样本数据,其统计表如下:八年级25名学生双休日课外阅读时间统计表(1)请求出阅读时间为4小时的人数所占百分比; (2)试确定这个样本的众数和平均数. 21.解下列方程:(1)12223x x x -+-=-; (2)x 2-2x -6=0.22.计算:(12)﹣1|+(π﹣3.14)023.已知ABC △内接于O ,D 是BC ︵上一点,OD BC ^,垂足为H ,连接AD 、CD ,AD 与BC 交于点P .I.如图1,求证:ACD APB ∠=∠; Ⅱ.如图2,若AB 过圆心,30ABC ∠=︒,O 的半径长为3,求AP 的长。

北师大版九年级上册 第四章 图形的相似 比例的性质 专题练习题 含答案[1]

北师大版九年级上册 第四章 图形的相似   比例的性质  专题练习题 含答案[1]

北师大版九年级上册 第四章 图形的相似 比例的性质 专题练习题1.对于线段a ,b ,如果a ∶b =2∶3,那么下列四个选项一定正确的是( )A .2a =3bB .b -a =1C.a +2b +3=23D.a +b b =522. 如图,如果AD AB =AE AC成立,下列结论中不正确的是( )A.AB AD =AC AEB.AD DB =AE ECC.AD AE =EC BDD.AD AE =AB AC3.已知a b =c d =e f=5(b +d +f≠0),且a +c +e =10,则b +d +f =________. 4.已知a b =c d =e f =14,且3b +d -7f =16,则3a +c -7e =________. 5.若a +23=b 4=c +56,且2a -b +3c =21.求a∶b∶c.6.若a ,b ,c 为实数,且有a b +c =b a +c =c a +b=k ,则k 的值为________. x +y 17x8.已知x∶y∶z=4∶5∶7,则3x -2y +z 2x +3y -2z=________. 9 .已知5x +y 3x -2y =12,则x +y x -y=________. 10.如图,AB AD =AC AE =BC DE =65,且△ABC 与△ADE 周长差为4,求△ABC 与△ADE 的周长.11.设a ,b ,c 是△ABC 的三条边,且a -b b =b -c c =c -a a,则△ABC 为________三角形.12.已知a ,b ,c 是△ABC 的三边,满足a +43=b +32=c +84,且a +b +c =12. (1)试求a ,b ,c 的值;(2)试求△ABC 的面积.答案:1. C2. C3. 24. 45. 令a +23=b 4=c +56=m ,则a +2=3m ,b =4m ,c +5=6m ,∴a =3m -2,b =4m ,c =6m -5.∵2a -b +3c =21,∴2(3m -2)-4m +3(6m -5)=21,即20m =40,解得m =2,∴a =3m -2=4,b =4m =8,c =6m -5=7.∴a ∶b ∶c =4∶8∶7.6. -1或127. 898. 19. -31110. ∵AB AD =AC AE =BC DE =65,∴AB +AC +BC AD +AE +DE =65,即C △ABC C △ADE=65.又C △ABC -C △ADE =4,∴C △ABC =24,C △ADE =20.11. 等边12. (1)设a +43=b +32=c +84=k ,得a =3k -4,b =2k -3,c =4k -8.∵a +b +c =12,∴3k -4+2k -3+4k -8=12,解得k =3,∴a =5,b =3,c =4.(2)∵32+42=52,即b 2+c 2=a 2,∴△ABC 是直角三角形,∴S △ABC =12×3×4=6.。

九年级数学竞赛培优专题及答案 14 平行线分线段成比例(含答案)

九年级数学竞赛培优专题及答案 14 平行线分线段成比例(含答案)

专题14平行线分线段成比例阅读与思考平行线分线段成比例定理是证明比例线段的常用依据之一,是研究比例线段及相似形的最基本、最重要的理论.运用平行线分线段成比例定理解题的关键是寻找题中的平行线.若无平行线,需作平行线,而作平行线要考虑好过哪一个点作平行线,一般是由成比例的两条线段启发而得.此外,还要熟悉并善于从复杂的图形中分解出如下的基本图形:例题与求解【例1】如图,在梯形ABCD中,AD∥BC,AD=a,BC=b,E,F分别是AD,BC的中点,且AF 交BE于P,CE交DF于Q,则PQ的长为____.(上海市竞赛试题)解题思路:建立含PQ的比例式,为此,应首先判断PQ与AD(或BC)的位置关系,关键是从复杂的图形中分解出基本图形,并能在多个成比例线段中建立联系.【例2】如图,在△ABC中,D,E是BC的三等分点,M是AC的中点,BM交AD,AE于G,H,则BG︰GH:HM等于()A.3︰2︰1 B.4︰2︰1 C.5︰4︰3 D.5︰3︰2(“祖冲之杯”邀请赛试题)解题思路:因题设条件没有平行线,故须过M作BC的平行线,构造基本图形.【例3】如图,□ABCD 中,P 为对角线BD 上一点,过点P 作一直线分别交BA ,BC 的延长线于Q ,R ,交CD ,AD 于S ,T . 求证:PQ •PT =P R •PS .(吉林省中考试题)解题思路:要证PQ •PT =P R •PS ,需证PQPS=PR PT ,由于PQ ,PT ,P R ,PS 在同一直线上,故不能直接应用定理,需观察分解图形.【例4】梯形ABCD 中,AD //BC ,AB =DC .(1)如图1,如果P ,E ,F 分别是BC ,AC ,BD 的中点,求证:AB =PE +PF ;(2)如图2,如果P 是BC 上的任意一点(中点除外),PE ∥AB ,PF ∥DC ,那么AB =PE +PF 这个结论还成立吗?如果成立,请证明;如果不成立,说明理由.(上海市闵行区中考试题)解题思路:(1)不难证明;对于(2),先假设结论成立,从平行线出发证明AB =PE +PF ,即要证明PE AB +PF AB=1,将线段和差问题的证明转化为与成比例线段相关问题的证明.【例5】如图,已知AB ∥CD ,AD ∥CE ,F ,G 分别是AC 和FD 的中点,过G 的直线依次交AB ,AD ,CD ,CE 于点M ,N ,P ,Q .求证:MN +PQ =2PN .解题思路:考虑延长BA ,EC 构造平行四边形,再利用平行线设法构造有关的比例式.图2图1(浙江省竞赛试题)【例6】已知:△ABC是任意三角形.(1)如图1,点M,P,N分别是边AB,BC,CA的中点,求证:∠MPN=∠A;(2)如图2,点M,N分别在边AB,AC上,且AMAB=13,ANAC=13,点P1,P2是边BC的三等分点,你认为∠MP1N+∠MP2N=∠A是否正确?请说明你的理由;(3)如图3,点M,N分别在边AB,AC上,且P1,P2,…,P2009是边BC的2010等分点,则∠MP1N+∠MP2N+…+∠MP2009N=____.(济南市中考试题)解题思路:本题涉及的考点有三角形中位线定理、平行四边形的判定、相似三角形的判定与性质.能力训练A级1.设K=a b cc+-=a b cb-+=a b ca-++,则K=____.(镇江市中考试题)2.如图,AD∥EF∥BC,AD=15,BC=21,2AE=EB,则EF=____.第2题第3题第4题第5题图1 图2 图33.如图,在△ABC 中,AM 与BN 相交于D ,BM =3MC ,AD =DM ,则BD ︰DN =____.(杭州市中考试题)4.如图,ABCD 是正方形,E ,F 是AB ,BC 的中点,连结EC 交DB ,交DF 于G ,H ,则EG ︰GH ︰HC =____.(重庆市中考试题)5.如图,在正△ABC 的边BC ,CA 上分别有点E ,F ,且满足BE =CF =a ,EC =F A =b (a >b ),当BF 平分AE 时,则ab的值为( ) ABCD6.如图,△ABC 中,AD 是BC 边上的中线,F 是AD 上的一点,且AF ︰FD =1︰5,连结CF 并延长交AB 于E ,则AE ︰EB 等于( )A .1︰10B .1︰9C .1︰8D .1︰77.如图,PQ ∥AB ,PQ =6,BP =4,AB =8,则PC 等于( ) A .4B .8C .12D .168.如图,EF ∥BC ,FD ∥AB ,BD =35BC ,则BE ︰EA 等于( )A .3︰5B .2︰5C .2︰3D .3︰29.(1)阅读下列材料,补全证明过程.已知,如图,矩形ABCD 中,AC ,BD 相交于点O ,OE ⊥BC 于E ,连结DE 交OC 于点F ,作FG ⊥BC 于G .求证:点G 是线段BC 的一个三等分点.(2)请你依照上面的画法,在原图上画出BC 的一个四等分点.(要求:保留画图痕迹,不写画法及证明过程)(山西中考试题)10.如图,已知在□ABCD 中,E 为AB 边的中点,AF =12FD ,FE 与AC 相交于G . 求证:AG =15AC .11.如图,梯形ABCD 中,AD ∥BC ,EF 经过梯形对角线的交点O ,且EF ∥AD . (1)求证:OE =OF ;第9题 第10题 第11题第6题 第7题第8题(2)求OEAD+OEBC的值;(3)求证:1AD+1BC=2EF.(宿迁市中考试题)12.如图,四边形ABCD是梯形,点E是上底边AD上的一点,CE的延长线与BC的延长线交于点F,过点E作BA的平行线交CD的延长线于点M,MB与AD交于点N.求证:∠AFN=∠DME.(全国初中数学联赛试题)B级1.如图,工地上竖立着两根电线杆AB,CD,它们相距15cm,分别自两杆上高出地面4m,6m的A,C处,向两侧地面上的E,D和B,F点处,用钢丝绳拉紧,以固定电线杆,那么钢丝绳AD与BC的交点P离地面的高度为____m.(全国初中数学联赛试题)2.如图,□ABCD 的对角线交于O 点,过O 任作一直线与CD ,BC 的延长线分别交于F ,E 点.设BC =a ,CD =b ,CF =c ,则CE =____.(黑龙江省中考试题)3.如图,D ,F 分别是△ABC 边AB ,AC 上的点,且AD ︰DB =CF ︰F A =2︰3,连结DF 交BC 边的延长线于点E ,那么EF ︰FD=____.(“祖冲之杯”邀请赛试题)4.如图,设AF =10,FB =12,BD =14,DC =6,CE =9,EA =7,且KL ∥DF ,LM ∥FE ,MN ∥ED ,则EF ︰FD =____.(江苏省竞赛试题)5.如图,AB ∥EF ∥CD ,已知AB =20,CD =80,那么EF 的值是( ) A .10B .12C .16D .18(全国初中数学联赛试题)6.如图,CE ,CF 分别平分∠ACB ,∠ACD ,AE ∥CF ,AF ∥CE ,直线EF 分别交AB ,AC 于点M ,N .若BC =a ,AC =b ,AB =c ,且c >a >b ,则EM 的长为( )A .2c a- B .2a b- C .2c b- D .2a b c+- (山东省竞赛试题)7.如图,在□ABCD 的边AD 延长线上取一点F ,BF 分别交AC 与CD 于E ,G .若EF =32,GF =24,则BE 等于( )A .4B .8C .10D .12E .16(美国初中数学联赛试题)8.如图,在梯形ABCD 中,AB ∥CD ,AB =3CD ,E 是对角线AC 的中点,直线BE 交AD 于点F ,则AF ︰FD 的值是( )A .2B .53C .32D .1(黄冈市竞赛试题)9.如图,P 是梯形ABCD 的中位线MN 所在直线上的任意一点,直线AP ,BP 分别交直线CD 于E ,F .求证:MN NP =1()2AE BFEP FP+. (宁波市竞赛试题)第7题 第8题 第9题第5题 第6题第2题 第3题第1题10.如图,在四边形ABCD 中,AC 与BD 相交于O ,直线l 平行于BD 且与AB ,DC ,BC ,AD 及AC 的延长线分别交于点M ,N ,R ,S 和P .求证:PM ·PN =P R ·PS .(山东省竞赛试题)11.如图,AB ⊥BC ,CD ⊥BC ,B ,D 是垂足,AD 和BC 交于E ,EF ⊥BD 于F .我们可以证明:11AB CD+=1EF 成立(不要求证出).以下请回答:若将图中垂直改为AB ∥CD ∥EF ,那么, (1)11AB CD+=1EF 还成立吗?如果成立,请给出证明;如果不成立,请说明理由. (2)请找出S △ABD ,S △BED 和S △BDC 的关系式,并给出证明.(黄冈市竞赛试题)12.在Rt △ABC 中,∠BAC =90°,AD 平分∠BAC ,过D 点的直线PQ 交边AC 于点P ,交边AB 的延长线于点Q .(1)如图1,当PQ ⊥AC 时,求证:11AQ AP +; 第11题第10题(2)如图2,当PQ不与AD垂直时,(1)的结论还成立吗?证明你的结论;(3)如图3,若∠BAC=60°,其它条件不变,且11AQ AP+=nAD,则n=____(直接写出结果)专题14 平行线分线段成比例例1aba b+提示:由AP DQ aPF QF b==,推得PQ∥AD。

2020年秋北师大版九年级数学第四章图形的相似专题训练--选择题(45道题 含答案)

2020年秋北师大版九年级数学第四章图形的相似专题训练--选择题(45道题 含答案)

2020年秋北师大版九年级数学第四章图形的相似专题训练--选择题含答案一、选择题(共45题)1.点把 AB 分割成 AP 和 PB 两段,如果 AP 是 PB 和 AB 的比例中项,那么下列式子成立的是( )A. PB AP =√5+12B. AP PB =√5−12C. PB AB =√5−12D. AP AB =√5−122.已知a ,b ,c 都不为0,且 a+b c =b+c a =a+c b =k ,则k 的值是( )A. 2B. -1C. 2或-1D. 33.已知 a 2=b 3,则代数式 a+b b 的值为( ) A. 23 B. 32 C. 52 D. 534.如图,D 、E 分别为AB 、AC 上的两点,DE ∥BC ,AE=2CE ,AB=9,则AD 的长为( )A. 6B. 5C. 4D. 35.如图,AB ∥CD ∥MN ,点M ,N 分别在线段AD ,BC 上,AC 与MN 交于点E .则( )A. DM AE =CE AMB. AM CN =BN DMC. DC ME =AB END. AE AM =CE DM 6.如图,四边形ABCD 是平行四边形,点E 在BA 的延长线上,点F 在BC 的延长线上,连接EF ,分别交AD ,CD 于点G ,H ,则下列结论错误的是( )A. EA BE =EG EFB. EG GH =AG GDC. AB AE =BC CFD. FH EH =CF AD7.如图,已知一组平行线a ∥b ∥c ,被直线m 、n 所截,交点分别为A ,B ,C 和D ,E ,F ,且AB =3,BC =4,EF =4.8,则DE =( )A. 7.2B. 6.4C. 3.6D. 2.48.如图,一张矩形纸片ABCD 的长AB =xcm ,宽BC =ycm ,把这张纸片沿一组对边AB 和CD 的中点连线EF 对折,对折后所得矩形AEFD 与原矩形ADCB 相似,则x :y 的值为( )A. 2B. √2C. 2+√55D. √2-129.如果两个相似多边形的面积之比为1:4,那么它们的周长之比是( )A. 1:2B. 1:4C. 1:8D. 1:1610.如图,点D 、E 分别在△ABC 的AB 、AC 边上,下列条件中:①∠ADE =∠C ;②AE AB =DE BC ;③ AD AC =AE AB .使△ADE 与△ACB 一定相似的是( )A. ①②B. ②③C. ①③D. ①②③11.如图,在正三角形ABC 中,点D 、E 分别在AC 、AB 上,且 AD AC =13 ,AE=BE ,则有( )A. △AED ∽△BEDB. △AED ∽△CBDC. △AED ∽△ABDD. △BAD ∽△BCD12.如图,若D 、E 分别为△ABC 中AB 、AC 边上的点,且∠AED=∠B ,AD=3,AC=6,DB=5,则AE 的长度为( )A. 94B. 52C. 185D. 4 13.如图,路灯距地面8米,身高1.6米的小明从距离路灯的底部(点O)20米的点A 处沿OA 所在的直线行走14米到点B 时,人影长度( )A. 变长3.5米B. 变长2.5米C. 变短3.5米D. 变短2.5米14.已知:如图,小华在打羽毛球时,扣球要使球恰好能打过网,而且落在离网前4米的位置处,则球拍击球的高度h 应为( )A. 1.55mB. 3.1mC. 3.55mD. 4m15.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为4厘米,6厘米和9厘米,另一个三角形的最长边是18厘米,则它的最短边是( )A. 2厘米B. 4厘米C. 8厘米D. 12厘米16.已知△ABC ∽△DEF , 若△ABC 与△DEF 的相似比为2:3,△ABC 的面积为40,则△DEF 的面积为( )A. 60B. 70C. 80D. 9017.两个相似三角形,其面积比为16:9,则其相似比为( )A. 16:9B. 4:3C. 9:16D. 3:418.如图,在直角坐标系中,△OAB 的顶点为O(0,0),A(4,3),B(3,0)。

北京市各区2020届九年级数学期末试卷精选汇编:相似三角形专题(含答案)

北京市各区2020届九年级数学期末试卷精选汇编:相似三角形专题(含答案)

相似三角形专题海淀区18. 如图,在ABC △与ADE △中,AB AC AD AE=,且=EAC DAB ∠∠. 求证:ABC ADE △∽△.18.证明:∵EAC DAB ∠=∠,∴EAC BAE DAB BAE ∠+∠=∠+∠.∴BAC DAE ∠=∠. ∵AB AC AD AE=, ∴ABC △∽ADE △.朝阳区23.阅读下面材料:小军遇到这样一个问题:如图1,在△ABC 中,AB =AC , P 是△ABC 内一点, ∠PAC =∠PCB =∠PBA .若∠ACB =45°,AP =1,求BP 的长.小军的思路是:根据已知条件可以证明△ACP ∽△CBP ,进一步推理可得BP的长. 请回答:∵AB =AC , ∴∠ABC =∠ACB . ∵∠PCB =∠PBA , ∴∠PCA = . ∵∠PAC =∠PCB , ∴△ACP ∽△CBP .∴AP PC ACPC PB CB==. ∵∠ACB =45°,BCEDA图1 图2∴∠BAC =90°. ∴=AC CB.∵AP =1,∴PC .∴PB = .参考小军的思路,解决问题:如图1,在△ABC 中,AB =AC ,P 是△ABC 内一点,∠PAC =∠PCB =∠PBA .若∠ACB =30°,求AP BP的值;东城区17. 如图,在△ABC 中,点D 是AB 边上的一点.(1)请用尺规作图法,在△ABC 内,求作∠ADE .使∠ADE =∠B ,DE 交AC 于点E ;(不要求写作法,保留作图痕迹) (2)在(1)的条件下,若ADDB=2,AC =6,求AE 的值.房山区18.已知:如图,△ABC中,AD平分∠BAC,E是AD 上一点,且AB :AC=AE :AD.判断BE与BD的数量关系并证明.18. BE=BD …………………1分⸪AD平分∠BAC⸪∠CAD=∠DAB …………………2分⸪AB :AC=AE :AD⸪△EAB∽△DAC …………………3分A DCBE ⸪∠AEB=∠ADC⸪∠BED=∠BDE …………………4分 ⸪BE=BD …………………5分丰台区18.如图,E 是□ ABCD 的边BA 延长线上一点,连接EC ,交AD 于点F .求证:△EBC ∽△CDF .18. 证明: ∵□ ,∴∠B =∠D . ……2分 且BE ∥CD , ……3分 ∴∠E =∠DCE . ……4分 ∴△EBC ∽△CDF .……5分平谷区18.如图,在Rt △ABC 中,∠C =90°,点D 是AC 边上一点,DE ⊥AB 于点E . (1)求证:△ABC ∽△ADE ;(2)如果AC =8,BC =6,CD =3,求AE 的长.18.(1)证明:∵DE ⊥AB 于点E , ∴∠AED =∠C =90°. ································································· 1 ∵∠A =∠A ,∴△ABC ∽△ADE . ··································································· 2 (2)解: ∵AC =8,BC =6, ∴AB =10. ·············································································· 3 ∵△ABC ∽△ADE , ∴AE ADAC AB=. ······································································· 4 ∴AE =4.顺义区20.如图,矩形ABCD 中,点E 是边AD 上的一点,且2AB AE DE =.求证:BE ⊥CE .FAB CDE ABCD321EBCDA 20.证明:∵四边形ABCD 是矩形,∴∠A=∠D=90°,AB=CD . ……………………………………… 2分 ∵2AB AE DE =,∴AB DEAE AB =.……………………… 3分 ∴AB DEAE CD=. ∴△ABE ∽△DEC . ………………………………………………… 4分 ∴∠1=∠2. ∵∠A =90°. ∴∠1+∠3=90°. ∴∠2+∠3=90°. ∴∠BEC=180°-(∠2+∠3)=90°.∴BE ⊥CE . …………………………………………………… 5分西城区19.如图,在△ABC 中,AD 平分∠BAC ,E 是AD 上一点,且BE =BD .(1)求证:△ABE ∽△ACD ;(2)若BD =1,CD =2,求AE AD的值.19.(1)证明:∵AD 平分∠BAC ,∴∠BAD =∠CAD . ∵ BE =BD ,∴∠BED =∠BDE . ∴∠AEB =∠ADC . ∴△ABE ∽△ACD .(2)解:∵ △ABE ∽△ACD ,∴ AE BE AD CD=. ∵ BE =BD =1,CD = 2,∴ 12AE AD =.········································································································ 5分密云区18.已知:在△ABC 中,点D 、点E 分别在边AB 、AC 上,且DE // BC ,BE 平分∠ABC .(1)求证:BD=DE;(2)若AB=10,AD=4,求BC的长.18.(1)证明:∵DE // BC,∴∠DEB=∠EBC …1分∵BE平分∠ABC∴∠DBE=∠EBC …2分∴∠DEB=∠DBE∴BD=DE ………3分(2)解:∵AB=10,AD=4∴BD=DE=6∵DE // BC∴△ADE∽△ABC ………4分∴ADABDEBC=∴4106BC=∴BC=15 ……………………5分通州区20.如图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020 北京初中数学竞赛 九年级 比例与相似专题(含答案)1. 设梯形ABCD ,E 、F 分别在AB 、CD 上,且AD EF BC ∥∥,若3AD =,7BC =,5AB =,6CD =,梯形AEFD 和梯形EBCF 的周长相等,求EF .解析 如图,作平行四边形DABH ,H 在BC 上,则5DH AB ==,4CH =.设DH 与EF 交于G .易知梯形AEFD 的周长为DGF △的周长加上6,梯形EBCF 的周长为梯形FGHC 的周长加6,故DGF △的周长=梯形GHCF 的周长,也即DG DF DHC +=△周长的一半即152. 又56DG DH DF CD ==,故6154511211DF =⨯=.453046611DF GF CH CD =⋅=⨯=,306331111EF =+=. 2. 如图,已知ABC △中,AD 、CE 交于F ,BF 、ED 交于G ,过G 作GMN BC ∥,交CE 于M ,交AC 于N ,求证:GM MN =.解析 设AD 与GM 交于K ,AB 与直线NG 交于P ,则KN CD KMPK BD GK==. 于是1PK PG CD GM MN KN KM KM KM PG PG GM GK GK BD PG ⎛⎫=-=-=⋅=⋅=⋅= ⎪⎝⎭.3. 在ABC △中,角平分线AD 与BC 交于D ,AB c =,BC a =,CA b =,求BD 、CD之长度(用a 、b 、f 表示). 解析 如图,易知有BD CD a +=,BD AB c CD AC b ==,故ac BD b c =+,abCD b c=+. ADEG FB HCAEP BDCG K MNF4. 已知:等腰梯形ABCD 中,M 、N 分别是腰AB 、CD 的中点,BD BC =,BD CA⊥且交于E ,求证:CE MN =. 解析 如图,不妨设1BE CE ==,则BC BD AC ===,1AE ED ==,故2AD =,()112MN AD BC CE =+==.5. 在ABC △中,2AC AB =,A ∠的平分线交BC 于D ,过D 分别作AB 、AC 的平行线交AC 、AB 于F 、E ,FE 和CB 的延长线交于G ,求证:EF EG =. 解析 如图,由ED AC ∥,及AD 平分BAC ∠,知12GE BE BE BD AB GF DF AE CD AC =====,故2GF GE =,因此EF EG =.6. 设D 为ABC △的边BC 的中点,过D 作一直线,交AB 、AC 或其延长线于E 、F ,又过A 作AG BC ∥,交FE 的延长线于G ,则EG FD GF DE ⋅=⋅.AB D CADEMN BCAEFGB解析 由平行知GE AG AG GFDE BD CD DF===. 于是由第一式与最后一式,转化为乘法,即可得结论.7. 已知O 是平行四边形ABCD 内的任意一点,过点O 作EF AB ∥,分别交AD 、BC 于E 、F ,又过O 作GH BC ∥,分别交AB 、CD 于G 、H ;连结BE ,交GH 于P ;连结DG ,交EF 于Q .如果OP OQ =,求证:平行四边形ABCD 是菱形. 解析 如图,易知OP EO GA BF EF AB ==,OQ GO AEDH GH AD==. 由于AE BF =,GA DH =,故OP AB GA BF AE DH OQ AD ⋅=⋅=⋅=⋅,于是AB AD =,四边形ABCD 是菱形.8.ABC △中,AB AC >.AD 是BAC ∠的角平分线.G 是BC 的中点,过G 作直线平行于AD 交AB 、AC 或延长线于E 和F .求证:2AB ACBE CF +==.解析 如图,易知G 比D 靠近B ,E 在AB 上,而F 在CA 延长线上.易知12BG BC =,而AB BC BD AB AC ⋅=+,故2BE BG AB ACAB BD AB+==,同理,CF 也是此值.评注 不用比例线段的方法是:延长EG 一倍至P ,则CP BE =,再证AEF △和FCP △均为等腰三角形.G AE BDCFA E DQGH POB F CF AEB G D C9. 凸四边形ABCD 中,ADC ∠,90BCD ∠>︒,BE 平行于AD 交AC 延长线于点E ,AF 平行于BC 交BD 延长线于点F ,连结E 、F ,证明:EF CD ∥. 解析 如图,设AC 、BD 交于O ,则由平行线性质,知FO AO BO CO =,AOFO BO CO=⋅,同理,BO EO AO DO =⋅,故FO DOEO CO=,故EF CD ∥.10. 如图,在ABC △中.AB AC =,BP 、BQ 为B ∠的三等分角线,交A ∠的平分线AD 于P 、Q ,连结CQ 并延长交AB 于R ,求证:PR QB ∥.解析 易知ABC △关于AD 对称.又设QBC QCB θ∠=∠=,则2ABQ RQB θ∠==∠,故RQ RB =,于是由角平分线之性质,知AR AR AC AB APBR RQ CQ BQ PQ====,于是PR QB ∥. 11. 梯形ABCD 中,AD BC ∥(AD BC <),AC 和BD 交于M ,过M 作EF AD ∥,交AB 、CD 于E 、F ,EC 和FB 交于N ,过N 作GH AD ∥,交AB 、CD 于G 、H .求证:1212AD BC EF GH+=+. AF DOB CEARP Q BDC解析11EM AM DM BM EM BC AC DB DB AD ===-=-,故111EM AD BC =+,同理111FM AD BC=+,故11112EF AD BC ⎛⎫=+ ⎪⎝⎭,同理11112GH EF BC ⎛⎫=+ ⎪⎝⎭,两式相加并整理即得结论.12. 设a 、b 、c 分别是ABC △的三边的长,且a a bb a b c+=++,求它的内角A ∠、B ∠. 解析 由条件,得22a ab ac ab b -+=+,即()2b a a c =+,所以b a ca b+=. 如图,延长CB 至D ,使BD AB =,于是CD a c =+.因此在ABC △与DAC △,AC DCBC AC=,且C ∠为公共角,所以ABC △∽DAC △,BAC D ∠=∠.而BAD D ∠=∠,故22ABC D BAD D BAC ∠=∠+∠=∠=∠.13. 设凸四边形ABCD ,对角线交于E ,过E 作直线与BC 平行,交AB 、CD 及DA 延长线于G 、H 、F .若1GE =,2EH =,求EF .A DE MF GNHBCCABbca DDA FGEHBC K解析 延长DF 与CB 延长线交于K ,则有FG GE KB FEBC EH==. 设EF x =,则1FG x =-,代人上式,便得12xx -=.故2EF x ==. 14. AP 为等腰三角形ABC 底边BC 上的高,CD 为ACB ∠的平分线,作DE BC ⊥于E ,又作DF DC ⊥与直线BC 交于F ,求证:4CFPE =. 解析 如图,设AB AC m ==,BC n =,则由角平分线性质知PE AD ACBP AB AC BC==+, 故()2mnPE m n =+.又取FC 中点G ,连结DG ,1902F C ∠=︒-∠,DG FG =,故1902FDG C ∠=︒-∠,DGF C ∠=∠,故DG AC ∥,从而DG BD BC AC AB AC BC ==+,故mnDG m n=+.于是224FC FG DG PE ===.15. 足球场四周有四盏很高的灯,在长方形的四角,且一样高,求某一运动员任何时刻的四个影子长之间的关系.跳起来呢?解析 设运动员P 在矩形球场ABCD 内,如图(a),过P 作MPN BC ∥,M 在AB 上,N 在CD 上,则22222222AP BP AM BM DN CN PD PC -=-=-=-,或2222AP CP BP DP +=+.又设灯高为H ,运动员身高为h ,点A 处的灯造成的影子长为PA ′,如图(b),则A P h AA H'=',得A P h PA H h '=-,同理B PC PD P hPB PC PD H h '''===-,故四个影子的关系是2222A P C P B P D P '+'='+'.ADF B EG P CA MBCND P图(a)跳起来时,不妨设脚底离地l ,此时点A 处的灯造成的影子长度为A ′A ″,如图(c),则h l A P PA H h l +'=--,lA P PA H l"=-,于是A A A P A P '"='-"h ll PA H h l H l +⎛⎫=- ⎪---⎝⎭()()Hh PA H h l H l =---, 同理B BC CD D PB PC PD'"'"'"==()()Hh H h l H l =---,所以A ′2A "+2C C '"=22B B D D '"+'"仍旧成立.16. 求日高公式. 解析 如图所示,设太阳高度为RD x =,杆AB =A ′B =h 直立在地上,影子的长度分别为BC a =,B ′C ′b =,两杆距离为d .所谓日高公式就是用a 、b 、d 、h 表示x ,这里假定大地为平面,且AB 、A ′B ′与R 在同一平面上.易知CB AB CD RD =,代入得a h a BD x =+,故1x BD a h ⎛⎫=- ⎪⎝⎭;同理,B ′1x D b h ⎛⎫=- ⎪⎝⎭.由BD B -′D B =B ′d =,代入得()1x a b d h ⎛⎫--= ⎪⎝⎭,由此解得1d x h a b ⎛⎫=+⎪-⎝⎭.图(b)图(c)A'hHAP A'AA''P lh HRxDB'A A'hhCB。

相关文档
最新文档