新人教版八年级上册数学第十五章分式复习学案

合集下载

新人教版八年级数学上册《第15章 分式》复习课导学案(无答案)

新人教版八年级数学上册《第15章 分式》复习课导学案(无答案)

新人教版八年级数学上册第十五章分式复习课导学案复习目标:1、理解分式定义,掌握分式有意义的条件。

2、掌握分式的加减乘除运算及混合运算。

3、掌握分式方程的解法,了解分式方程增根的定义,会列分式方程解决实际问题。

一、本章典型习题题组一:1、在下列各式222331,,(3)(1),,,241x a x ax x mx x mπ-+÷--+,中,是分式的有____________________。

2、当x满足__________时,分式1(1)(2)xx x-+-有意义。

当x=__________时,分式293xx-+的值为零。

3、当x满足_______________时,分式213xx+-值为正。

*4、(选做题)对于21 2x x m-+,无论x取任何实数总有意义,求m的取值范围。

题组二:5、计算:(1)222()a b aa ba a b-÷-∙+(2)22264(3)443x xxx x x+-÷+∙-++在分式__________的运算中,首先要_______________,其次要_______________,最后再进行__________,注意结果要化为_______________。

题组三:6、计算:(1)21644xx x+--(2)22111xx x---(3)265(2)22xxx x-÷----(4)化简计算:322231)()3(-----⋅nmnm在异分母分式加减运算中,一定要先_________________,注意_________________。

在分式的混合运算中,对运算顺序的要求是:______________________________________。

题组四:7、解方程:(1)2242111x x xx x-+=-+(2 )21533xx x-=---*8、(选做题)当m 取何值时,分式方程1433m x x +=--会产生增根?对于增根你是怎样认识的:__________________________________________________。

新人教版数学八年级上册教案:第15章分式及其复习教案

新人教版数学八年级上册教案:第15章分式及其复习教案

第十五章分式 §15.1.1从分数到分式一、 教学目标1.了解分式概念.2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件. 二、重点、难点重点:理解分式有意义的条件,分式的值为零的条件.难点:能熟练地求出分式有意义的条件,分式的值为零的条件. 三、教学过程1.让学生填写[思考],学生自己依次填出:,,,.2.问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少? 设江水的流速为x 千米/时.轮船顺流航行100千米所用的时间为小时,逆流航行60千米所用时间小时,所以=.3. 以上的式子,,,,有什么共同点?它们与分数有什么相同点和不同点?可以发现,这些式子都像分数一样都是 (即A ÷B )的形式.分数的分子A 与分母B 都是整数,而这些式子中的A 、B 都是整式,并且B 中都含有字母.[思考]引发学生思考分式的分母应满足什么条件,分式才有意义?由分数的分母不能为零,用类比的方法归纳出:分式的分母也不能为零.注意只有满足了分式的分母不能为零这个条件,分式才有意义.即当B ≠0时,分式才有意义. 3、例题讲解P5例1. 当x 为何值时,分式 有意义. [分析]已知分式有意义,就可以知道分式的分母不为零,进一步解出字母x 的取值范围.(补充)例2. 当m 为何值时,分式的值为0?(1) (2) (3)710as 33200sv v+20100v-2060v +20100v-2060v+20100v-2060ass v BA1-m m 32+-m m 112+-m m 2312-+x x[分析] 分式的值为0时,必须同时..满足两个条件:(1)分母不能为零;(2)分子为零,这样求出的m 的解集中的公共部分,就是这类题目的解. 4、随堂练习1.判断下列各式哪些是整式,哪些是分式? 9x+4, , , , ,2. 当x 取何值时,下列分式有意义?(1) (2) (3) 3. 当x 为何值时,分式的值为0?(1) (2) (3) 5、小结: 谈谈你的收获 6、布置作业P133习题15.12、3、4、题7四、教学反思:1).关于教材处理:认真处理教材,目的只有一个——为我的学生尽可能多地提供参与活动的机会,在本节课中主要体现在以下几点:(1)通过“合成代数式”、“赋予分式实际意义”两个活动,激发兴趣,吸引学生参与活动;(2)通过“互举例子”、“填表探究”两个活动,鼓励学生主动参与活动;(3)通过“应用新知”这个环节,促进学生参与活动。

新人教版八年级上数学第十五章分式复习学案

新人教版八年级上数学第十五章分式复习学案

1人教版八年级上数学第十五章分式 第 课时 分式复习学案 (总第 课时)一、基础知识和基本概念1.分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子BA叫做分式。

(分式有意义的条件是分母不为零,分式值为零的条件分子为零且分母不为零)2.分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。

C B C A B A ∙∙= (0≠C ) )0(≠÷÷=C CB CA B A3.分式的通分和约分:关键先是分解因式4.分式的运算:分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。

bdacd c b a =⨯分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

bcadc d b a d c b a =⨯=÷分式乘方法则:分式乘方要把分子、分母分别乘方。

n n nb a b a =⎪⎭⎫⎝⎛分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。

cba cbc a ±=±异分母的分式相加减,先通分,变为同分母分式,然后再加减bdbcad d c b a ±=±混合运算:运算顺序和以前一样。

能用运算率简算的可用运算率简算。

5. 分式方程:含分式,并且分母中含未知数的方程——分式方程。

解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。

解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。

解分式方程的步骤 :(1)能化简的先化简(2)方程两边同乘以最简公分母,化为整式方程; (3)解整式方程;(4)验根.增根应满足两个条件:一是其值应使最简公分母为0,二是其值应是去分母后所的整式方程的根。

分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。

八年级数学上册 第十五章 分式总复习导学案(新版)新人教版

八年级数学上册 第十五章 分式总复习导学案(新版)新人教版

分式复习目标:1. 区分整式和分式,分式是除式中含有字母的有理式,它表示分子除以分母的商,因此它既是有理式,又是与整式联系的代数式。

2. 特别注意,只有当分子等于零而分母不等于零时,分式的值才是零。

3. 使分式有意义时字母的取值范围,又称为分式字母的允许值范围,如分式的字母允许值范围是a ≠0 ,不能约分后再求分式的取值范围,要防止以下错误:,当a ≠1时,分式有意义(丢掉了a ≠1)。

4. 分式加减法的最后结果应化为最简分式或整式。

5. 对于含有绝对值符号的分式,应根据绝对值的概念,先去掉绝对值符号,再化简分式。

6. 分式化简与解分式方程不能混淆。

分式化简是恒等变形,不能随意去掉分母。

复习题型一、填空题1.下列代数式中:yx yx y x y x b a b a y x x -++-+--1,,,21,22π,是分式的有: .2.当x=______时,分式 的值为零;当 x=_____时,分式的值为1;当x=____时,分式无意义;当x____时,分式有意义;分式,当_____时值为正;当______时值为负。

3.不改变分式的值,使下列分式的分子和分母的最高次项的系数都是正数:(1)=_____; (2)=_______4.不改变分式的值,使下列分式的分子和分母都不含负号:(1) =______; (2) =______;(3) =______; (4) =______;5.根据分式的性质填空(1) ; (2)二、选择题:1. a-b 的相反数的倒数是( )。

A 、B 、C 、D 、2.分式中最简分式有( )。

A 、1个B 、2个C 、3个D 、4个3.分式的最简公分母是( )。

A 、(a+b)(a 2-b 2) B 、(a-b)2C 、a 2-b 2D 、(a-b)(a 2-b 2)4.下面三个式子中,正确的有( )①②③A 、0个B 、1个C 、2个D 、3个 5.如果分式的值为负,那么( )。

八年级数学上册 第15章 《分式》综合复习导学案 新人教版

八年级数学上册 第15章 《分式》综合复习导学案 新人教版

八年级数学上册第15章《分式》综合复习导学案新人教版二、本课时知识点理解:1、分式的概念(1)如果A、B表示两个整式,且B中含有字母,那么式子叫做分式。

(2)分式与整式的区别:分式的分母中含有字母,整式的分母中不含有字母。

例:为整式,为分式。

2、分式有意义分式的分母不能为0,即中,时,分式有意义。

(因为分母表示除数,除数不能为0)3、分式的值为0的条件分子为0,且分母不为0,对于,即时,、4、分式(数)的基本性质分式(数)的分子、分母都乘以(或除以)同一个不等于零的整式(数),分式(数)的值不变。

(为0的整式)5、分式条件求值分式条件求值应先将分式进行化简,然后代入求值,这是最基本的解题方法、但是具体问题要具体分析,许多题目若能采取解题技巧,如,整体代入法等,解法会更简明,且不容易出错、三、考点分类:(一)分式定义及有关题型【题型一】考查分式的定义例、下列代数式中:,是分式的有:____ ___;【题型二】考查分式有意义的条件:例、当有何值时,下列分式有意义(1)(2)(3)(4)【题型三】考查分式的值为0的条件:例、当取何值时,下列分式的值为0、(1)(2)【题型四】考查分式的值为正、负的条件:(1)当为何值时,分式为正;(2)当为何值时,分式为负;※(3)当为何值时,分式为非负数、(二)分式的基本性质及有关题型【题型二】分式的系数变号例、不改变分式的值,把下列分式的分子、分母的首项的符号变为正号、(1)(2)(3)(三)分式化简求值题例1、已知:,求的值、例2、已知:,求的值、【自测自结文】1、当取何值时,分式有意义:2、当为何值时,分式的值为零、3、若,求分式的值、。

新人教八年级上册第15章第十五章末复习导学案

新人教八年级上册第15章第十五章末复习导学案

新人教八年级上册第15章章末复习一、复习导入1.导入课题:孔子说:“温故而知新”学完《分式》这章后,希望同学们通过这一节课的复习,对《分式》这一章的知识有着更清晰更深刻的认识.2.复习目标:(1)知道分式的意义,会运用分式的性质进行约分、通分.(2)熟练地进行分式的四则运算.(3)会解分式方程,并能列分式方程解决简单的实际问题.3.复习重、难点:重点:分式的运算和分式方程的解法.难点:分式的通分和列分式方程解决实际问题.二、分层复习1.复习指导:(1)复习内容:教材第157页和全章内容.(2)复习方法:结合复习参考提纲梳理本章知识点及解题方法技巧.(3)复习参考提纲:①什么是分式?1x 是分式吗?xπ呢?分母中含有字母的式子叫分式.1x 是分式,xπ不是分式.③分式的约分、通分有何共同点与不同点?约分和通分的关键各是什么?分式在约分时是设法约去分子和分母中的公因式,而分式的通分是将几个异分母的分式化为与原分式相等的同分母;它们的相同点在于:约分或通分时,分式的值都是不变的,它们的依据都是分式的基本性质,约分的关键是找出分子和分母的公因式,而通分的关键是找出最简公分母.⑤分式的混合运算顺序是先乘方,后乘除,再加减,整数指数幂的运算性质(1)a m·a n=a m+n(m,n是整数);(2)(a m)n=a mn(m,n是整数);(3)(ab)n=a n b n(n是整数).⑥科学记数法大于1的数表示为a×10n(1≤a<10)小于1的正数为a×10-n(1≤a<10)2.自主复习:对照复习指导进行看书,收集整理知识结构和知识点.3.互助复习:(1)师助生:①明了学情:通过抽查部分学生,了解学生的复习情况.②差异指导:对部分在梳理知识结构、把握重要知识点及其相互联系不清的学生进行点拨引导.(2)生助生:学生之间相互指正、交流学习成果,查找遗漏的知识与方法.4.强化复习:(1)分式意义分式值为0的条件分式性质约分通分(2)分式加减乘除运算整数指数幂运算(3)科学记数法1.复习指导:(1)复习内容:分式方程的解法及应用(2)复习时间:10分钟(3)复习方法:回顾分式方程的概念,解分式方程的思想方法与步骤;反思列方程解决实际问题时的重点环节及步骤.(4)复习参考提纲:①解分式方程的一般步骤是哪几步?去分母,解整式方程,检验.④解方程:解:(1)方程两边同时乘以(x+1)(x-1),得(x+1)2-4=(x+1)(x-1),解得.x=1.检验:当x=1时,(x+1)(x-1)=0.所以x=1不是原分式方程的解,原分式方程无解.(2)去分母,得3(3x-1)-2=5 去括号,整理得9x=10解得,x=109检验:当x=109时,2(3x-1)≠0,所以x=109是原分式方程的解.⑤列分式方程解应用题有哪些步骤?你认为关键步骤是什么?易忽视的地方是哪一步?列分式方程解应用题的步骤有:审、找、设、列、解、验、答,关键的步骤是找,即找出等量关系.易忽视的是验,即检验所得的解是否为所列分式方程的解和检验所求得的解是否符合实际问题的要求.2.自主复习:思考并回答复习参考提纲中的问题.3.互助复习:(1)师助生:①明了学情:了解学生对分式方程的解法与应用是否正确熟练掌握,存在的问题在哪里.②差异指导:对学习困难的学生予以分类指导.(2)生助生:完成复习提纲,小组间交流,相互帮助指导.4.强化复习:①分式方程去分母整式方程解整式方程检验.②验根原因方法③列方程解决实际问题:读题——找数量和等量关系——设未知数列方程——解方程——检验——答题三、评价1.学生的自我评价(围绕三维目标):学生代表交流自己的学习收获和学后体验.2.教师对学生的评价:(1)表现性评价:对学生的学习热情、态度、方法、成果及不足进行归纳点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课是全章的复习课.考虑到实际问题,本章复习的教学主要采取以例题讲解和知识回顾相结合的方法进行.对于本章教学的难点如分式的四则混合运算、根据实际问题列方程等,老师要着重讲解.分式是不同于整式的另一类有理式,是代数式中重要的基本概念,相应地,分式方程是一类有理方程,解分式方程的过程比解整式方程更复杂些.然而,分式或分式方程更适合作为某些类型问题的数学模型,它们具有整式或整式方程不具备的特点.解分式方程时,化归思想很有用,分式方程都要先化为整式方程再求解,并且要注意检验是必不可少的步骤.因此,老师在引导学生进行复习时,要使学生系统地掌握分式的化简、求值和混合运算以及运用分式方程解决实际问题等相关知识.此外,教学过程中,教师应更多地让学生积极参与课堂,多动手、多动脑、多交流,让学生体会学习的乐趣.一、基础巩固(第5题15分,其余每题10分,共65分)1.下列各式中,分式的个数有(D)A.5个B.7个C.8个D. 4个3.把分式aba b+b 中的a 和b 都扩大10倍,那么分式的值(C ) A.扩大为原来的2倍 B.扩大为原来的4倍 C.扩大为原来的10倍 D.不变4.一份工作,甲单独做a 天完成,乙单独做b 天完成,则甲乙两人合作一天的工作量是(D )A.a+bB. ab a b +C. 2a b +D. 11a b+ 5.计算:6.解方程:解:①去分母,得x+3=2(x+2) 去括号,整理得x=-1.检验:当x=-1时,(x+2)(x+3)≠0. 所以x=-1是原分式方程的解.(2)去分母,得(x-2)2-16=(x+2)2去括号,整理,得x=-2检验:当x=-2时,(x+2)(x-2)=0.所以x=-2不是原分式方程的解,原分式方程无解.二、综合应用(每题10分,共20分)解:分子、分母同除以xy,得8.A、B两地相距80公里,一辆公共汽车从A地驶出3小时后,一辆小汽车也从A地出发,它的速度是公共汽车的3倍.已知小汽车比公共汽车迟20分钟到达B地,求两车的速度.解:设公共汽车的速度为x公里/小时,则小汽车的速度为3x公里/小时,则根据题意,得解得:x=20.检验:当x=20时,3x≠0,所以x=20是原分式方程的解.则3x=60.答:公共汽车的速度为20公里/小时,小汽车的速度为60公里/小时.三、拓展延伸(15分) 9.若关于x 的方程22x ax +-的解是正数,求实数a 的取值范围. 解:去分母,得2x+a=2-x , 移项,得3x=2-a , 系数化为1,x=23a- 因为x>0且x≠2 ∴23a ->0且23a-≠2 ∴a<2且a≠-4.。

人教版数学八年级上册第十五章分式全章复习(第二课时)教学设计

人教版数学八年级上册第十五章分式全章复习(第二课时)教学设计
(2)运用问题驱动的教学方法,设计具有挑战性的问题,激发学生的学习兴趣,引导学生主动参与课堂。
(3)采用分组合作学习,培养学生的团队协作能力和交流表达能力。
2.教学过程:
(1)导入:通过回顾分式的概念,引导学生思考分式在生活中的应用,为新课的学习做好铺垫。
(2)新知传授:以问题为导向,引导学生探究分式的性质和运算法则,总结解题方法。
4.能够利用分式解决一些生活中的优化问题,如折扣、百分比等,提高学生的应用能力。
(二)过程与方法
1.通过对分式的复习,培养学生自主探究、合作交流的学习习惯,提高学生分析问题和解决问题的能力。
2.引导学生运用数形结合的思想,通过绘制图像、列式分析等方法,加深对分式性质和运算的理解。
3.通过设计不同难度的练习题,让学生在解答过程中逐步掌握分式运算的技巧和方法,提高解题效率。
4.引导学生总结分式学习中的常见错误,分析原因,培养学生自我纠正和反思的能力。
(三)情感态度与价值观
1.培养学生对数学学习的兴趣和热情,激发学生主动参与课堂活动的积极性。
2.通过分式的学习,让学生认识到数学与实际生活的紧密联系,增强学生的应用意识。
3.培养学生严谨、细致的学习态度,提高学生的逻辑思维能力和判断力。
4.鼓励学生面对困难时,保持积极的心态,培养良好的学习习惯和自主学习能力。
在教学过程中,教师要关注学生的个体差异,因材施教,充分调动学生的积极性,使学生在复习分式的过程中,既能巩固基础知识,又能提高解决问题的能力,从而达到教学目标。
二、学情分析
八年级学生在学习分式这一章节时,已经具备了一定的代数基础,掌握了整式的运算和方程求解,这为学习分式打下了基础。然而,分式的概念和运算对学生来说仍存在一定的难度,尤其是在分式的有理化、分式方程的求解等方面,学生容易产生混淆和错误。此外,学生在解决实际问题时,往往难以将分式知识灵活运用,需要教师引导和指导。

人教版八年级上册 第十五章 分式复习学案

人教版八年级上册 第十五章 分式复习学案

人教版八年级上册·第十五章:分式①整式的乘法 ②乘法分式 ③因式分解❖ 【考点分析】➢ 【基础知识】 要点一、分式的概念一般地,如果A 、B 表示两个整式,并且B 中含有字母,那么式子BA(A ÷B)叫做分式.其中A 叫做分子,B 叫做分母.要点二、分式有意义,无意义或等于零的条件 1.分式有意义的条件:分母不等于零. 2.分式无意义的条件:分母等于零.3.分式的值为零的条件:分子等于零且分母不等于零.注:(1)分式有无意义与分母有关但与分子无关,分式要明确其是否有意义,就必须分析、讨论分母中所含字母不能取哪些值,以避免分母的值为零.(2)必须在分式有意义的前提下,才能讨论分式的值. 要点三、分式的基本性质分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变 用式子表示是:MB MA B A M B M A B A ÷÷=⨯⨯=,(M ≠0). 要点四、分式的变号法则对于分式中的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变;改变其中任何一个或三个,分式成为原分式的相反数. 要点五、分式的约分,最简分式把一个分式的分子与分母的公因式约去,叫做分式的约分分子与分母没有公因式,像这样分子与分母没有公因式的分式,叫做最简分式 注:分式约分,一般要约去分子和分母所有的公因式,使所得结果成为最简分式或者整式 要点六、分式的通分与分数的通分类似,利用分式的基本性质,使分式的分子和分母同乘适当的整式,不改变分式的值,把分母不同的分式化成相同分母的分式,这样的分式变形叫做分式的通分. 注:通分,要先确定各分式的公分母,一般各取分母的所有因式的最高次幂的积作公分母,它叫做最简公分母。

要点七、分式的乘除法1.分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.用字母表示为:bdacd c b a =⋅,其中abcd 是整式,bd ≠0.2.分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用字母表示为:bcadc d b a d c b a =⨯=÷,其中abcd 是整式,bcd ≠0. 要点八、分式的乘方分式的乘方运算法则:分式的乘方是把分子、分母分别乘方:n n nb a b a =⎪⎭⎫⎝⎛(n 为正整数).要点九、同分母分式的加减同分母分式相加减,分母不变,把分子相加减:要点十、异分母分式的加减异分母分式相加减,先通分,变为同分母的分式,再加减:.注:(1)异分母的分式相加减,先通分是关键.通分后,异分母的分式加减法变成同分母分式的加减法.(2)异分母分式加减法的一般步骤:①通分②进行同分母分式的加减运算③把结果化成最简分式.式与数有相同的混合运算顺序,先乘方,再乘除,后加减要点十一、零指数幂任何不等于零的数的零次幂都等于1,即.要点十二、负整数指数幂任何不等于零的数的(为正整数)次幂,等于这个数的次幂的倒数,即(≠0,是正整数).的倒数是n n a a a )0(≠-a b a bc c c ±±=a c ad bc ad bcb d bd bd bd ±±=±=()010a a =≠n -n n 1n na a -=a n要点十三、科学记数法的一般形式(1)把一个绝对值大于10的数表示成的形式,其中是正整数, (2)利用10的负整数次幂表示一些绝对值较小的数,即的形式,其中是正整数,.要点十四、分式方程的概念分母中含有未知数的方程叫分式方程.①是等式②方程里含有分母③分母中含有未知数. 要点十五、分式方程的解法解分式方程的基本思想:将分式方程转化为整式方程.转化方法是方程两边都乘以最简公分母,去掉分母.在去分母这一步变形时,有时可能产生使最简公分母为零的根,这种根叫做原方程的增根.因为解分式方程时可能产生增根,所以解分式方程时必须验根.解分式方程的一般步骤:(1)方程两边都乘以最简公分母,去掉分母,化成整式方程(注意:当分母是多项式时,先分解因式,再找出最简公分母); (2)解这个整式方程,求出整式方程的解;(3)检验:将求得的解代入最简公分母,若最简公分母不等于0,则这个解是原分式方程的解,若最简公分母等于0,则这个解不是原分式方程的解,原分式方程无解.(4)产生增根的原因:去分母时,方程两边同乘的最简公分母是含有字母的式子,这个式子有可能为零,对于整式方程来说,求出的根成立,而对于原分式方程来说,分式无意义,所以这个根是原分式方程的增根. 要点十六、分式方程的应用(1)审题了解已知数与所求各量所表示的意义,弄清它们之间的数量关系; (2)设未知数;10n a ⨯n 1||10a ≤<10n a -⨯n 1||10a ≤<(3)找出能够表示题中全部含义的相等关系,列出分式方程;(4)解这个分式方程;(5)验根,检验是否是增根;(6)写出答案.【重点难点】;(2)..48a b24a -b a ⎪-⎝⎭✓ 【考点过关】1.甲完成一项工程需要 m 天,乙完成同样一项工程需要的天数比甲少2天,乙的工作效率为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第15章 分式复习学案(一)
教学年级:八年级
一、教学目标:
1、能将实际问题中的等量关系用分式方程表示,体会分式方程的模型思想。

2、经历“实际问题—分式方程模型—求解—解释解的合理性”的过程 。

3、发展学生分析问题、解决问题的能力,培养学生的应用意识。

二、重点、难点:
1.重点:能将实际问题中的等量关系用分式方程表示、分式方程概念
2.难点:会解可化为一元一次方程的分式方程,会检验一个数是不是
原方程的增根.
三、教学方法:讲解法、探究法
四、教具准备:练习纸
五、教学过程:
一、知识回顾:
2、分式的基本性质: 分式的分子与分母都乘以(或除以)_______________ .分式的值________.
用式子表示: ___________
3、通分关键是找____________________,约分与通分的依据都是:______________________
4、有两块面积相同的小麦试验田,第一块使用原品种,第二块使用新品种,分别收获小麦9000kg 和15000kg 。

已知第一块试验田每公顷的产量比第二块少3000kg ,分别求这两块试验田每公顷的产量。

1)你能找出这一问题中的等量关系吗?
(1)第一块试验田每公顷的产量+3000kg=第二块试验田每公顷的产量
(2)第一块试验田的面积=第二块试验田的面积
(3)土地面积
总产量每公顷的产量 2)如果设第一块试验田每公顷的产量为xkg ,那么第二块试验田每公顷的产量是 ( )kg 。

第一块试验田的面积为( ),第二块试验田的面积
为( )。

3)根据题意,可得方程:( )
二、知识应用
1、当x =________时,分式3
1-x 没有意义. 2、一种病菌的直径为0.0000036m ,用科学记数法表示为 .
3. 分式bx ax 1,1的最简公分母为 .
4. 化简=-32224m n m .
5. 在括号内填入适当的单项式,使等式成立:22)(1xy xy =
6. 计算0
22005121⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛--= . 7、某班a 名同学参加植树活动,其中男生b 名(b<a).若只由男生完成,每人需植树15棵;
若只由女生完成,则每人需植树 棵.
8、已知a 2-6a+9与|b -1|互为相反数,则(
a
b b a -)÷(a +b )=______。

9、若非零实数a ,b 满足4a 2+b 2=4ab ,则a b =_____。

10、下列各式:()x
x x x y x x x 2
225 ,1,2 ,34 ,151+---π其中分式共有( )个。

A 、2 B 、3 C 、4 D 、5
11、使分式x
x x x 35352-=-从左至右变形成立的条件是( ) A 、x <0 B 、x >0 C 、x ≠0 D 、x ≠0且x ≠3
12、当x 为任意实数时,下列分式一定有意义的是( )
A .
212-x B .122+x C .22x D .21+x 13、计算
⑴(m 1+n 1)÷n n m + ⑵ 24111a a a a ++-- ⑶ )11(122x
x x x +⋅+- 14、先化简,再求值:
15、解下列方程
⑴请你先化简,再选取一个你喜欢的 (1)x x x 1512=-+ (2)224162
22-+=--+-x x x x x
数代入并求值: 1
1)1(212--+-+a a a a 六、课堂小结:
通过本节课的学习,你学到了哪些知识和方法?你还有什么疑问没有解决?
七、布置作业:
复习题16第3题、第5题、第9题
八、课后反思:
板书:。

相关文档
最新文档