抛物线——阿基米德三角形

合集下载

专题一阿基米德三角形的性质

专题一阿基米德三角形的性质

阿基米德三角形的性质阿基米德三角形:抛物线的弦与过弦的端点的两条切线所围成的三角形。

阿基米德最早利用逼近的思想证明了:抛物线的弦与抛物线所围成的封闭图形的面积等于阿基米德三角形面积的____________ 。

阿基米德三角形的性质:设抛物线方程为x2=2py,称弦AB为阿基米德三角形的底边,M为底边AB的中点,Q为两条切线的交点。

性质1 阿基米德三角形底边上的中线与抛物线的轴___________________ 。

性质2 阿基米德三角形的底边即弦AB过抛物线定点C,则另一顶点Q的轨迹为____________________ 。

性质3抛物线以C为中点的弦与Q点的轨迹____________________ 。

性质4若直线I与抛物线没有公共点,以I上的点为顶点的阿基米德三角形的底边过定点。

性质5底边长为a的阿基米德三角形的面积的最大值为___________________ 。

性质6若阿基米德三角形的底边过焦点,则顶点Q的轨迹为抛物线的_____________ ,且阿基米德三角形的面积的最小值为_____ 。

性质7 在阿基米德三角形中,/ QFA= / QFB。

性质8在抛物线上任取一点I (不与A、B重合),过I作抛物线切线交QA、QB于S、T,则△QST 的垂心在_______________ 上。

性质9 |AF| |BF|=|QF|2.性质10 QM的中点P在抛物线上,且P处的切线与AB _____________ 。

性质11在性质8中,连接AI、BI,则△ABI的面积是△QST面积的___________ 倍。

高考题中的阿基米德三角形例1 (2005卷,理22题)如图,设抛物线C :y = x 2的焦点为F ,动点P 在直线l :x - y- 2= 0上运动,过P 作抛物线C 的两条切线PA 、PB ,且与抛物线C 分别相切于A 、B 两点. (1 )求△APB 的重心 G 的轨迹方程. (2)证明/ PFA= / PFB.解:(1)设切点A 、B 坐标分别为(x,x :)和(x.x :)*! 1 X 。

阿基米德三角形及其性质

阿基米德三角形及其性质

阿基米德三角形及其性质一、阿基米德三角形的概念过圆锥曲线上任意两点作两条切线交于点Q ,则称△QAB 为阿基米德三角形.二、抛物线的阿基米德三角形的性质:(以抛物线22y px =为例) 性质1 阿基米德三角形底边上的中线平行于抛物线的轴.证明:设112200(,),(,)(,)A x y B x y Q x y ,,弦AB 的中点为(,)M M M x y , 则过A 的切线方程为11()y y p x x =+,过B 的切线方程为22()y y p x x =+, 联立两切线方程,解得1212,22y y y y x y p +==,所以1202y y y +=, 又122M y y y +=,所以0M y y =,即QM 平行于x 轴. 性质2 底边长为a 的阿基米德三角形的面积的最大值为38a p. 证明:Q 到AB 的距离为2121212()224x x y y y y d QM p p+-≤=-=,设AB 方程为x my n =+, 则23222221211(1)()()428a a AB a m y y y y a d S ad p p ==+-⇒-≤⇒≤⇒=≤. 性质3 若阿基米德三角形底边AB 过抛物线内定点00(,)C x y ,则顶点Q 的轨迹方程为00()y y p x x =+.证明:设(,)Q x y ,则由性质1有1212,22y y y y x y p +==, 由AB AC k k =10122221210222y y y y y y y x p p p--⇒=--,化简得1201202()y y px y y y +=+, 即0000222()px px yy yy p x x +=⇒=+为Q 点的轨迹方程.推论 若阿基米德三角形底边AB 过焦点,则Q 点的轨迹为准线,且QA QB ⊥.性质4 阿基米德三角形底边的中线QM 的中点P 在抛物线上,且O 处的切线与AB 平行.证明:由性质1得12121212,,,2222y y y y x x y y Q M p p ⎛⎫+++⎛⎫ ⎪ ⎪⎝⎭⎝⎭,QM 中点21212(),82y y y y P p ⎛⎫++ ⎪⎝⎭, 显然P 在抛物线上,过P 的斜率为122AB p k y y =+,故P 处的切线与AB 平行.性质5 在阿基米德三角形中,QFA QFB ∠=∠.证明:作','AA BB 垂直于准线,垂足分别为','A B ,如图,对22y px =两边求导得12'2'QA p p yy p y k y y =⇒=⇒=, 又1'FA y k p-=,所以'1'QA FA k k QA FA ⋅=-⇒⊥,又'AA AF =,设'A F 与QA 交于C , 则'''','ACA ACF QAA QAF QAA QAF QA QF QA A QFA ∆≅∆⇒∠=∠⇒∆≅∆⇒=∠=∠, 同理可证'''90''90'QA A QA B QB A QB B QFA QFB ∠=∠+=∠+=∠⇒∠=∠ 性质6 在阿基米德三角形中有2AF BF QF ⋅=.证明:222221212121212()()()()2224244y y y y p p p p p AF BF x x x x x x p +⋅=++=+++=++, 2221212()()222y y y y p QF p p +=-+=22221212()244y y y y p p +++,所以2AF BF QF ⋅=. 三.阿基米德焦点三角形的性质把底边过焦点的阿基米德三角形称之为阿基米德焦点三角形.性质1 AB 过焦点F ,则PA ⊥PB ,PF ⊥AB ,△PAB 面积的最小值为2p .性质2 P 是椭圆22221(0)x y a b a b+=>>过右焦点F 的弦在两端点处切线的交点,则P 在椭圆右准线上,且PF ⊥AB ,△PAB 面积的最小值为4b ac. 性质3 P 是双曲线22221x y a b-=过右焦点F 的弦在两端点处切线的交点,则P 在双曲线右准线上,且PF⊥AB,△PAB面积的最小值为4bac.【拓展】当阿基米德三角形的顶角为直角时,有如下性质:对于圆222x y r+=,其阿基米德三角形顶点Q的轨迹为2222x y r+=对于椭圆22221(0)x ya ba b+=>>,其阿基米德三角形顶点Q的轨迹为2222x y a b+=+;对于双曲线22221(0)x ya ba b-=>>,其阿基米德三角形顶点Q的轨迹为2222x y a b+=-.。

高考数学复习微难点12 抛物线中的阿基米德三角形

高考数学复习微难点12 抛物线中的阿基米德三角形

两条切线,切点分别为 A,B.
(1) 求证:直线 AB 过定点;
【解答】 设 Dt,-12,A(x1,y1),则 x21=2y1.由于 y′=x,所以切线 DA 的斜率为 x1,故yx11+-12t =x1,整理得 2 tx1-2 y1+1=0.设 B(x2,y2),同理可得 2tx2-2 y2+1=0.故直
设抛物线 C:x2=2py(p>0)的焦点为 F,过 F 且垂直于 y 轴的直线交抛物线 C 于 M,N 两点,O 为原点,△OMN 的面积为 2.
(1) 求拋物线 C 的方程; 【解答】 由题意得,点 M,N 的纵坐标均为p2,由 x2=2p·p2,解得 x=±p,则|MN| =2p,由 S△CMN=12·|MN|·|OF|=12·2p·p2=12p2=2,解得 p=2,故抛物线 C 的方程为 x2= 4y.
主题三 几何与代数 第八章 解析几何
微难点12 抛物线中的阿基米德三角形
抛物线的弦与过弦的端点的两条切线所围的三角形,这个三角形又常被称为阿基米 德三角形.
过弦的端点分别作切线 已知抛物线 C:x2=2py(p>0),直线 l 交 C 于 A,B 两点,且 A,B 两点与原 点不重合,点 M(1,2)为线段 AB 的中点. (1) 若直线 l 的斜率为 1,求抛物线 C 的方程;
1. 若 AB 过焦点,则 AB 的端点的两条切线的交点 Q 在其准线上; 2. 阿基米德三角形底边上的中线平行于坐标轴,即 xQ=xM; 3. AB 过抛物线的焦点; 4. AQ⊥BQ; 5. 阿基米德三角形面积的最小值为 p2.
Thank you for watching
(2) 分别过 A,B 两点作抛物线 C 的切线,若两条切线交于点 S,求证:点 S 在一 条定直线上.

阿基米德三角形在抛物线中的应用

阿基米德三角形在抛物线中的应用

解题篇 题 源高二数学 2021年3月■四川省绵阳实验高级中学 余强抛物线中的阿基米德焦点三角形是高考 的热点,在近几年全国卷中多次出现,同时也 频频出现在近年的高考模拟题中#我们把抛物线的弦与过弦端点的两条切线所围成的三角形称为阿基米德三角形,把弦经过焦点的阿基米德三角形称为阿基米德焦点三角形# 阿基米德焦点三角形有一些有趣的性质!下面我们对阿基米德焦点三角形的性质进行总结,供同学们参考#性质1:一条过抛物线y 2 = 2@" (@>0)的焦点F 的弦AE ,抛物线在点A.B 处的两条切线相交于点6,我们称96AB 为阿基米德焦点三角形#则:(1) 点6在y 2 = 2@"的准线上;(2) 6A 丄6B ,6)丄AB #y 2 = 2p"1,故 I ^-2," +y : = 011证明:设直线AB 的方程为"=$y +2y 2=2@",由. @可得:I " =$y +2,y 2 一 2p$y 一 @2 = 0 #显然 &>0,设 A"— ,y —) ,B ("2 ,y 2),则y —+y 2 =2p$ , y — y 2 = —p 2 #(1)设切线 6A : y — y — = k 1("—"1 ) #y — y —=k 1 (" —"1),消去",可得y 2 = 2p"联立故,6A = k —=y 1因此,直线6A 的方程为y — y —p("——"1),艮卩 yy — = p (" + "— ) #同理可得k 6B = ,直线6B 的方程为y 2yy 2 = p (" +"2)#抛物线在A.B 两点的切线方程分别为y — y = p ("+"1),y 2y = p("+"2)CC解之得.y — y 2y 1+y 2_2_交点6的坐标为y 1+y 2 \_2_ /由此求得两切线的所以点6在y 2 = 2p"的准线上#一” ppp 2(2)因为,A6 + k B 6 =——+ ——=-----=y — y 2 y — y 2p 2上^=—1,所以 6A 丄6B #—p由题意知,6)= ( p , — p$ / , AB =("2—"1 ?y 2 — y 1' #因为 6) - AB = p ("2 一 "— / 一22p 2py —y一石 y +kT2p"1 = 0p 2 2 p y —由& = 0 '可得p [一kT +2p "1 = 0# 又p$(y 2 — y —' = pp$ (y 2—y — ) = 0 ,所以 6)丄AB #! !(江西省鹰潭市2020年高二质检)解题篇创新题源高二数学 2021年3月中孝生皋捏化过抛物线"*2=4y 的焦点作直线;交抛物线 于89 两点,分别过8 9 作抛物线的切线;1! ; 2!则切线;1与切线;2的交点2的轨迹 方程是(4("2 —"1 '程是y = — 1#故选A评注:本题考查了求轨迹方程、利 用导数研究曲线上某.处的切线方程和整体运算思 想。

有关抛物线阿基米德三角形的三个性质

有关抛物线阿基米德三角形的三个性质

解题技巧与方法■JIETI JIQIAO YU FANGFA_关”•-阿基采德三角形的三个性质◎王利民(甘肃省秦安县第一中学,甘肃天水741600)!摘要】阿基米德三角形的定义:抛的—与过—的的切的三角为阿基米德三角.通过类比和联想,通过对赛题1和题2进行探究,得出了抛阿基米德三角形的三个性质.!关键词】阿基米德;三角形;性质米德三角形的定义:抛物线的弦与过弦的端点的两条切线的三角形称为米德三角形.阿基米德是伟大的古希腊数学家和力学家,被后为数学之,他的著作有《论球与》《的》《论劈锥曲面体与》《螺线》《抛物弓形求积》等10.纟米德最早在著作《抛物弓形求积》用的证明了有关性:抛物线的弦与抛物线的封闭图形的面积是阿基米德三角形面积的三分.纟过类比,通过对题1题2探究,得出了抛物线米德三角形的三个性质,现介绍.赛题1(2014数题A卷第9题)平面标系中,@是不在"轴上的一个动点,满足条件:过@可作抛物线D=4#的两条切线,点连线J与垂直,设直线J与直线@。

,“轴的交点分别为[,V(1)证明V是一个定点;(2)求的最小值.赛题2(2013年福建高中数学竞赛初赛)已知A,B为抛物线C&D=4#上的两个动点,点A在第一象限,点B在第四象限,J,J分别过点A,B且与抛物线C相切,@为J与J的点.(1)若直线AB过抛物线C的焦点:,求证:动点@在一条定直线上,并求此直线方程.(2)设C,D为直线J,J与直线#=4的交点,求%@CD 面积的最小值.道赛题都是抛物线的定点和最值问题,都以阿基米德三角形为背景,不仅形式优美,简,力考查生的能力和运算求解能力,也做到把数学史中著名定理和数学知识•考查线与抛物线的位置、基本不等式,也考查归与转化的,旨在考查推理和数学运算的题1中,记过点@作的抛物线D=4#的两条切线的切点分别为A,B,则%@AB是阿基米德三角形.笔者通过对题1探究,得出:1面标系#D中,@是不在x轴上的一个动点,满足条件:过@可作抛物线D=2p#(p>0)的条线,点连线J与,设线J与直线P。

抛物线阿基米德三角形二级结论推广

抛物线阿基米德三角形二级结论推广

抛物线阿基米德三角形问题是一个数学领域的经典问题,在本文中,我们将结合相关数学理论和实际运用进行深入探讨、分析及推广。

一、抛物线阿基米德三角形概念及原理抛物线阿基米德三角形是通过将一个抛物线分成若干小等分,然后将每个小等分的顶点与该小等分所在的位置上的斜率相连,将所有这些相连的线段所形成的图形,称为抛物线的阿基米德三角形。

该问题的提出是为了研究曲线上的直线与曲线的交点及其有关性质。

二、抛物线阿基米德三角形的基本性质及特点1. 抛物线的阿基米德三角形具有三条相交于一个点的特点,该点即为抛物线的焦点。

2. 抛物线的阿基米德三角形形状具有一定的规律性,不同抛物线的阿基米德三角形形状可能有所不同,但都具备三条相交于一个点的共同特点。

3. 抛物线的阿基米德三角形结构清晰简洁,可以通过数学方法进行精确的构造。

三、抛物线阿基米德三角形的实际应用1. 数学教育领域:抛物线阿基米德三角形可以作为数学教学中的经典案例,通过该案例的讲解和分析,可以帮助学生更深入地理解曲线与直线的交点问题,增强他们的数学思维和分析能力。

2. 工程设计领域:在工程设计中,抛物线阿基米德三角形的相关理论可以应用于某些特定的曲线结构问题的求解和设计,为工程设计师提供一种新的思路和方法。

3. 计算机图形学领域:在计算机图形学中,抛物线阿基米德三角形的相关理论可以帮助程序设计师更好地理解和处理曲线与直线的交点问题,提高程序设计的精确度和效率。

四、抛物线阿基米德三角形问题的二级结论推广1. 根据抛物线阿基米德三角形的相关理论,可以进行进一步的推广和拓展,将抛物线阿基米德三角形的概念和原理应用于更加复杂和多样化的曲线和图形结构中,发现新的数学规律和特点。

2. 抛物线阿基米德三角形问题的二级结论推广可以帮助人们更深入地理解曲线与直线的交点问题,并在实际问题的解决中更加灵活地运用相关数学理论和方法。

五、结语通过对抛物线阿基米德三角形问题的深入探讨、分析及推广,我们可以更好地理解曲线与直线的交点问题,并将相关数学理论和方法应用于实际问题的解决中,为促进数学理论和实际应用的结合做出更大的贡献。

专题一 阿基米德三角形的性质

阿基米德三角形的性质阿基米德三角形:抛物线的弦与过弦的端点的两条切线所围成的三角形。

阿基米德最早利用逼近的思想证明了:抛物线的弦与抛物线所围成的封闭图形的面积等于阿基米德三角形面积的。

阿基米德三角形的性质:设抛物线方程为x2=2py,称弦AB为阿基米德三角形的底边,M为底边AB的中点,Q为两条切线的交点。

性质1 阿基米德三角形底边上的中线与抛物线的轴。

性质2 阿基米德三角形的底边即弦AB过抛物线内定点C,则另一顶点Q的轨迹为。

性质3 抛物线以C为中点的弦与Q点的轨迹。

性质4 若直线l与抛物线没有公共点,以l上的点为顶点的阿基米德三角形的底边过定点。

性质5 底边长为a的阿基米德三角形的面积的最大值为。

性质6 若阿基米德三角形的底边过焦点,则顶点Q的轨迹为抛物线的,且阿基米德三角形的面积的最小值为。

性质7 在阿基米德三角形中,∠QFA=∠QFB。

性质8 在抛物线上任取一点I(不与A、B重合),过I作抛物线切线交QA、QB于S、T,则△QST 的垂心在上。

性质9 |AF |·|BF |=|QF |2.性质10 QM 的中点P 在抛物线上,且P 处的切线与AB 。

性质11 在性质8中,连接AI 、BI ,则△ABI 的面积是△QST 面积的 倍。

例1 (2005江西卷,理22题)如图,设抛物线2:C yx 的焦点为F ,动点P 在直线:20l x y 上运动,过P 作抛物线C 的两条切线PA 、PB ,且与抛物线C 分别相切于A 、B 两点. (1)求△APB 的重心G 的轨迹方程. (2)证明∠PFA =∠PFB .解:(1)设切点A 、B 坐标分别为2201110(,)(,)(()x x x x x x 和,∴切线AP 的方程为:20020;x x y x 切线BP 的方程为:21120;x x yx解得P 点的坐标为:0101,2PPx x x y x x所以△APB 的重心G 的坐标为 ,222201010101014(),3333P pPGx y y y y x x x x x x x x y所以234p GG y y x ,由点P在直线l 上运动,从而得到重心G 的轨迹方程为:221(34)20,(42).3xyx yx x 即(2)方法1:因为221000111111(,),(,),(,).4244x x FAx x FP x x FB x x 由于P 点在抛物线外,则||0.FP∴201010012220111()()2444cos ,1||||||||()4x x x x x x x x FP FA AFPFP FA FP FP x x同理有20110110122211111()()2444cos ,1||||||||()4x x x x x x x x FP FB BFPFP FB FP FP x x∴∠AFP =∠PFB . 方法2:①当1010000,,0,0,x x x x x y 时由于不妨设则所以P 点坐标为1(,0)2x ,则P 点到直线AF 的距离为:211111||14;:,24x x dBF yx x 而直线的方程即211111()0.44x x x yx所以P 点到直线BF 的距离为:221111112222211||11|()|()||42442121()()44x x x x x x d x x x所以d 1=d 2,即得∠AFP =∠PFB . ②当100x x 时,直线AF 的方程:2020011114(0),()0,4044x yx x x x yx x 即直线BF 的方程:212111111114(0),()0,444x yx x x x yx x 即所以P 点到直线AF 的距离为:22201010010001122220111|()()||)()||42424121()44x x x x x x x x x x x d xx x ,同理可得到P 点到直线BF 的距离102||2x x d ,因此由d 1=d 2,可得到∠AFP =∠PFB例2 (2006全国卷Ⅱ,理21题)已知抛物线x 2=4y 的焦点为F ,A 、B 是抛物线上的两动点,且AF →=λFB →(λ>0).过A 、B 两点分别作抛物线的切线,设其交点为M. (Ⅰ)证明FM →·AB →为定值;(Ⅱ)设△ABM 的面积为S ,写出S =f (λ)的表达式,并求S 的最小值. 解:(Ⅰ)由已知条件,得F (0,1),λ>0. 设A (x 1,y 1),B (x 2,y 2).由AF →=λFB →, 即得 (-x 1,1-y )=λ(x 2,y 2-1),⎩⎪⎨⎪⎧-x 1=λx 2 ①1-y 1=λ(y 2-1) ②将①式两边平方并把y 1=14x 12,y 2=14x 22代入得 y 1=λ2y 2 ③ 解②、③式得y 1=λ,y 2=1λ,且有x 1x 2=-λx 22=-4λy 2=-4, 抛物线方程为y =14x 2,求导得y ′=12x . 所以过抛物线上A 、B 两点的切线方程分别是 y =12x 1(x -x 1)+y 1,y =12x 2(x -x 2)+y 2, 即y =12x 1x -14x 12,y =12x 2x -14x 22.解出两条切线的交点M 的坐标为(x 1+x 22,x 1x 24)=(x 1+x 22,-1). ……4分 所以FM →·AB →=(x 1+x 22,-2)·(x 2-x 1,y 2-y 1)=12(x 22-x 12)-2(14x 22-14x 12)=0 所以FM →·AB →为定值,其值为0. ……7分(Ⅱ)由(Ⅰ)知在△ABM 中,FM ⊥AB ,因而S =12|AB ||FM |.|FM |=(x 1+x 22)2+(-2)2=14x 12+14x 22+12x 1x 2+4=y 1+y 2+12×(-4)+4 =λ+1λ+2=λ+1λ.因为|AF |、|BF |分别等于A 、B 到抛物线准线y =-1的距离,所以 |AB |=|AF |+|BF |=y 1+y 2+2=λ+1λ+2=(λ+1λ)2.于是 S =12|AB ||FM |=(λ+1λ)3,由λ+1λ≥2知S ≥4,且当λ=1时,S 取得最小值4.例3(2007江苏卷,理19题)如图,在平面直角坐标系xOy 中,过y 轴正方向上一点(0,)C c 任作一直线,与抛物线2yx 相交于AB 两点,一条垂直于x 轴的直线,分别与线段AB 和直线:l y c 交于,P Q ,(1)若2OA OB,求c 的值;(5分) (2)若P 为线段AB 的中点,求证:QA 为此抛物线的切线;(5分) (3)试问(2)的逆命题是否成立说明理由。

抛物线阿基米德三角形结论证明

抛物线阿基米德三角形结论证明1. 概述抛物线作为古代数学中的重要研究对象,其性质和结论一直以来都备受学者们的关注。

其中,抛物线上的阿基米德三角形结论一直是一个备受研究的课题。

本文旨在对抛物线上的阿基米德三角形结论进行证明,并探讨其中的数学内涵。

2. 抛物线的性质2.1 抛物线的定义抛物线是平面上的一种曲线,其定义可以与焦点和直线上一点的距离比例为常数通联起来。

一般来说,抛物线是指平面上一点到定直线和定点的距离比例为常数的轨迹。

2.2 抛物线的方程一般情况下,抛物线可以用一般二次方程的形式表示为y=ax^2+bx+c。

其中,a、b、c为常数,且a不等于0。

3. 阿基米德三角形的性质3.1 阿基米德三角形的定义阿基米德三角形是指一个锐角三角形,其三边长度成等比数列。

3.2 抛物线上的阿基米德三角形研究发现,在抛物线上,可以构建多个满足阿基米德三角形定义的三角形。

4. 抛物线上的阿基米德三角形结论证明4.1 抛物线的焦点性质我们需要利用抛物线的定义和性质证明其焦点的特殊性质。

根据抛物线的定义和焦点的几何性质,我们可以得出抛物线上的任意一点到焦点的距离和到定直线的距离之比是一个定值。

4.2 阿基米德三角形在抛物线上的构造进而,我们可以利用抛物线的焦点性质,构造出满足阿基米德三角形定义的三角形。

具体来说,我们可以选择抛物线上的三个或多个点,然后利用这些点到焦点和定直线的距离比例的性质,构造出符合阿基米德三角形定义的三角形。

4.3 阿基米德三角形的等比性质我们需要证明抛物线上构造出的三角形是等比数列。

在这一步中,我们需要运用一些几何和代数方法,通过计算抛物线上构造出的三角形的边长,并证明其边长满足等比数列的条件。

5. 结论通过以上的证明和分析,我们可以得出抛物线上的阿基米德三角形确实存在,并且构造出的三角形满足阿基米德三角形的定义和等比性质。

这一结论不仅对于抛物线的研究具有重要意义,同时也有助于深化对阿基米德三角形的理解,为数学研究提供了新的思路和方法。

抛物线阿基米德三角形常用结论高中

抛物线、阿基米德三角形常用结论一、抛物线1. 抛物线的定义抛物线是一种特殊的曲线,其定义可以由平面上的点P到给定直线上一点F的距离等于P到另一固定点D的距离的平方的约束条件定义。

2. 抛物线的常用方程抛物线的常用方程形式为y = ax^2 + bx + c 或者 x = ay^2 + by + c。

其中a、b、c为常数,a≠0。

3. 抛物线的性质(1)抛物线的对称轴与顶点抛物线的对称轴是其顶点处的垂直平分线。

(2)抛物线的焦点和直线抛物线的焦点是与其对称轴上的一个定点F,直线是与抛物线平行于其对称轴的直线。

二、阿基米德三角形1. 阿基米德三角形的定义阿基米德三角形是一种特殊的三角形,其三边分别由三个与三个同一直线上的点相连而得到。

这三个点一般是由同一圆的直径上得到。

2. 阿基米德三角形的常用结论(1)阿基米德三角形的边长关系公式设阿基米德三角形的边长分别为a、b、c,其边长关系可由公式a^2 = b^2 + c^2得到。

(2)阿基米德三角形的面积公式设阿基米德三角形的三角形边分别为a、b、c,其面积S可由公式S = 1/2 * b * c * sinA得到。

其中A为a对应的角度。

三、高中数学中抛物线和阿基米德三角形的应用1. 抛物线在物理学中的应用在物理学中,抛物线常常用来描述抛体运动的轨迹。

抛出的物体在水平方向上的运动可以用抛物线方程描述。

2. 阿基米德三角形在几何学中的应用在几何学中,阿基米德三角形经常用于解决三角函数相关问题。

在求解三角函数值时,可以利用阿基米德三角形的边长关系进行变换,从而简化计算。

四、结语抛物线和阿基米德三角形作为数学中的重要内容,在高中数学教学中被广泛应用。

通过对其定义、性质以及应用的深入了解,不仅可以增加数学知识的广度和深度,还能够帮助学生更好地理解数学的应用价值。

希望学生们能够加强对抛物线和阿基米德三角形的学习,不断提升数学思维能力和解决问题的能力。

抛物线和阿基米德三角形作为数学中重要的内容,不仅在高中数学教学中被广泛应用,而且在科学研究和工程技术中也发挥着重要作用。

阿基米德三角形的性质

阿基米德三角形的性质切线方程:1.过抛物线px y 22=上一点),(00y x M 的切线方程为:)(00x x p y y +=2.过抛物线px y 22-=上一点),(00y x M 的切线方程为:)(00x x p y y +-=3.过抛物线py x 22=上一点),(00y x M 的切线方程为:)(00y y p x x +=4.过抛物线py x 22-=上一点),(00y x M 的切线方程为:)(00y y p x x +-=性质1:阿基米德三角形底边上的中线平行于抛物线的轴。

证明:设),(11y x A ,),(22y x B ,M 为弦AB 的中点,则过A 的切线方程为)(11x x p y y +=,过B 的切线方程为)(22x x p y y +=,联立方程,1212px y =,2222px y =,解得两切线交点)2,2(2121y y p y y Q + 性质2:若阿基米德三角形的底边即弦AB 过抛物线的定点C ,则另一顶点Q 的轨迹为一条直线性质3:.抛物线以C 点为中点的弦平行于Q 点的轨迹性质4:若直线l 与抛物线没有公共点,以l 上的点为顶点的阿基米德三角形的底边过定点性质5:底边为a 的阿基米德三角形的面积最大值为pa 83性质6:若阿基米德三角形的底边过焦点,顶点Q 的轨迹为准线,且阿基米德三角形的面积最小值为2p 性质7:在阿基米德三角形中,QFB QFA ∠=∠性质8:抛物线上任取一点I (不与B A ,重合),过I 作抛物线切线交QA ,QB 于T S ,,则QST ∆的垂心在准线上 性质9:2QF BF AF =⋅性质10:QM 的中点P 在抛物线上,且P 处的切线与AB 平行性质11:在性质8中,连接BI AI ,,则ABI ∆的面积是QST∆面积的2倍 1。

如图,设抛物线方程为)0(22>=p py x ,M 为 直线p y 2-=上任意一点,过M 引抛物线的切线,切点分别为B A ,(Ⅰ)求证:M B A ,,三点的横坐标成等差数列;(Ⅱ)已知当M 点的坐标为)2,2(p -时,410AB =,求此时抛物线的方程;(Ⅲ)是否存在点M ,使得点C 关于直线AB 的对称点D 在抛物线22(0)x py p =>上,其中,点C 满足OC OA OB =+(O 为坐标原点)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解析几何——阿基米德三角形知识点:抛物线的弦与过弦的端点的两条切线所围成的三角形常被称为阿基米德三角形。

因为阿基米德最早利用逼近的思想证明了:抛物线的弦与抛物线所围成的封闭图形的面积等于阿基米德三角形面积的2/3预备知识:1.过抛物线px y 22=上一点),(00y x M 的切线方程为:)(00x x p y y +=2.过抛物线px y 22-=上一点),(00y x M 的切线方程为:)(00x x p y y +-=3.过抛物线py x 22=上一点),(00y x M 的切线方程为:)(00y y p x x +=4.过抛物线py x 22-=上一点),(00y x M 的切线方程为:)(00y y p x x +-=阿基米德三角形有一些有趣的性质:性质1:阿基米德三角形底边上的中线平行于抛物线的轴.证明:设11(,)A x y ,22(,)B x y ,M 为弦AB 中点,则过A 的切线方程为11()y y p x x =+,过B 的切线方程为22()y y p x x =+,联立方程组得1122211222()()22y y p x x y y p x x y px y px =+⎧⎪=+⎪⎨=⎪⎪=⎩解得两切线交点Q (122y y p ,122y y +),进而可知QM ∥x 轴.性质2:QM 的中点P 在抛物线上,且P 处的切线与AB 平行.证明:由性质1知Q (122y y p ,122y y +),M 1212(,22x x y y ++,易得P 点坐标为21212()(,82y y y y p ++,此点显然在抛物线上;过P 的切线的斜率为121222p p y y y y =++=ABk ,结论得证.性质3如图,连接AI 、BI ,则△ABI 的面积是△QST 面积的2倍.证明:如图,这里出现了三个阿基米德三角形,即△QAB 、△TBI 、△SAI ;应用阿基米德三角形的性质:弦与抛物线所围成的封闭图形的面积等于阿基米德三角形面积的23;设BI 与抛物线所围面积为1S ,AI 与抛物线所围面积为2S ,AB 与抛物线所围面积为S ,则123322ABI QAB QST S S S S S =--- =12333222QST S S S S --- =123()2QST S S S S --- =32ABI QST S S - ,∴ABI S = 2QST S .性质4:若阿基米德三角形的底边即弦AB 过抛物线内的定点C ,则另一顶点Q 的轨迹为一条直线证明:设Q (x ,y ),由性质1,x =122y y p ,y =122y y +,∴122y y px=由A 、B 、C 三点共线知10122221210222y y y y y y y x p p p--=--,即21121020y y y y x y x +--2102y py =-,将y =122y y +,122y y px =代入得00()y y p x x =+,即为Q 点的轨迹方程.性质5:抛物线以C 点为中点的弦平行于Q 点的轨迹.利用两式相减法易求得以C 点为中点的弦的斜率为0p y ,因此该弦与Q 点的轨迹即直线l 平行.性质6若直线l 与抛物线没有公共点,以l 上的点为顶点的阿基米德三角形的底边过定点.证明:如上图,设l 方程为0ax by c ++=,且11(,)A x y ,22(,)B x y ,弦AB 过点C 00(,)x y ,由性质2可知Q 点的轨迹方程00()y y p x x =+,该方程与0ax by c ++=表示同一条直线,对照可得00,c bp x y a a ==-,即弦AB 过定点C (c a ,bp a-).性质7(1)若阿基米德三角形的底边过焦点,则顶点Q 的轨迹为准线;反之,若阿基米德三角形的顶点Q 在准线上,则底边过焦点.(2)若阿基米德三角形的底边过焦点,则阿基米德三角形的底边所对的角为直角,且阿基米德三角形面积的最小值为2p .证明(2):若底边过焦点,则00,02p x y ==,Q 点轨迹方程为2p x =-即为准线;易验证1QA QB k k ⋅=-,即QA ⊥QB ,故阿基米德三角形为直角三角形,且Q 为直角顶点;∴|QM |=122x x ++2p =22124y y p++2p ≥122||4y y p +2p =224p p +2p =p ,而121||()2QAB S QM y y =- ≥12||||QM y y ⋅≥2p性质8底边长为a 的阿基米德三角形的面积的最大值为38a p.证明:|AB |=a ,设Q 到AB 的距离为d ,由性质1知1212||22x x y y d QM p +≤=-221212244y y y y p p +=-=212()4y y p-,设直线AB 方程为:x my n =+,则2221(1)()a m y y =+-∴221()y y -≤2a ,∴d ≤24a p ,即S =12ad ≤38a p.性质9在阿基米德三角形中,∠QFA =∠QFB .证明:如图,作AA '⊥准线,BB '⊥准线,连接QA '、QB '、QF 、AF 、BF ,则1'FA y k p=-,显然'1FA QA k k ⋅=-,∴FA '⊥QA ,又∵|AA '|=|AF |,由三角形全等可得∠QAA '=∠QAF ,∴△QAA '≅△QAF ,∴|QA '|=|QF |,∠QA 'A =∠QFA ,同理可证|QB '|=|QF |,∠QB 'B =∠QFB ,∴|QA '|=|QB '|,即∠QA 'B '=∠QB 'A '∴∠QA 'A =∠QA 'B '+900=∠QB 'A '+900=∠QB 'B ,∴∠QFA =∠QFB ,结论得证.特别地,若阿基米德三角形的底边AB 过焦点F ,则QF ⊥AB.性质10|AF |·|BF |=|QF |2.证明:|AF |·|BF |=12(()22p p x x +⋅+=21212()24p p x x x x +++=212(2y y p +22124y y ++24p ,而|QF |2=221212()()222y y y y p p +-+=212()2y y p +22124y y ++24p =|AF |性质11在抛物线上任取一点I (不与A 、B 重合),过I 作抛物线切线交QA 、QB 于S 、T ,则△QST 的垂心在准线上.证明:设211(2,2)A pt pt 、222(2,2)B pt pt 、233(2,2)I pt pt ,易求得过B 、I 的切线交点T 2323(2,())pt t p t t +,过T 向QA 引垂线,其方程为1231232()4t x y p t t pt t t +=++,它和抛物线准线的交点纵坐标123123()4y p t t t pt t t =+++,显然这个纵坐标是关于123,,t t t 对称的,因此从S 点向QB 引垂线,从Q 点向ST 引垂线,它们与准线的交点也是上述点,故结论得证.例1:(2019年台州高三期末21)设点P 为抛物线2:y x Γ=外一点,过点P 作抛物线Γ的两条切线PA ,PB ,切点分别为A ,B .(Ⅰ)若点P 为(1,0)-,求直线AB 的方程;(Ⅱ)若点P 为圆22(2)1x y ++=上的点,记两切线PA ,PB 的斜率分别为1k ,2k ,求1211||k k -的取值范围.解:(Ⅰ)设直线PA 方程为11x m y =-,直线PB 方程为21x m y =-.由121,,x m y y x =-⎧⎨=⎩可得2110y m y -+=.因为PA 与抛物线相切,所以21=40m ∆-=,取12m =,则1A y =,1A x =.即(1,1)A .同理可得(1,1)B -.所以AB :1x =.(Ⅱ)设00(,)P x y ,则直线PA 方程为1100y k x k x y =-+,直线PB 方程为2200y k x k x y =-+.由11002,,y k x k x y y x =-+⎧⎨=⎩可得211000k y y k x y --+=.因为直线PA 与抛物线相切,所以1100=14()k k x y ∆--+20101=441=0x k y k -+.同理可得20202441=0x k y k -+,所以1k ,2k 时方程200441=0x k y k -+的两根.所以0120y k k x +=,12014k k x =.则12k k -==.又因为2200(2)1x y ++=,则031x -≤≤-,所以1211||=k k -1212=k k k k-4,⎡∈⎣.P A B Oxy例2:已知点H (0,-8),点P 在x 轴上,动点F 满足PF ⊥PH ,且PF 与y 轴交于点Q ,Q 是线段PF 的中点.(1)求动点F 的轨迹E 的方程;(2)点D 是直线l :x-y-2=0上任意一点,过点D 作E 的两条切线,切点分别为A ,B ,证明:直线AB 过定点.解:(1)设F (x ,y ),y ≠0,P (m ,0),Q (0,n ),则 ぀=(-m ,-8), =(-m ,n ),∵PF ⊥PH ,∴m 2-8n=0,即m 2=8n ,=0, ,∴ =− , = 2,代入m 2=8n ,得x 2=4y (y ≠0).故轨迹E 的方程为x 2=4y (y ≠0).(2)证明:设D (x 0,x 0-2),A (x 1,y 1),B (x 2,y 2),∵直线DA 与抛物线相切,且y'= 2,∴k DA = 12,∴直线DA 的方程为y= 12x-y 1,∵点D 在DA 上,∴x 0-2= 12x 0-y 1,化简得x 0x 1-2y 1-2x 0+4=0.同理,可得B 点的坐标满足x 0x 2-2y 2-2x 0+4=0.故直线AB 的方程为x 0x-2y-2x 0+4=0,即x 0(x-2)-2(y-2)=0,∴直线AB 过定点(2,2).练习1.已知点A(﹣4,4)、B(4,4),直线AM 与BM 相交于点M,且直线AM 的斜率与直线BM 的斜率之差为﹣2,点M 的轨迹为曲线C.(1)求曲线C 的轨迹方程;(2)Q 为直线y=﹣1上的动点,过Q 做曲线C 的切线,切点分别为D、E,求△QDE 的面积S 的最小值.练习2.如图,点F 是抛物线τ:22x py =(0p >)的焦点,点A 是抛物线上的定点,且()2,0AF = ,点B ,C 是抛物线上的动点,直线AB ,AC 斜率分别为1k ,2k .(1)求抛物线τ的方程;(2)若212k k -=,点D 是抛物线在点B ,C 处切线的交点,记BCD ∆的面积为S ,证明S 为定值.欢迎扫码关注公众号“数学HOME”,获取本文(包括练习详解)及更多资料的WORD版。

相关文档
最新文档