复合梯形法求定积分
复化梯形积分的自适应算法

复化梯形积分的自适应算法复合梯形积分是一种数值积分方法,用于计算积分形式为∫a^b f(x)dx的近似值。
它是复合模拟辛普森法的一种变体,它使用了梯形规则来估计函数的积分。
自适应算法是指积分算法自动地调整区间的长度和位置,以满足某些精度要求。
这使得自适应算法能够更有效地计算复杂函数的积分。
下面是一个简单的复合梯形积分自适应算法的步骤:1. 设置初始区间[a, b]和精度要求eps。
2. 计算区间[a, b]上的积分值I,使用复合梯形法。
3. 将区间[a, b]划分为两个子区间[a, c]和[c, b],其中c=(a+b)/2。
4. 计算子区间[a, c]和[c, b]上的积分值I1和I2,使用复合梯形法。
5. 计算I的近似误差E=|I-(I1+I2)|。
6. 如果E>eps,则递归调用算法,计算子区间[a, c]和[c, b]的积分值。
否则,返回I作为积分的近似值。
这个算法可以递归地将区间划分为更小的子区间,直到达到精度要求为止。
它的时间复杂度是O(n),其中的n是递归的次数,取决于函数的复杂度和所需的精度。
复合梯形积分自适应算法有一些优点,包括:•它可以自动地调整区间长度和位置,以满足精度要求。
•它可以有效计算复杂函数的积分。
•它的时间复杂度比较低,在大多数情况下都能满足实际需求。
但是,复合梯形积分自适应算法也有一些缺点,包括:•它需要较多的计算,因为必须多次计算函数的值。
•它可能在边界处产生较大的误差。
•它对初始区间的选择有一定的要求,如果选择的初始区间不合适,可能会导致较大的误差。
总的来说,复合梯形积分自适应算法是一种有效的数值积分方法,它可以有效计算复杂函数的积分。
但是,在实际应用中,还应该根据函数的特点和精度要求选择合适的积分算法。
MATLAB数值分析实验二(复合梯形、辛普森和龙贝格求积,以及二重积分计算等)

佛山科学技术学院实验报告课程名称_______________ 数值分析________________________实验项目_______________ 数值积分____________________专业班级机械工程姓名余红杰学号2111505010 指导教师陈剑成绩日期月日一、实验目的b1、理解如何在计算机上使用数值方法计算定积分 a f ""X的近似值;2、学会复合梯形、复合Simpson和龙贝格求积分公式的编程与应用。
3、探索二重积分.11 f (x, y)dxdy在矩形区域D = {( x, y) | a _ x _ b, c _ y _ d}的数值D积分方法。
二、实验要求(1)按照题目要求完成实验内容;(2)写出相应的Matlab程序;(3)给出实验结果(可以用表格展示实验结果);(4)分析和讨论实验结果并提出可能的优化实验。
(5)写出实验报告。
三、实验步骤1、用不同数值方法计算积xln xdx =-- 0 9(1)取不同的步长h,分别用复合梯形及复合辛普森求积计算积分,给出误差中关于h的函数,并与积分精确值比较两公式的精度。
(2)用龙贝格求积计算完成问题(1 )。
2、给出一种求矩形区域上二重积分的复化求积方法,然后计算二重积分..e"y dxdy,其中积分区域D二{0乞x岂1,0岂y乞1}。
1.%lnt_t.m复化梯形:function F = Int_t(x1,x2,n)%复化梯形求积公式% x1,x2为积分起点和中点%分为n个区间,没选用步长可以防止区间数为非整数。
%样点矩阵及其函数值:x = lin space(x1,x2 ,n+1);y = f(x);m = len gth(x);%本题中用Matlab计算端点位置函数值为NaN,故化为零: y(1) = 0;y(m) = 0;%算岀区间长度,步长h:h = (x2 -x1)/n;a = [1 2*o nes(1,m-2) 1];%计算估计的积分值:F = h/2*sum(a.*y);%f.mfun cti on y = f(x)y = sqrt(x).*log(x);%run 11.mclc,clear;%分为10个区间,步长0.1的积分值:F = In t_t(0,1,10);F10 = F%分为100个区间F = In t_t(0,1,100);F100 = F%误差计算W10 = abs((-4/9)-F10);W100 = abs((-4/9)-F100);W = [W10 W100]%复化辛普森:%l nt_s.mfun cti on F = In t_s(x1,x2 ,n)%复化梯形求积公式% x1,x2区间,分为n个区间。
(精选)实验二 数值方法计算积分

实验二数值方法计算积分学号:姓名:指导教师:实验目的1、了解并掌握matlab软件的基本编程、操作方法;2、初步了解matlab中的部分函数,熟悉循环语句的使用;3、通过上机进一步领悟用复合梯形、复合辛普森公式,以及用龙贝格求积方法计算积分的原理。
一、用不同数值方法计算积分 10x ln xdx=-94.(1)取不同的步长h.分别用复合梯形及辛普森求积计算积分,给出误差中关于h的函数,并与积分精确值比较两个公式的精度,是否存在一个最小的h,使得精度不能再被改善?(2)用龙贝格求积计算完成问题(1)。
二、实现实验1、流程图:下图是龙贝格算法框图:2、 算法:(1) 复合梯形公式:Tn=++)()([2b f a f h2∑-=11)](n k xk f ;(2) 复合辛普森公式:Sn=6h[f(a)+f(b)+2∑-=11)](n k xk f +4∑-=+1)2/1(n k x f ];以上两种算法都是将a-b 之间分成多个小区间(n ),则h=(b-a)/n,x k =a+kh, x k+1/2=a+(k+1/2)h,利用梯形求积根据两公式便可。
(3) 龙贝格算法:在指定区间内将步长依次二分的过程中运用如下公式1、Sn=34T2n-31Tn 2、 Cn=1516S2n-151Sn3、 Rn=6364C2n-631Cn 从而实现算法。
3、 程序设计(1)、复合梯形法:function t=natrapz(fname,a,b,n) h=(b-a)/n;fa=feval(fname,a);fb=feval(fname,b);f=feval(fname,a+h:h:b-h+0.001*h);t=h*(0.5*(fa+fb)+sum(f));(2)、复合辛普森法:function t=natrapz(fname,a,b,n)h=(b-a)/n;fa=feval(fname,a);fb=feval(fname,b);f1=feval(fname,a+h:h:b-h+0.001*h);f2=feval(fname,a+h/2:h:b-h+0.001*h); t=h/6*(fa+fb+2*sum(f1)+4*sum(f2));(3)龙贝格法:function [I,step]=Roberg(f,a,b,eps)if(nargin==3) eps=1.0e-4;end; M=1; tol=10; k=0;T=zeros(1,1); h=b-a;T(1,1)=(h/2)*(subs(sym(f),findsym(sym(f)),a)+subs(sym(f),findsym(sym(f)),b));while tol>epsk=k+1;h=h/2;Q=0;for i=1:Mx=a+h*(2*i-1);Q=Q+subs(sym(f),findsym(sym(f)),x);endT(k+1,1)=T(k,1)/2+h*Q;M=2*M;for j=1:kT(k+1,j+1)=T(k+1,j)+(T(k+1,j)-T(k,j))/(4^j-1); endtol=abs(T(k+1,j+1)-T(k,j));endI=T(k+1,k+1);step=k;4、实验结果;(1)复合梯形法(2)、复合辛普森法结果:(3)龙贝格法结果四.总结由结果(1)、(2)可知复合辛普森法求积分精度明显比复合梯形法求积的精度要高,且当步长取不同值时即n 越大、h 越小时,积分精度越高。
复化求积公式

h[ 2
f ( x0 )
n1
2
k 1
f ( xk )
f ( xn )]
复化梯形公式
Tn
h 2
[
f
(
x0
)
n1
2
k 1
f ( xk )
f ( xn )]
复化梯形公式
计算方法
2.复化辛浦生公式
计算方法
在每个小区间[xk1, xk ]上应用辛浦生公式得:
xk
xk 1
则
f
b
( x)dx h[ f 6
计算方法
在 每 个 小 区 间[ xk1, xk ]上 应 用 梯 形 公 式 得 :
xk xk 1
f ( x)dx
h 2
[
f
(
xk1
)
f ( xk )]
则
b
n
f (x)dx =
xk f (x)dx
a
k 1 xk1
n k 1
h[ f 2
(xk1)
f
(xk )]
计算方法
x0 x1 x2 x3
2
三、区间逐次分半求积法
计算方法
复化求积公式可有效提高计算精度,但对给定 的误差限,如何确定节点的个数,即[a,b]应多少等 份?由截断误差可以估计步长的取值情况,但需要 给出各阶导数的最大值,这往往是比较困难的,且 估计值往往偏大.
接下来,我们将考虑步长的更为实用的选取方 法.
计算方法
若用Tn及T2n分别表示将[a, b]n等分及2n等分的复化 梯形公式,则
f(x) 1 0.997 0.9896 0.976 0.95 0.936 0.908 0.877 0.841 3978 158 7267 8851 1556 8516 1925 4709
matlab梯形法求定积分例题

一、介绍在数值计算领域中,求解定积分是一个常见的问题。
定积分的求解可以通过多种方法,其中梯形法是一种常用的数值积分计算方法。
本文将以MATLAB为工具,通过一个具体的例题来介绍使用梯形法求解定积分的步骤和过程。
二、梯形法原理梯形法是一种利用梯形逼近曲线下面积的数值积分方法。
其原理是将积分区间分成若干小段,然后用每一小段上的函数值来逼近这一小段上的曲线下面积,最后将所有小段上的梯形面积相加得到整个积分的近似值。
三、MATLAB代码实现下面我们通过一个具体的例题来演示如何使用MATLAB来实现梯形法求解定积分。
假设我们要求解如下定积分:\[ \int_{0}^{1} 3x^2 dx \]我们定义被积函数,并选择积分区间及分段数。
在MATLAB中,可以通过以下代码来实现:```matlabf = (x) 3*x^2; 定义被积函数a = 0; 积分下限b = 1; 积分上限n = 100; 分段数```我们通过循环计算每一小段上的梯形面积,并将其相加得到定积分的近似值。
具体实现代码如下:```matlabh = (b - a) / n; 计算每一小段的长度x = a:h:b; 生成积分节点y = f(x); 计算积分节点上的函数值T = h * (sum(y) - (y(1) + y(end)) / 2); 使用梯形法计算定积分近似值```我们输出计算结果并进行比较:```matlabexact_value = integral(f, a, b); 精确值error = abs(exact_value - T); 误差fprintf('定积分的近似值为:f\n', T);fprintf('定积分的精确值为:f\n', exact_value);fprintf('计算误差为:f\n', error);```四、结果分析通过上述代码的计算,我们可以得到定积分的近似值以及与精确值的比较。
matlab复合梯形法求定积分

matlab复合梯形法求定积分
Matlab中的复合梯形法是一种求解定积分问题比较有效的方法。
它的基本思想是用一些梯
形的面积累加的方式来近似地求出积分。
具体来说,首先将定积分区间定义为[a,b],则复合梯形法对这一区间进行划分,生成n个
子区间,每个子区间都可以由一组等距的端点构成,也就是x0, x1, x2,…, xn。
在每个子区
间中,假设被积函数y=f(x)的值分别为y0, y1, y2,…, yn,则复合梯形法的近似值可以用如
下公式表示:
I=∑i=0n[(x_{i+1}-x_i)/2][f(x_i)+f(x_{i+1})]
以上所述是Matlab中复合梯形法求解定积分的基本思想和步骤,总体流程是给定定积分,首先将区间划分为n个子区间,其每个子区间有一组等距的端点,然后用上面提到的公式
累加每个子区间在相应端点处的函数值,就可以得到最终的定积分结果。
它比一般的数值
积分方法收敛要快,计算结果也更精确,所以在很多定积分求解问题中仍然作为有效的计
算方法。
复合梯形公式求积分例题

复合梯形公式求积分例题复合梯形公式用于近似计算定积分。
它可以通过将定积分区间划分为若干个小区间,然后在每个小区间上应用梯形法则进行计算,最终将这些小区间上的近似值相加得到最终的近似积分值。
以下是一个应用复合梯形公式求积分的例题:假设要求解定积分∫[0, 1] x^2 dx。
首先,选择将定积分区间[0, 1]等分为n个小区间。
假设n=4,则每个小区间长度为h=1/4=0.25。
接下来,在每个小区间上应用梯形法则进行计算。
对于每个小区间,我们选择左端点和右端点来构造近似的梯形,然后计算梯形的面积。
在第一个小区间[0, 0.25]上,左端点为x0=0,右端点为x1=0.25。
根据梯形面积公式,梯形的面积为(0.25-0) * [(0^2 + 0.25^2)/2] = 0.03125。
在第二个小区间[0.25, 0.5]上,左端点为x1=0.25,右端点为x2=0.5。
梯形的面积为(0.5-0.25) * [(0.25^2 + 0.5^2)/2] = 0.0625。
在第三个小区间[0.5, 0.75]上,左端点为x2=0.5,右端点为x3=0.75。
梯形的面积为(0.75-0.5) * [(0.5^2 + 0.75^2)/2] =0.140625。
在最后一个小区间[0.75, 1]上,左端点为x3=0.75,右端点为x4=1。
梯形的面积为(1-0.75) * [(0.75^2 + 1^2)/2] = 0.328125。
最后,将这些小区间上的梯形面积相加得到整个定积分的近似值:0.03125 + 0.0625 + 0.140625 + 0.328125 = 0.5625。
因此,定积分∫[0, 1] x^2 dx的近似值为0.5625。
需要注意的是,选择分割区间的数量n越大,近似值越接近实际积分值。
在实际应用中,我们通常会选择足够大的n来得到较为精确的近似值。
C语言__用六种方法求定积分

1. 描述问题利用①左矩形公式,②中矩形公式,③右矩形公式 ,④梯形公式,⑤simpson 公式,⑥Gauss 积分公式求解定积分。
2. 分析问题2.1定积分21.1定积分的定义定积分就是求函数()f x 在区间[],a b 中图线下包围的面积。
即()0,,,y x a x b y f x ====所包围的面积。
这个图形称为曲边梯形,特例是曲边梯形。
如下图:(图1)设一元函数()y f x =,在区间[],a b 内有定义。
将区间[],a b 分成n 个小区间[][][][]00112,,,,,......,i a x x x x x x b 。
设1i i i x x x -∆=-,取区间i x ∆中曲线上任意一点记做()i f ξ,作和式:()1lim n n i f i xi ξ→+∞=⎛⎫∆ ⎪⎝⎭∑ 若记λ为这些小区间中的最长者。
当0λ→时,若此和式的极限存在,则称这个和式是函数()f x 在区间[],a b 上的定积分。
记作:()ba f x dx ⎰其中称a 为积分下限,b 为积分上限,()f x 为被积函数,()f x dx 为被积式,∫ 为积分号。
之所以称其为定积分,是因为它积分后得出的值是确定的,是一个数,而不是一个函数。
21.2定积分的几何意义[1]它是介于x 轴、函数f(x)的图形及两条直线x=a ,x=b 之间的各个部分面积的代数和。
在x 轴上方的面积取正号;在x 轴下方的面积取负号。
如图2.2言实现定积分计算的算法22.1利用复合梯形公式实现定积分的计算假设被积函数为()f x ,积分区间为[],a b ,把区间[],a b 等分成n 个小区间,各个区间的长度为h ,即()/h b a n =-,称之为“步长”。
根据定积分的定义及几何意义,定积分就是求函数()f x 在区间[],a b 中图线下包围的面积。
将积分区间n 等分,各子区间的面积近似等于梯形的面积,面积的计算运用梯形公式求解,再累加各区间的面积,所得的和近似等于被积函数的积分值,n 越大,所得结果越精确。