小学奥数举一反三(三年级)
小学奥数举一反三三年级

小学奥数举一反三三年级寻规填数举一反三(1-8)一1、8,12,16,20,24,(),()。
2、98,89,80,71,(),()。
二1、2,6,11,17,24,(),41。
2、1,6,16,(),51,76。
三1、1,2,1,5,18,1,()。
2、50,3,40,5,30,7,()。
四1、96,48,24,(),63 。
2,81,27,9,3,()。
五请写出斐波那契数列的第11,12项的数。
0,1,1,2,4,7,13,(),44。
六(34,16),(23,27),(15,35),(20,)。
(24,14),(86,76),(36,26),(,5)。
七略八1、81,82,83,81,82,83,81,(),832、72,62,52,72,62,52,()62,52拓展应用1按规律填数20,18,16,14,(),()95,90,85,(),75,()2按规律填数3,2,6,2,9,2,()7,4,6,6,5,8,(),103观察下面的数列,找出其中的规律,填空31,2,26,3,21,4,(),()4 按规律填数2,5,7,12,()31,505下列四个数种有一个与众不同,它是第()个A1,1,2,3,5,8,13,B0,2,2,4,6,10,16C1,3,4,7,11,18,D1,2,3,6,11,20,37有一组加法算式:4+2,5+8,6+14,7+20....按这样的规律排第20个加法算式是怎样的?按规律填数(1,72 ),(2,36),(3,),(4,) (3,7),(6,14),(9,21),(12, )按规律填数75,70,65,60,(),()45,()320,160,80,40 ,(),(),()第二讲算式谜(一)(略)第三讲加减巧算举一反三191+464+536294+16+106举一反三2876―280―376 636-187-436举一反三3197+88847+602举一反三4807+4023789-498-201举一反三5729+413-429563-197+37举一反三6*****-**********-*****举一反三7728-(594-72)454+(546-197)举一反三8 503-197-83-101205+204+196+202拓展应用用简便方法计算下面各题53+158+473427-809-191873-198-27397+79417-255+83*****-*****424-(165+224)271+152+129+248第四讲推理入门举一反三11爸爸买回了3双袜子,其中2双是花袜子,1双是红袜子。
小学三年级奥数举一反三之 水杯谜

小学三年级奥数举一反三之水杯谜
介绍
本文档旨在为小学三年级学生提供一道举一反三的奥数谜题,以水杯为主题,通过解答问题来锻炼学生的逻辑思维和数学能力。
背景
奥数是一门培养学生创造力和思维能力的学科,举一反三是其中的一种重要方法。
通过解决一个问题,学生可以推广到类似的问题,培养他们的观察能力和分析能力。
谜题描述
题目:有两个水杯,一个装满了500毫升的水,另一个装满了300毫升的水。
现在需要将这两个水杯中的水互相倒换,使得两个水杯中的水体积相等。
请问,最少需要倒换几次?
解题思路
1. 倒换一次可以实现多少毫升的水量互相转移?
答:倒换一次可以实现水量差异的两倍互相转移,即500毫升-300毫升=200毫升。
2. 两个水杯相差的水量是多少?
答:两个水杯中的水量差异为500毫升-300毫升=200毫升。
3. 在每次倒换中,水量差异减少多少?
答:每次倒换都可以减少200毫升的水量差异。
4. 为了使两个水杯中的水体积相等,需要倒换几次?
答:水量差异为200毫升,每次倒换减少200毫升的水量差异,需要倒换的次数为200毫升 ÷ 200毫升/次 = 1次。
结论
最少需要进行1次倒换,即将500毫升的水倒入到300毫升的
水杯中,在两个水杯的水量相等时停止。
总结
通过解答水杯谜题,学生可以锻炼逻辑思维和数学能力,从中
学会运用举一反三的方法解决类似问题。
此外,谜题可以培养学生
的观察能力和分析能力,在轻松愉快中提高学生对数学的兴趣。
新人教版三年级小学数学全册奥数举一反三带课后练习(含答案)

新人教版小学数学三年级全册奥数(可编辑可打印)附参考答案在文档最后面第1讲寻找规律一、知识要点按照一定次序排列起来的一列数,叫做数列。
如自然数列:1,2,3,4,……双数列:2,4,6,8,……我们研究数列,目的就是为了发现数列中数排列的规律,并依据这个规律来填写空缺的数。
按照一定的顺序排列的一列数,只要从连续的几个数中找到规律,那么就可以知道其余所有的数。
寻找数列的排列规律,除了从相邻两数的和、差考虑,有时还要从积、商考虑。
善于发现数列的规律是填数的关键。
二、精讲精练【例题1】在括号内填上合适的数。
(1)3,6,9,12,(),()(2)1,2,4,7,11,(),()(3)2,6,18,54,(),()举一反三1:1.在下面的括号里填上合适的数。
(1)2,4,6,8,10,(),()(2)1,2,5,10,17,(),()2.按规律填数。
(1)2,8,32,128,(),()(2)1,5,25,125,(),()3.先找规律再填数。
12,1,10,1,8,1,(),()【例题2】先找出规律,再在括号里填上合适的数。
(1)15,2,12,2,9,2,(),()(2)21,4,18,5,15,6,(),()(3)3,4,7,3,4,10,3,4,13,(),(),()举一反三2:1.按规律填数。
(1)2,1,4,1,6,1,(),()(2)3,2,9,2,27,2,(),()2.在括号里填上适当的数。
(1)18,3,15,4,12,5,(),()(2)1,15,3,13,5,11,(),()3.找规律填数。
(1)4,7,8,4,6,13,4,5,18,(),(),()(2)1,2,3,2,4,6,3,8,9,(),(),()【例题3】先找出规律,再在括号里填上合适的数。
(1)2,5,14,41,()(2)252,124,60,28,()(3)1,2,5,13,34,()(4)1,4,9,16,25,36,()练习3:1.按规律填数。
三年级奥数举一反三有余除法教案

教案:三年级奥数举一反三有余除法
一、教学目标:
1.理解有余除法的概念。
2.能够运用有余除法解决实际问题。
3.能够灵活运用举一反三的方法来扩展问题。
二、教学准备:
1.教材:《小学奥数入门》
2.工具:黑板、彩色粉笔
3.教具:纸和铅笔
三、教学过程:
1.导入新知识:
(1)教师出示一道有余除法的例题:36÷7,然后请学生计算。
(2)学生将计算结果告诉教师,教师指出答案为5余1
(3)教师解释有余除法的概念,即除不尽的部分叫做余数。
2.讲解有余除法的基本步骤:
(1)写下被除数和除数。
(2)看能否整除,若能则写出商。
(3)若不能整除则写出商和余数。
(4)检验计算结果。
3.进一步练习有余除法:
(1)教师出示更复杂的例题,如78÷9
(2)学生根据步骤计算,得出结果为8余6
(3)教师引导学生自行练习一些有余除法的计算。
4.发展:举一反三
(1)教师出示一道问题:班级里有48个学生,每个小组有6个学生,问班级能组成几个小组。
(2)学生根据举一反三的思路,可以将问题重新表达为:
“48÷6=?”。
(3)学生计算后得出结果为8,即班级能组成8个小组。
小学数学三年级奥数举一反三PPT课件

【例题1】 在括号内填上合适的数。 (1)3,6,9,12,( (2)1,2,4,7,11,( (3)2,6,18,54,( ),( ),( ),( ) ) )
同步教材教学视频
【思路导航】 在(1)列数中,相邻的两个数的差都是3,即每一个数加 上3都等于后面的数。根据这一规律,括号里应填的数为: 12+3=15、15+3=18。 在(2)列数中,第2个数比第1个数增加1,第3个数比第2 个数增加2,第4个数比第3个数增加3„„故空格里面的两个数 分别为:11+5=16,16+6=22。 在(3)列数中,相邻的两个数的积都是3,即每一个数乘 以3都等于后面的数。根据这一规律,括号里应填的数为: 54×3=162、162×3=486。
小学数学 三年级 奥数举一反三
同步教材教学视频
按照一定次序排列起来的一列数,叫做数列。如 自然数列:1,2,3,4,……双数列:2,4,6, 8,……我们研究数列,目的就是为了发现数列中数 排列的规律,并依据这个规律来填写空缺的数。 按照一定的顺序排列的一列数,只要从连续的几 个数中找到规律,那么就可以知道其余所有的数。寻 找数列的排列规律,除了从相邻两数的和、差考虑, 有时还要从积、商考虑。善于发现数列的规律是填数 的关键。
【练习2】 按规律填数。 (1)2,1,4,1,6,1,( ),( ) (2)3,2,9,2,27,2,( ),( ) (3)18,3,15,4,12,5,( ),( ) (4)1,15,3,13,5,11,( ),( ) (5)12,1,10,1,8,1,( ),( )
【例题3】先找出规律,再在括号里填上合适的数。
),(
)
【练习5】找出排列规律,在空缺处填上适当的数。
(完整)小学三年级奥数举一反三综合练习题及答案

三年级奥数举一反三综合练习题及答案一、填空1、△=○+○+○△×○=75 ○=( ) △=( )2、将一张饼切一刀,最多可切成( )块,切两刀最多可切成( )块,切四刀最多可切成( )块。
3、一篮鸡蛋,3个一数余1,5个一数余2,7个一数余3,这个蓝子一共有( )个鸡蛋。
4、小明家今年种菜的正方形的地比去年大,去年每边种105棵,今年每边多种出1棵,那么今年比去年多种( )棵。
5、根据下列图形的排列规律,将每组的第三十个图形填在括号里。
①○△△○○△△○○△△○……( )②△○○○△△○○○△△○……( )③○△△○△△○△△○△……( )6、有两个数:80和81920把第一个数乘以2,同时把第二个数除以2,( )次后两数相等。
7、一本书有132页,在这本书的页码中,一共用了( )个数字。
8、五个连续单数的和是155,这五个数中最小的的一个是( )。
9、一把钥匙只能开一把锁,现有5把钥匙5把锁,但不知哪把钥匙开哪把锁,最多要试( )次,才能配好全部的钥匙和锁。
10、两个两位数相加,其中一个加数是73,另一个加数不知道,只知道另一个加数的十位数增加5,个位数增加1,那么求得的和的后两位数字是72,另一个加数原来是( )。
11、请你把31个苹果分装在五个盒子里,使得无论拿几个苹果都不用打开盒子,只要把其中的一个或几个盒子拿走就可以了,那么这五个盒子中,装苹果最多的盒子里有( )个苹果。
12、将1-9这九个数分别填入下图的九个圆圈内,使三角形每边的数之和是23。
13、在□里填上适当的数字,使下面算式成立。
6 5 614、下图中有( )个三角形,( )个正方形,( )个长方形。
15、1,3,5,7,9,11……999按从小到大的顺序排列,得出一个多位数1357911131517……999,这个多位数是( )位数。
16、老师把一套竞赛题分给三名同学来完成,将这套题的一半还多5道分给了李强,将剩下的一半少2道题分给了王红,最后剩下26道题给了杨光,这套竞赛题共有( )道题。
小学奥数举一反三(三年级)全

第1讲找规律之欧侯瑞魂创作一、知识要点依照一定次序排列起来的一列数,叫做数列。
如自然数列:1,2,3,4,……双数列:2,4,6,8,……我们研究数列,目的就是为了发现数列中数排列的规律,并依据这个规律来填写空缺的数。
依照一定的顺序排列的一列数,只要从连续的几个数中找到规律,那么就可以知道其余所有的数。
寻找数列的排列规律,除了从相邻两数的和、差考虑,有时还要从积、商考虑。
善于发现数列的规律是填数的关键。
二、精讲精练【例题1】在括号内填上合适的数。
(1)3,6,9,12,(),()(2)1,2,4,7,11,(),()(3)2,6,18,54,(),()练习1:在括号内填上合适的数。
(1)2,4,6,8,10,(),()(2)1,2,5,10,17,(),()(3)2,8,32,128,(),()(4)1,5,25,125,(),()(5)12,1,10,1,8,1,(),()【例题2】先找出规律,再在括号里填上合适的数。
(1)15,2,12,2,9,2,(),()(2)21,4,18,5,15,6,(),()练习2:按规律填数。
(1)2,1,4,1,6,1,(),()(2)3,2,9,2,27,2,(),()(3)18,3,15,4,12,5,(),()(4)1,15,3,13,5,11,(),()(5)1,2,5,14,(),()【例题3】先找出规律,再在括号里填上合适的数。
(1)2,5,14,41,( ) (2)252,124,60,28,( )(3)1,2,5,13,34,( ) (4)1,4,9,16,25,36,( )练习3:按规律填数。
(1)2,3,5,9,17,( ),( ) (2)2,4,10,28,82,( ),( )(3)94,46,22,10,( ),( ) (4)2,3,7,18,47,( ),( )【例题4】根据前面图形里的数的排列规律,填入适当的数。
(1)(3) 练习4:(1) (3) 【例题5(1)(2) 练习5:(1)198,297,396,( ),( )(2) (3) 第2一、知识要点把一些书平均分给几个小朋友,要使每个小朋友分得的本数最多,这些书分到最后会出现什么情况呢?一种是全部分完,还有一种是有剩余,而且剩余的本数必须比小朋友的人数少,否则还可以继续分下去。
小学数学三年级奥数举一反三PPT课件

9 6 27
5 15 12 7 21 18 9 27
4 8
【例题5】根据前面图形里的数的排列规律,填入适当的数。 1、187,286,385,( ),( )
【练习5】找出排列规律,在空缺处填上适当的数。
同步教材教学视频
小学数学 三年级 奥数举一反三
第2讲 有余除法
同步教材教学视频
把一些书平均分给几个小朋友,要使每个小朋友分得的本 数最多,这些书分到最后会出现什么情况呢?一种是全部分完, 还有一种是有剩余,并且剩余的本数必须比小朋友的人数少, 否则还可以继续分下去。每次除得的余数必须比除数小,这就 是有余数除法计算中特别要注意的。
同步教材教学视频
【思路导航】
在(1)列数中,相邻的两个数的差都是3,即每一个数加 上3都等于后面的数。根据这一规律,括号里应填的数为: 12+3=15、15+3=18。
在(2)列数中,第2个数比第1个数增加1,第3个数比第2 个数增加2,第4个数比第3个数增加3……故空格里面的两个数 分别为:11+5=16,16+6=22。
第33周 平均数问题(二)第34周 简单推理(二)第35周 巧求周长(一)第36周 巧求周长(二)
第37周 面积计算第38周 最佳安排第39周 抽屉原理第40周 一题多解
小学数学 三年级 奥数举一反三
第1讲 找规律
同步教材教学视频
按照一定次序排列起来的一列数,叫做数列。如 自然数列:1,2,3,4,……双数列:2,4,6, 8,……我们研究数列,目的就是为了发现数列中数 排列的规律,并依据这个规律来填写空缺的数。
在(3)列数中,相邻的两个数的积都是3,即每一个数乘 以3都等于后面的数。根据这一规律,括号里应填的数为: 54×3=162、162×3=486。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1讲找规律一、知识要点按照一定次序排列起来的一列数,叫做数列。
如自然数列:1,2,3,4,……双数列:2,4,6,8,……我们研究数列,目的就是为了发现数列中数排列的规律,并依据这个规律来填写空缺的数。
按照一定的顺序排列的一列数,只要从连续的几个数中找到规律,那么就可以知道其余所有的数。
寻找数列的排列规律,除了从相邻两数的和、差考虑,有时还要从积、商考虑。
善于发现数列的规律是填数的关键。
二、精讲精练【例题1】在括号内填上合适的数。
(1)3,6,9,12,(),()(2)1,2,4,7,11,(),()(3)2,6,18,54,(),()练习1:在括号内填上合适的数。
(1)2,4,6,8,10,(),()(2)1,2,5,10,17,(),()(3)2,8,32,128,(),()(4)1,5,25,125,(),()(5)12,1,10,1,8,1,(),()【例题2】先找出规律,再在括号里填上合适的数。
(1)15,2,12,2,9,2,(),()(2)21,4,18,5,15,6,(),()练习2:按规律填数。
(1)2,1,4,1,6,1,(),()(2)3,2,9,2,27,2,(),()(3)18,3,15,4,12,5,(),()(4)1,15,3,13,5,11,(),()(5)1,2,5,14,(),()【例题3】先找出规律,再在括号里填上合适的数。
(1)2,5,14,41,()(2)252,124,60,28,()(3)1,2,5,13,34,()(4)1,4,9,16,25,36,()练习3:按规律填数。
(1)2,3,5,9,17,(),()(2)2,4,10,28,82,(),()(3)94,46,22,10,(),()(4)2,3,7,18,47,(),()【例题4】根据前面图形里的数的排列规律,填入适当的数。
(1)(3练习(1) (3)(1)(2)练习(1)198,297,396,( ),( ) (2) (3)一、知识要点 把一些书平均分给几个小朋友,要使每个小朋友分得的本数最多,这些书分到最后会出现什么情况呢?一种是全部分完,还有一种是有剩余,并且剩余的本数必须比小朋友的人数少,否则还可以继续分下去。
每次除得的余数必须比除数小,这就是有余数除法计算中特别要注意的。
解这类题的关键是要先确定余数,如果余数已知,就可以确定除数,然后再根据被除数与除数、商和余数的关系求出被除数。
在有余数的除法中,要记住:(1)余数必须小于除数;(2)被除数=商×除数+余数。
二、精讲精练【例题1】[ ]÷6=8……[ ],根据余数写出被除数最大是几?最小是几?【思路导航】除数是____,根据____________,余数可填_____________.根据____________,又已知商、除数、余数,可求出最大的被除数为6×8+5=53,最小的被除数为______________。
列式如下:________________________________________答:被除数最大是53,最小是______。
练习1:(1)下面题中被除数最大可填________,最小可填_______。
[ ]÷8=3……[ ](2)下面题中被除数最大可填________,最小可填_______。
[ ]÷4=7……[ ](2)(2)(3)下题中要使除数最小,被除数应为________。
[ ]÷[ ]=12 (4)【例题2】算式[ ]÷[ ]=8……[]中,被除数最小是几?【思路导航】题中只告诉我们商是8,要使被除数最小,那么只要除数和余数小就行。
余数最小为______,那么除数则为______。
根据这些,我们就可求出被除数最小为:8×______+______=_______。
练习2:(1)下面算式中,被除数最小是几?①[ ]÷[ ]=4……[]②[ ]÷[ ]=7……[]③[ ]÷[ ]=9……[](2)下面算式中商和余数相等,被除数最小是几?①[ ]÷[ ]=3……[]②[ ]÷[ ]=6……[](3)算式[ ]÷8=[ ]……[]中,商和余数都相等,那么被除数最大是几?【例题3】算式28÷[ ]=[ ]……4中,除数和商分别是______和______。
【思路导航】根据“被除数=商×除数+余数”,可以得知“商×除数=被除数-余数”,所以本题中商×除数=28-4=24。
这两个数可能是1和24,____和____,____和____,____和____,又因为余数为4,因此除数可以是24,12,8,6,商分别为____,____,____,____。
_________________________________________________________________答:除数和商分别是24,1;____,____;____,____;____,____。
练习3:(1)下面算式中,除数和商各是几?①22÷[ ]=[ ]......4②65÷[ ]=[ ] (2)③37÷[ ]=[ ]......7④48÷[ ]=[ ] (6)(2)149除以一个两位数,余数是5,请写出所有这样的两位数。
__________________________________________________________________________(3)算式[ ]÷4=[ ]……[ ]中,商和余数相等,被除数可以是哪些数?__________________________________________________________________________【例题4】算式[ ]÷7=[ ]……[ ]中,商和余数相等,被除数可以是哪些数?【思路导航】题目中告诉我们除数是7,商和余数相等,因为余数必须比除数小,所以余数和商可为1,2,3,4,5,6,这样被除数就可以求出来了。
7×1+1=8 7×2+2=16 7×3+3=247×4+4=32 7×5+5=40 7×6+6=48答:被除数可以是8,16,24,32,40,48。
练习4:(1) 下列算式中,商和余数相等,被除数可以是哪些数?①[ ]÷6=[ ]……[ ]②[ ]÷5=[ ]……[ ]③[ ]÷4=[ ]……[ ]④[ ]÷3=[ ]……[ ](2)一个三位数除以15,商和余数相等,请你写出五个这样的除法算式。
(3) 算式[ ]÷9=[ ]……[ ]中,商和余数相等,被除数最大是____。
【例题5】算式[ ]÷[ ]=[ ]……4中,除数和商相等,被除数最小是几?【思路导航】题目中告诉我们余数是4,除数和商相等,因为余数必须比除数小,所以除数必须比4大,但其中要求最小的被除数,因而除数应填_______,商也是______。
由算式____________________,所以被除数最小是__________。
练习5:下面算式中,除数和商相等,被除数最小是几?(1)[ ]÷[ ]=[ ]......6(2)[ ]÷[ ]=[ ] (8)(3)[ ]÷[ ]=[ ]......3(4)[ ]÷[ ]=[ ] (9)(5)[ ]÷[ ]=[ ] (7)第3讲配对求和一、知识要点被人称为“数学王子”的高斯在年仅8岁时,就以一种非常巧妙的方法又快又好地算出了1+2+3+4+……+99+100的结果。
小高斯是用什么办法算得这么快呢?原来,他用了一种简便的方法:先配对再求和。
数列的第一个数(第一项)叫首项,最后一个数(最后一项)叫末项,如果一个数列从第二项起,每一项与前一项的差是一个不变的数,这样的数列叫做等差数列,这个不变的数则称为这个数列的公差。
计算等差数列的和,可以用以下关系式:等差数列的和=(首项+末项)×项数÷2末项=首项+公差×(项数-1)项数=(末项-首项)÷公差+1二、精讲精练【例题1】你有好办法算一算吗?1+2+3+4+5+6+7+8+9+10=()练习1:速算。
(1) 1+2+3+4+5+……+20 (2) 1+2+3+4+……+99+100(3) 21+22+23+24+……+100【例题2】计算。
(1) 21+23+25+27+29+31 (2) 312+315+318+321+324练习2:计算。
(1) 48+50+52+54+56+58+60+62 (2) 108+128+148+168+188【例题4】计算992+993+994+995+996+997+998+999。
练习4:计算。
(1) 95+96+97+98+99 (2) 2006+2007+2008+2009(3) 9997+9998+9999 (4) 100-1-3-5-7-9-11-13-15-17-19【例题5】计算1000-11-89-12-88-13-87-14-86-15-85-16-84-17-83-18-82-19-81练习5:计算。
(1) 1000-1-9-2-8-3-7-4-6-5-5-6-4-7-3-8-2-9-1(2) 1000-81-11-82-12-83-13-84-14-85-15-86-16-87-17-88-18-89-19(3) 2001-1+2-3+4-5+6-7+8-9+10-11+12-13+14-15+16第4讲加减巧算一、知识要点在进行加减运算时,为了又快又好,除了要熟练地掌握计算法则外,还需要掌握一些巧算的方法。
加减法的巧算主要是运用“凑整”的方法,把接近整十、整百、整千的数看做所接近的数进行简算。
进行加减巧算时,凑整之后,对于原数与整十、整百、整千……相差的数,要根据“多加要减去,少加要再加,多减要加上,少减要再减”的原则进行处理。
另外,可以结合加法交换律、结合律以及减法的性质进行凑整,从而达到简算的目的。
二、精讲精练【例题1】你有好办法迅速算出结果吗?(1) 502+799-298-98 (2) 9999+999+99+9练习1:计算。
(1) 308+203-399-97 (2) 99999+9999+999+99+9(3) 1999+199+19 (4) 375+483+525+617【例题2】计算。
(1) 487+321+113+279 (2) 736-567+264(3) 877+345-677 (4) 528-248-152练习2:计算。