北师大版-数学-九年级上册-概率的计算公式
北师大版九年级数学上册课件 3-1-2 利用概率判断游戏的公平性

1
2
3
4
5
6
7
2
3
4
5
6
7
8
3
4
5
6
7
8
9
4
5
6
7
8
9
10
5
6
7
8
9
10
11
6
7
8
9
10
11
12
总共有36种可能的结果,每种结果出现的可能性相同.其中,和为7的
6 1
结果最多,有6种,其概率为
= ,所以如果我是游戏者,我会选择
36 6
数字7.
例3 同时抛掷2枚均匀的骰子一次,骰子各面上的点数分别
是1,2,···,6.试分别计算如下各随机事件的概率.
36
(2)抛出点数之和等于12的结果仅有(6,6)这1种,所以抛出的点
1
数之和等于12的这个事件发生的概率为 .
36
归纳总结
当一次试验要涉及两个因素(例如
掷两个骰子)并且可能出现的结果数目
较多时,为不重不漏地列出所有可能结
果,通常采用列表法.
例4 一只不透明的袋子中装有1个白球和2个红球,这些球
红2
(红2,白) (红2,红1)
(红1,红2)
归纳总结
什么时候用“列表法”方便,什么时候用“树形图”方便?
➢当一次试验涉及两个因素时,且可能出现的结果较多时
,为不重复不遗漏地列出所有可能的结果,通常用列表法.
➢当一次试验涉及3个因素或3个以上的因素时,列表法就
不方便了,为不重复不遗漏地列出所有可能的结果,通常
用树形图.
随堂练习
1.一个不透明的布袋中装有分别标有数字1,2,3,4
北师大版九年级数学上册第3章2用频率估计概率

6
出现的次数
7
9
6
8
20
10
(1)计算“3点朝上”的频率和“5点朝上”的频率;
(2)小颖说:“根据试验,一次试验中出现‘5点朝上’的概率大”;
小红说:“如果掷600次,那么出现‘6点朝上’的次数正好是
100次.”小颖和小红的说法正确吗?为什么?
解:(1)“3点朝上”的频率为=
为
=
=
(同意)
④400个同学中,一定有2人的生日相同(可以不同年)吗?(一定)
⑤300个同学中,一定有2人的生日相同吗?(不一定)
2.完成70页想一想. (略)
设计一个模拟试验方案,估计6个人中有两个人的生
肖相同的概率(以卡片为试验道具)。
(有从1到12共12张卡片,这些卡片除数字不同外,
其他都相同,从中任取一张,放回,然后混合均匀以
后再任意抽出一张,…,如此循环 6次,则可估计6
次抽到的卡片有两张的数字相同的概率)
判断对错:
1.400人中至少有两人生日相同.(√)2.300人中至少有两人生日相同.( × )
3.2人的生日不可能相同.( × )
4.2人的生日很有可能相同.( × )
5.某种彩票中奖的概率为1%,那么买100张这种彩票一定会中奖.( ×)
学态度.
【旧知回顾】
1.什么是频数? 频率?
(频数是次数,频率是每个对象出现的次数与总次数的比值)
2.如何计算频率?
频数
频率=
总数
小明周末参加了一个生日宴会,一共来了13名同学,
他对在座的同学说:“如果我们每个人过生日都办生日
宴会,那么今年有一个月至少能参加2次这样的宴会.”
北师大版九年级数学知识点

上册第一单元证明(二)知识点一、全等三角形1、性质:全等三角形的对应边相等、对应角相等。
2、判定方法:(1)三边对应相等的两个三角形全等。
(SSS)(2)两边及其夹角对应相等的两个三角形全等。
(SAS)(3)两角及其夹边对应相等的两个三角形全等。
(ASA)(4)两角及其中一角的对边对应相等的两个三角形全等。
(AAS)二、等腰三角形1、性质:(1)等腰三角形的两个底角相等。
(等边对等角)(2)等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合。
(三线合一)2、判定方法:(1)有两条边相等的三角形叫等腰三角形。
(2)有两个角相等的三角形是等腰三角形。
三、等边三角形1、性质:(1)等边三角形的三条边相等。
(2)等边三角形的三个角都相等,并且每个角都等于600。
2、判定方法:(1)三条边都相等的三角形叫等边三角形。
(2)三个角都相等的三角形是等边三角形。
(3)有一个角等于600的等腰三角形是等边三角形。
四、直角三角形1、性质:(1)直角三角形两条直角边的平方和等于斜边的平方。
(勾股定理)(2)在直角三角形中,300角所对的直角边等于斜边的一半。
(3)在直角三角形中,斜边的中线等于斜边的一半。
2、判定方法:(1)如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
(2)如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
3、直角三角形全等的判定方法(1)SSS(2)SAS(3)ASA (4)AAS(4)HL:斜边和一条直角边对应相等的两个直角三角形全等。
(HL)五、线段的垂直平分线1、定理1:线段垂直平分线上的点到这条线段两个端点的距离相等。
2、定理2:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
3、定理3:三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。
六、角平分线1、定理1:角平分线上的点到这个角的两边的距离相等。
2、定理2:在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上。
初中数学北师大版九年级上册《3.1 用树状图或表格求概率(2)》课件

4
(4,1) (4,2) (4,3) (4,4)
由表格可知(x,y)所有可能出现的结果共有16种; (2)这个游戏对双方公平,理由如下:由列表法可知,在16种可能出
现的结果中,它们出现的可能性相等. ∵x+y为奇数的有8种情况,∴P(甲获胜)=
8 16
1, 2
∵x+y为偶数的有8种情况,∴P(乙获胜)= 8 1 ,
红赢;若点数之和是其他数,则两人不分胜负,那么( B )
A.小晶赢的机会大
B.小红赢的机会大
C.小晶、小红赢的机会一样大 D.不能确定
拓展提高
有三张不透明的卡片,除正面写有不同的数字外,其他 均相同,将这三张卡片背面朝上洗匀后,第一次从中随机抽取一张, 并把这张卡片标有的数字记作一次函数表达式y=kx+b中的k,第二次从 中随机抽取一张,上面标有的数字记作一次函数表达式中的b.
布),所以小颖获胜的概率为 3 1 93
因此,这个游戏对三人是公平的.
新知讲解
做一做:小明和小军两人一起做游戏,游戏规则如下: 每人从1、2、…、12中任意选择 一个数,然后两人各掷一次质地均匀 的骰子,谁事先选择的数等于两人掷 得的点数之和谁就获胜;如果两人选 择的数都不等于掷得的点数之和,就 再做一次上述游戏,直至决出胜负。 如果你是游戏者,你会选择哪个数?
(1)用列表法或树状图法(树状图也称树形图)中的一种方法,求(x, y)所有可能出现的结果总数;
(2)你认为这个游戏对双方公平吗?请说明理由.
中考链接
1
2
3
4
1 解:(1)列表如下: 2
(1,1) (1,2) (1,3) (1,4) (2,1) (2,2) (2,3) (2,4)
3
北师大版 初三数学 九年级上册 3.1 用树状图或表格求概率

用树状图或表格求概率学习用树状图和列表法计算涉及两步实验的随机事件发生的概率.重点:用树状图和列表法计算涉及两步实验的随机事件发生的概率. 难点:正确地用列表法计算涉及两步实验的随机事件发生的概率.⎧⎪⎧⎪⎪⎪⎧⎪⎪⎨⎨⎪⎩⎪⎪⎪⎨⎩⎪⎧⎪⎪⎪⎨⎪⎪⎪⎩⎪⎩必然事件事件确定事件不可能事件概率随机事件列表法概率计算树状图法用频率估计概率一、用树状图求概率当一次试验要涉及3个或更多的因素时,为了不重复不漏掉地列出所有可能的结果,通常采用树状图.重点注意:画树状图时,每个“分支”的意义不同,但它们具有相同的等可能性,因此不能忽略任何一种情况,更不能遗漏任何一种情况(不重不漏). 二、用表格求概率在一次试验中,如果可能出现的结果只有有限个,且各种结果出现的可能性大小相等,我们可以通过列举试验结果的方法,分析出随机事件发生的概率,当一次试验要涉及两个因素(例如摇两个骰子)并且可能出现的结果数目较多时,为了不重复不漏掉地列出所有可能的结果,通常采用表格求概率.重点注意:用表格求概率的适用范围是: (1)某次试验仅涉及两个因素; (2)可能出现的结果数目较多. 用树状图与表格求概率的联系与区别 联系:用树状图或表格求概率的共同前提是: (1)各种情况出现的可能性是相等的; (2)某事件发生的概率公式均为P(A)=各种种情况出现的次某事件发事件发生;(3)在列出并计算各种情况出现的总次数和某事件发生的次数时不能重复也不能遗漏. 区别:当随机事件包含两步时,尤其是转盘游戏问题,当其中一个盘被等分成2份以上时,选用表格比较方便,当然此时也可用树状图;当随机事件包含三步或三步以上时,用树状图方便,此时难以列表.注意:在用表格求随机事件发生的概率时,要注意列表时数据或事件的顺序不能相互混淆,如(1,2)与(2,1)不是相同的事件,尽管在有些情况下它们的意义或结果是相同的.如果有两组牌,它们的牌面数字分别是1,2,3.那么从每组牌中各摸出一张牌,两张牌的牌面数字和为几的概率最大?两张牌的牌面数字和等于4的概率是多少呢?小明的做法:总共有9种情况,每种情况发生的可能性相同,而两张牌的牌面数字和等于4的情况出现得最多,共3次,因此牌面数字和等于4的概率最大,概率为93,即31.小亮的做法:也用了列表的方法,可我得到牌面数字和等于4的概率为31.(2,3)考点1 用树状图求概率【例1】 甲口袋中装有2个相同的小球,它们分别写有字母A 和B ;乙口袋中装有3个相同的小球,它们分别写有字母C 、D 和E ;丙口袋中装有2个相同的小球,它们分别写有字母H 和I .从3个口袋中各随机地取出1个小球.(1)取出的3个小球上恰好有1个、2个和3个元音字母的概率分别是多少?(2)取出的3个小球上全是辅音字母的概率是多少?【变式1】经过某十字路口的汽车,它可能继续直行,也可能左转或右转,如果这三种可能性大小相同,同向而行的三辆汽车都经过这个十字路口时,求下列事件的概率: (1)三辆车全部继续直行 (2)两辆车右转,一辆车左转 (3)至少有两辆车左转在用树形图树形图与具【变式2】 某校八年级将举行班级乒乓球对抗赛,每个班必须选派出一对男女混合双打选手参赛,八年级一班准备在小娟、小敏、小华三名女选手和小明、小强两名男选手中,选男、女选手各一名组成一对参赛组合,一共能够组成哪几对?如果小敏和小强的组合是最强组合,那么采用随机抽签的办法,恰好选出小敏和小强参赛的概率是多少?练1.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1,2,3,4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上的数字之积为偶数的概率是( )A.14B.12C.34D.56练2.某中学为迎接建党九十八周年,举行了以“童心向党,从我做起”为主题的演讲比赛.经预赛,七、八年级各有一名同学进入决赛,九年级有两名同学进入决赛.那么九年级同学获得前两名的概率是( )A.12B.13C.14D.16练3.同时抛掷三枚质地均匀的硬币,至少有两枚硬币正面向上的概率是( ) A.38B.58C.23D.12练4.有两部不同的电影A ,B ,甲、乙、丙3人分别从中任意选择一部观看. (1)求甲选择A 部电影的概率;(2)求甲、乙、丙3人选择同一部电影的概率(请用画树状图的方法给出分析过程,并求出结果).考点2 用表格求概率【例2】同时掷两个质地均匀的骰子,计算下列事件的概率: (1) 两个骰子的点数相同; (2) 两个骰子的点数的和是9; (3) 至少有一个骰子的点数为2.【变式1】某联欢会上,组织者为活跃气氛设计了以下转盘游戏:A 、B 两个带指针的转盘分别被分成三个面积相等的扇形,转盘A 上的数字分别是1,6,8,转盘B 上是4,5,7(两个转盘除表面数字不同外,其他完全相同).选择2名同学分别转动A 、B 两个转盘,停止后指针所指数字较大的一方为获胜者,另一方需表演节目(若箭头恰好停留在分界线上,则重转一次).作为游戏者,你会选择哪个装置呢?并请说明理由.【变式2】在6张卡片上分别写有1~6的整数,随机的抽取一张后放回,再随机的抽取一张,那么,第一次取出的数字能够整除第2次取出的数字的概率是多少?4 游戏转盘B游戏转盘A A练1.某校决定从两名男生和一名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的同学恰为一男一女的概率是( )A.13B.23C.49D.59练2.小亮、小莹、大刚三名同学随机地站成一排合影留念,小亮恰好站在中间的概率是( )A.12B.13C.23D.16练3.今年某市为创评“全国文明城市”,周末团市委组织志愿者进行宣传活动.班主任梁老师决定从4名女班干部(小悦、小惠、小艳和小倩)中通过抽签的方式确定2名女生去参加.抽签规则:将4名女班干部的姓名分别写在四张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,梁老师先从中随机抽取一张卡片,记下姓名,再从剩余的三张卡片中随机抽取第二张,记下姓名.(1)该班男生“小刚被抽中”是________事件,“小悦被抽中”是________事件(填“不可能”或“必然”或“随机”);第一次抽取卡片“小悦被抽中”的概率为________.(2)请用列表的方法表示这次抽签所有可能的结果,并求出“小惠被抽中”的概率.考点3. 频率估计概率类型【例3】在一个不透明的袋子里装有3个黑球和若干个白球,它们除颜色不同外其余都相同.在不允许将球倒出来数的前提下,小明为估计袋中白球个数,采用如下办法:从中随机摸出一球,记下颜色后放回袋中,充分摇匀后,再随机摸出一球,记下颜色……不断重复上述过程,小明共摸球1000次,其中200次摸到黑球.根据上述数据,小明估计袋子中白球有________个.【变式1】为了估计湖里有多少条鱼,先从湖里捕捞100条鱼做上标记,然后放回湖里去,经过一段时间,带有标记的鱼完全混合于鱼群后,第二次再捕捞125条,发现其中2条有标记,那么由此可估计湖里大约有___________条鱼【变式2】在一个不透明的布袋中装有50个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.3左右,则布袋中白球可能有( ) A 、15个B 、20个C 、30个D 、35个练1.在一个不透明的盒子中装有n 个小球,它们只有颜色上的区别,其中有2个红球.每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复摸球实验后发现,摸到红球的频率稳定于0.2,那么可以推算出n大约是 .练2.一只不透明的袋中装有4个小球,分别标有数字2,3,4,x,这些球除数字外都相同.甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个球上数字之和.记录后都将小球放回袋中搅匀,进行重复试验.试验数据如下表:0.34 0.330.33 解答下列问题:(1)如果试验继续进行下去,根据上表数据,出现“和为7”的频率将稳定在它的概率附近,试估计出现“和为7”的概率;(2)根据(1),若x是不等于2,3,4的自然数,试求x的值.练3.一个口袋中装有10个红球和若干个黄球.在不允许将球倒出来数的前提下,为估计口袋中黄球的个数,小明采用了如下的方法:每次先从口袋中摸出10个球,求出其中红球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程20次,得到红球数与10的比值的平均数为0.4.根据上述数据,估计口袋中大约有 ( )个黄球.考点4. 几何频率【例4】小球在如图所示的地板上自由滚动,并随机地停留在某块方砖上,每一块方砖除颜色外完全相同,它最终停留在黑色方砖上的概率是________.练1.如图,一只蚂蚁在正方形ABCD区域内爬行,点O是对角线的交点,∠MON=90°,OM,ON分别交线段AB,BC于M,N两点,则蚂蚁停留在阴影区域的概率为.练2.如图,A 、B 是数轴上的两个点,在线段AB 上任取一点C ,则点C 到表示-1的点的距离不大于2的概率是( )A .21B.32 C .43 D .54练3.为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为2 m 的正方形,使不规则区域落在正方形内,现向正方形内随机投掷小石子(假设小石子落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小石子落在不规则区域内的频率稳定在常数0.25附近,请你估计不规则区域的面积.【当堂检测】1.甲口袋中装有2个相同的小球,它们分别写有字母A 和B ;乙口袋中装有3个相同的小球,它们分别写有字母C 、D 和E ;从两个口袋中各随机地取出1个小球.用列表法写出所有可能的结果.2.如果还有丙口袋中装有2个相同的小球,它们分别写有字母H 和I .从甲、乙、丙三个口袋中各随机地取出1个小球.你能写出所有可能的结果吗?第4题图3.两道单项选择题都含有A、B、C、D四个选项,若某学生不知道正确答案就瞎猜,则这两道题恰好全部被猜对的概率是__________.4.小明的奶奶家到学校有3条路可走,学校到小明的外婆家也有3条路可走,若小明要从奶奶家经学校到外婆家,不同的走法共有________种.5.在一个盒子中有质地均匀的3个小球,其中两个小球都涂着红色,另一个小球涂着黑色,则计算以下事件的概率选用哪种方法更方便?1)从盒子中取出一个小球,小球是红球;2)从盒子中每次取出一个小球,取出后再放回,取出两球的颜色相同;3)从盒子中每次取出一个小球,取出后再放回,连取了三次,三个小球的颜色都相同.6. 在一个不透明的布袋里装有4个标号分别为1,2,3,4的小球,它们的材质、形状、大小等完全相同,小凯从布袋里随机取出1个小球,记下数字为x,小敏从剩下的3个小球中随机取出1个小球,记下数字为y,这样就确定了点P的坐标(x,y).(1)请你用画树状图或列表的方法,写出点P所有可能的坐标;(2)求点P(x,y)在函数y=-x+5图象上的概率.【演练方阵】一、填空题:1.从1、2、3、4、5这五个数字中,先随意抽取一个,然后从剩下的四个数中再抽取一个,则两次抽到的数字之和为偶数的概率是 ;2.有五条线段,其长度分别为1、3、5、7、9,从中任取三条,以这三条线段为边能够成一个三角形的概率是 ;3.现有10个型号相同的杯子,其中一等品7个,二等品2个,三等品1个,从中任取两个杯子都是一等品的概率是 . 二、选择题:1、同时掷两颗均匀的骰子,下列说法中正确的是( ).(1)“两颗的点数都是3”的概率比“两颗的点数都是6”的概率大; (2)“两颗的点数相同”的概率是16 ;(3)“两颗的点数都是1”的概率最大;(4)“两颗的点数之和为奇数”与“两颗的点数之和为偶数”的概率相同. A. (1)、(2) B. (3)、(4) C. (1)、(3) D. (2)、(4) 2、 如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字-1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转)正数的概率为( )A .18B .16C .14D .123.从长为3,5,7,10是( )A .14B .12C .34D .1三、解答题:1、有两组卡片,第一组卡片共3张,分别写着2、2、3;第二组卡片共5张,分别写着1、2、2、3、3 试用列表的方法求从每组中各抽取一张卡片,两张都是2的概率.2、有两个质量均匀、大小相同的正四面体,其中一个的四个面上分别写着数字1、2、3、4,另一个的四个面上分别写着数字5、6、7、8. 将这两个正四面体同时投掷到桌面上,并以它们底面上的数字之和来计分,问:(1)共能组成多少种不同的计分?(2)底面上的数字之和为素数的概率是多少?(3)底面上的数字之和为偶数的概率是多少?3. 在一个不透明的盒子中,装有3个分别写有数字6,-2,7的小球,他们的形状、大小、质地完全相同,搅拌均匀后,先从盒子里随机抽取1个小球,记下小球上的数字后放回盒子,搅拌均匀后再随机取出1个小球,再记下小球上的数字.(1)用列表法或树状图法中的一种方法,写出所有可能出现的结果;(2)求两次取出的小球上的数字相同的概率P.4. 在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域内两数和等于12,则为平局;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;(2)分别求出李燕和刘凯获胜的概率.甲乙。
北师大版九年级数学(上)第三章概率的进一步认识3.1用树状图或表格求概率(第一课时).

3.1用树状图或列表求概率(第一课时)一、课标要求:(一)内容要求1.了解利用数据可以进行统计推断,发展建立数据分析观念;感受随机现象的特点。
2.能通过列表、画树状图等方法列出简单随机事件所有可能的结果,以及指定事件发生的所有可能结果,了解事件的概率。
(二)数学思想方法(核心概念):本节课是简单的两步实验,可以通过计算得到它的概率,所渗透的数学思想是:转化、类比、在树状图中体会几何直观。
本节课的核心概念为:模型思想、数据分析观念、应用意识。
二、教材与学情分析(一)教材分析:本节课是九年级上册第三章《概率的进一步认识》第一节第一课时,通过七年级下册“概率初步”的学习,学生已经通过试验、统计等活动感受随机事件发生频率的稳定性即“当试验次数很大时,事件发生的频率稳定在相应概率的附近”;体会到概率是描述随机现象的数学模型。
学生已经获得概率的计算有两种方式:理论计算和试验估算。
本章第一节通过游戏活动,让学生经历猜测、试验、收集数据、分析数据等活动过程,然后学习计算这类事件发生概率的两种方法---画树状图和列表法。
本节共三课时,第一课时通过一个试验活动引出求概率的树状图和列表法,第二课时和第三课时分别选择不同的情境,让学生经历利用画树状图和列表法求出概率并解决问题的过程。
(二)学情分析:1.学习条件和起点能力分析学生已经认识到现实生活中存在大量的随机事件,初步感受到数据的随机性,并研究了一些简单随机事件发生的概率,对一些现象做出了合理的解释,对游戏活动的公平性可借助概率作出评判;学生已经感受到了频率的稳定性,能理解在大量重复试验的基础上,可用试验频率估计事件发生的概率。
2.学生在七年级已经通过试验、统计等活动感受随机事件发生的频率的稳定性即“当试验次数很大时,事件发生的频率稳定在相应概率的附近”,初步体会概率是描述随机现象的数学模型,实验的过程就是渗透“概率模型思想”的过程,通过之前的学习学生大脑中初步建立起了“概率是刻画现实世界随机事件发生可能性大小的重要模型”,具备了将实际问题转化为相应的概率模型的意识、模型化思维和应用意识。
3.1课时3用树状图或表格分析配紫色游戏的概率教学设计2024—2025学年北师大版数学九年级上册
a. 抛掷两个骰子,求两个骰子的点数和为7的概率。
b. 从一副52张的扑克牌中随机抽取一张,求抽到红桃的概率。
c. 一名篮球运动员投篮,每次投篮命中的概率为0.6,求他连续投篮3次至少命中2次的概率。
(2)请学生结合生活实际,自选一个概率问题,使用树状图进行分析,并计算相关概率。
答案:
a. P(红球) = 5/8
b. P(以“t”开头) = 3/20
c. P(一等奖) = 1/10
2. 使用树状图分析以下连续事件概率问题:
a. 抛掷一枚硬币三次,求至少有一次正面朝上的概率。
b. 一位射击运动员射击三次,每次命中的概率为0.8,求他至少命中两次的概率。
c. 一个装有6个白球和4个黑球的袋子,先取一个球后不放回,再取一个球,求第一次取到白球且第二次取到黑球的概率。
- 概率的比较:分析各种结果概率的大小,进行决策分析
5. 实际问题中的应用
- 识别实际问题中的随机性和不确定性
- 构建树状图模型,分析问题
- 计算概率,为决策提供依据
6. 课堂案例与练习
- 抛硬币游戏
- 掷骰子游戏
- 练习题:使用树状图分析概率问题,计算各种情况的概率
七、作业布置与反馈
1. 作业布置
2. 知识探究
(1)介绍树状图的概念和使用方法。
师:今天,我们要学习一个新的工具——树状图,它可以帮助我们更清晰地分析复杂概率问题。树状图是一种图形化的表示方法,可以展示所有可能的结果,并计算出各种结果的概率。
(2)以配紫色游戏为例,引导学生一起绘制树状图。
师:现在,我们来尝试绘制一个树状图。以一个简单的配紫色游戏为例,我们需要考虑每次选择的可能性,然后将它们连接起来。
北师大版九年级数学上册:3.1用树状图或表格求概率(教案)
-难点内容:理解并正确应用树状图和表格列举所有可能结果。
-突破方法:通过直观的图形展示和步骤分解,帮助学生理解树状图的构建过程,以及表格的填写方法。
-举例解释:在掷骰子的问题中,如何通过树状图将每次掷出的可能结果清晰展示出来,以及如何用表格形式列出所有组合。
-难点内容:计算简单事件的概率。
北师大版九年级数学上册:3.1用树状图或表格求概率(教案)
一、教学内容
北师大版九年级数学上册:3.1用树状图或表格求概率。本节课主要围绕以下内容展开:
1.理解概率的定义,掌握用树状图和表格列举所有可能结果的方法。
2.利用树状图和表格求简单事件的概率。
3.掌握如何利用概率的性质求解实际问题。
内容包括但不限于:列举所有可能结果的方法,树状图的构建,表格的设计,概率的计算,以及如何应用概率知识解决实际问题。通过本节课的学习,使学生能够熟练运用树状图和表格求概率,提高解决问题的能力。
关于学生小组讨论环节,我觉得自己在引导和启发方面还有待提高。有时候,同学们在讨论过程中可能会偏离主题,我没有及时把他们引导回来。在今后的教学中,我需要更加关注学生的讨论进度,适时给出建议和指导,帮助他们聚焦问题的关键点。
最后,我觉得在课堂总结环节,可以更多地让同学们参与进来。例如,让他们回顾今天学到的知识点,并尝试用自己的话进行总结。这样既能检验他们对知识的掌握程度,也能提高他们的语言表达能力。
其次,在讲解重点和难点时,我尽量用简单明了的语言和具体的例子进行解释。但观察同学们的反应,我觉得可能还需要进一步简化讲解,突出关键步骤,让他们更容易理解和掌握。
此外,实践活动中的小组讨论环节,同学们表现得非常积极,提出了很多有创意的想法。但在分享成果时,有些小组的表达不够清晰,可能是因为他们对问题的理解还不够深入。为了提高同学们的表达能力,我计划在接下来的课程中,多增加一些小组内的讨论和展示环节,鼓励他们多思考、多表达。
北师大版数学九年级上册课件第三章概率的进一步认识-用树状图或表格求概率
3.1.2
用树状图或表格求概率(2)
例1.小明、小颖和小凡三做 “石头、剪刀 、布”游戏。游戏规则如下:由小明和小颖做“石头 ” “剪刀”“布”的游戏,如果两人的手势相同,那么 小凡获胜如果两人手势不同那么按照“石头” 胜“剪 刀”, “剪刀”胜“布”, “布”胜“石头”. 的规则 决定 小明和小颖中的获胜者。
D
A.
1 B. C. 2
2 D. 3
1 3
1 6
4、有两把不同的锁和三把钥匙,其中两把钥匙恰好能分别打 开这两把锁,第三把钥匙不能打开这两把锁。任意取一把钥匙 去开任意一把锁,一次打开锁的概率是多少?
解: 设有A,B两把锁和a,b,c三把钥匙,其中钥匙a,b分别 可以打开锁A,B.列出所有可能的结果如下:
课堂小结
(一)等可能性事件的两个的特征: 1.出现的结果有限多个; 2.各结果发生的可能性相等; (二)列举法求概率. 1.有时一一列举出的情况数目很大,此时需要考 虑如何去排除不合理的情况,尽可能减少列举的 问题可能解的数目. 2.利用列举法求概率的关键在于正确列举出试 验结果的各种可能性,而列举的方法通常有直接 分类列举、列表、画树形图(下课时将学习)等.
由于硬币质地均匀。因此掷第一次硬币出现 “正面朝上”和“反面朝上”的概率相同;无论掷 第一次硬币出现怎样的结果,掷第二枚硬币时出现 “正面朝上”和“反面朝上”的概率都是相同的。
我们通常借助树状图或表格列出所有可能 出现的结果:
第一枚 正 开始 反
第二枚
正
所有可能出现的结果
反 正
反
(正,正) (正,反) (反,正)
小颖获胜的结果有一种“正反”,所以小颖获 1 胜的概率是 4 小凡获胜的结果有一种“正反”“反正”,所以 1 2 小凡获胜的概率是 4 = 2 因此这个游戏对三人是 不公平的。 利用树状图或列表,我们可以不重复不遗漏地列 出所有可能的结果,从而比较方便地求出某些事 件发生的概率。
概率运算基本公式
概率运算基本公式
概率运算基本公式包括:
1. 加法规则:对于两个事件A和B,其概率之和等于它们的联合概率加上它们的交集概率的补集。
即:P(A∪B) = P(A) + P(B) - P(A∩B)。
2. 乘法规则:对于两个独立事件A和B,其概率之积等于它们各自的概率。
即:P(A∩B) = P(A) × P(B)。
3. 条件概率:对于事件A和B,已知事件B发生的条件下,事件A 发生的概率为P(A|B) = P(A∩B) / P(B)。
4. 全概率公式:对于一系列互不相容的事件B1, B2, ..., Bn,它们的并集等于样本空间S,对任意事件A,有P(A) = P(A|B1)×P(B1) + P(A|B2)×P(B2) + ... + P(A|Bn)×P(Bn)。
5. 贝叶斯公式:对于一系列互不相容的事件B1, B2, ..., Bn,已知事件A发生的条件下,事件Bi发生的概率为P(Bi|A) = P(A|Bi)×P(Bi) / P(A)。