高三第一轮复习课件--直线与方程.ppt
合集下载
高三数学一轮复习直线方程PPT课件

B.π4 ,π2 D.π4 ,π2 ∪π4 ,34π
[听课记录] 当 cos θ=0 时,方程变为 x+3=0,其倾斜角为π2; 当 cos θ≠0 时,由直线 l 的方程可得斜率 k=-co1s θ. ∵cos θ∈[-1,1]且 cos θ≠0, ∴k∈(-∞,-1 ]∪[1,+∞), 即 tan α∈(-∞,-1]∪[1,+∞), 又 α∈[0,π),∴α∈π4,π2∪π2,34π.
2.由斜率求倾斜角,一是要注意倾斜角的范 围;二是要考虑正切函数的单调性.
3.用截距式写方程时,应先判断截距是否为 0,若不确定,则需要分类讨论.
直线的倾斜角与斜率
[典题导入]
(1)(2014·岳阳模拟)经过两点 A(4,2y+1),B(2,-3)的直
线的倾斜角为34π,则 y=
A.-1
B.-3
综上知,直线 l 的倾斜角 α 的取值范围是π4,34π. 故选 C. 答案 C
[规律方法] 1.求倾斜角的取值范围的一般步骤: (1)求出斜率k=tan α的取值范围; (2)利用三角函数的单调性,借助图象或单
位圆数形结合,确定倾斜角α的取值范围. 2.求倾斜角时要注意斜率是否存在.
5.(2014·河北质检)若直线 l 过点(-1,2)且与直线 2x-3y+4=0 垂直,则直线 l 的方程为________. 解析 由已知得直线 l 的斜率为 k=-32. 所以 l 的方程为 y-2=-23(x+1),即 3x+2y-1=0. 答案 3x+2y-1=0
[关键要点点拨]
1.求直线方程时要注意判断直线斜率是否存 在,每条直线都有倾斜角,但不一定每条直 线都存在斜率.
[跟踪训练]
1.函数 y=asin x-bcos x 的一条对称轴为 x=π4 ,则直线
2024届新高考一轮总复习人教版 第八章 第1节 直线的方程 课件(36张)

第八章 平面解析几何
[课标解读] 1.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公 式. 2.根据确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一 般式).
备考第 1 步——梳理教材基础,落实必备知识 1.直线的倾斜角 (1)定义:当直线 l 与 x 轴相交时,取 x 轴作为基准,x 轴_正__向___与直线 l_向__上__的__方__向___ 之间所成的角 α 叫做直线 l 的倾斜角. (2)规定:当直线 l 与 x 轴平行或重合时,它的倾斜角为__0_°__. (3)范围:直线 l 倾斜角的取值范围是__[0_,__π_)__.
2.直线 y=0 的倾斜角是( ) A.0° C.90°
B.45° D.不存在
解析:直线 y=0 的斜率为 0,所以倾斜角是 0°.
答案:A
3.(选择性必修第一册 P55 练习 T3 改编)若过点 M(-2,m),N(m,4)的直线的斜率
等于 1,则 m 的值为( ) A.1 C.1 或 3
B.4 D.1 或 4
2.斜率公式 条件
直线 l 的倾斜角为 αα≠π2 P1(x1,y1),P2(x2,y2)在直线 l 上,且 x1≠x2
直线 Ax+By+C=0(B≠0)
公式 斜率 k=__ta_n__α__
y2-y1 斜率 k=_x_2-__x_1_
斜率 k=_-__AB___
3.直线方程的 5 种形式
名称 几何条件
2.直线 l 经过 A(3,1),B(2,-m2)(m∈R)两点,则直线 l 的倾斜角 α 的取值范围 是______________.
解析:直线
l
的斜率
1+m2 k= 3-2 =1+m2≥1,所以
[课标解读] 1.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公 式. 2.根据确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一 般式).
备考第 1 步——梳理教材基础,落实必备知识 1.直线的倾斜角 (1)定义:当直线 l 与 x 轴相交时,取 x 轴作为基准,x 轴_正__向___与直线 l_向__上__的__方__向___ 之间所成的角 α 叫做直线 l 的倾斜角. (2)规定:当直线 l 与 x 轴平行或重合时,它的倾斜角为__0_°__. (3)范围:直线 l 倾斜角的取值范围是__[0_,__π_)__.
2.直线 y=0 的倾斜角是( ) A.0° C.90°
B.45° D.不存在
解析:直线 y=0 的斜率为 0,所以倾斜角是 0°.
答案:A
3.(选择性必修第一册 P55 练习 T3 改编)若过点 M(-2,m),N(m,4)的直线的斜率
等于 1,则 m 的值为( ) A.1 C.1 或 3
B.4 D.1 或 4
2.斜率公式 条件
直线 l 的倾斜角为 αα≠π2 P1(x1,y1),P2(x2,y2)在直线 l 上,且 x1≠x2
直线 Ax+By+C=0(B≠0)
公式 斜率 k=__ta_n__α__
y2-y1 斜率 k=_x_2-__x_1_
斜率 k=_-__AB___
3.直线方程的 5 种形式
名称 几何条件
2.直线 l 经过 A(3,1),B(2,-m2)(m∈R)两点,则直线 l 的倾斜角 α 的取值范围 是______________.
解析:直线
l
的斜率
1+m2 k= 3-2 =1+m2≥1,所以
高考数学全程一轮复习第八章解析几何第一节直线的方程课件

5 . ( 易 错 ) 过 点 P(2 , 3) 且 在 两 坐 标 轴 上 截 距 相 等 的 直 线 方 程 为 __x_+__y_-_5_=__0_或_3_x_-__2_y=__0_.
解析:当截距为0时,直线方程为3x-2y=0; 当截距不为0时,设直线方程为xa + ya=1, 则2a + 3a=1,解得a=5.所以直线方程为x+y-5=0.
平面内所有直线
【常用结论】 1.直线的倾斜角α和斜率k之间的对应关系:
α
0°
0°<α<90°
90°
k
0
k>0
不存在
2.特殊位置的直线方程
(1)与x轴重合的直线方程为y=0;
(2)与y轴重合的直线方程为x=0;
(3)经过点(a,b)且平行于x轴的直线方程为y=b;
(4)经过点(a,b)且平行于y轴的直线方程为x=a;
公共点,则直线l斜率的取值范围为__[13_,___3_]_.
解析:∵P(-1,0),A(2,1),B(0, 3), ∴kPA=2−1−−01 =13,kPB=0−3−−01 = 3. 由图可知,直线l的斜率k的取值范围为[13 , 3].
【变式练习】 若本例(2)中“P(-1,0)”改为“P(1,0)”,其他 条件不变,则直线l的斜率的取值范围为__(-__∞__,_-___3_]_∪__1_,__+__∞__.
解析:如图所示:
当直线l过B时设直线l的斜率为k1,
则k1=
3−0=-
0−1
3,
当直线l过A时设直线l的斜率为k2, 则k2=12−−01=1,
∴要使直线l与线段AB有公共点,则直线l的斜率的取值范围是(-∞,- 3] ∪
高考数学理一轮复习-7-1直线的方程精品课件

(1)过点 A(0,2),它的倾斜角的正弦值是35; (2)过点 A(2,1),它的倾斜角是直线 l1:3x+4y+5=0 的倾斜角的一半;
(3)过点 A(2,1)和直线 x-2y-3=0 与 2x-3y-2=0 的交点;
(4)过点 A(-2,4)分别交 x 轴、y 轴于点 B、C,点 A 内分B→C成 1∶2.
第七章 直线和圆的方程
第一节 直线的方程
知识自主·梳理
1.理解直线的倾斜角和斜率的 概念.
2.掌握过两点的直线的斜率 公式. 最新考纲 3.掌握直线方程的点斜式、 两点式、一般式.
4.能根据条件熟练地求出直 线方程.
以选择题、填空题的形式考查 高考热点 直线的基本概念及直线方程的
1.直线的倾斜角:在平面直角坐标系中,对
[规律总结] 在解决直线的截距、斜率以及 直线是否经过第几象限等问题时,通常需要 将直线的一般式转化为直线的特殊形式,在 转化过程中,一定要注意转化的条件.忽视 了条件,易出现错误,导致题目解错.
备考例题3
过点P(-1,-2)的直线l分别交x轴和y轴的负 半轴于A、B两点. (1)当|PA|·|PB|最小时,求l的方程;
[分析] 根据题目的不同特征,选择恰当的方 程形式求解.
(3)
方
法
一
:ቤተ መጻሕፍቲ ባይዱ
解
方
程
组
x-2y-3=0, 2x-3y-2=0,
得
x=-5, y=-4.
∴两条直线的交点为(-5,-4). 由两点式得-y-4-11=-x-5-22,即 5x-7y-3=0. 方法二:用直线系方程来解.
设经过两已知直线交点的直线系方程为
于一条与x轴相交的直线交,点如果逆把时x针轴绕着
(3)过点 A(2,1)和直线 x-2y-3=0 与 2x-3y-2=0 的交点;
(4)过点 A(-2,4)分别交 x 轴、y 轴于点 B、C,点 A 内分B→C成 1∶2.
第七章 直线和圆的方程
第一节 直线的方程
知识自主·梳理
1.理解直线的倾斜角和斜率的 概念.
2.掌握过两点的直线的斜率 公式. 最新考纲 3.掌握直线方程的点斜式、 两点式、一般式.
4.能根据条件熟练地求出直 线方程.
以选择题、填空题的形式考查 高考热点 直线的基本概念及直线方程的
1.直线的倾斜角:在平面直角坐标系中,对
[规律总结] 在解决直线的截距、斜率以及 直线是否经过第几象限等问题时,通常需要 将直线的一般式转化为直线的特殊形式,在 转化过程中,一定要注意转化的条件.忽视 了条件,易出现错误,导致题目解错.
备考例题3
过点P(-1,-2)的直线l分别交x轴和y轴的负 半轴于A、B两点. (1)当|PA|·|PB|最小时,求l的方程;
[分析] 根据题目的不同特征,选择恰当的方 程形式求解.
(3)
方
法
一
:ቤተ መጻሕፍቲ ባይዱ
解
方
程
组
x-2y-3=0, 2x-3y-2=0,
得
x=-5, y=-4.
∴两条直线的交点为(-5,-4). 由两点式得-y-4-11=-x-5-22,即 5x-7y-3=0. 方法二:用直线系方程来解.
设经过两已知直线交点的直线系方程为
于一条与x轴相交的直线交,点如果逆把时x针轴绕着
2024年高考数学一轮复习(新高考版《直线的方程》课件ppt

(2)直线 2xcos α-y-3=0α∈π6,π3的倾斜角的变化范围是
A.π6,π3
√B.π4,π3
C.π4,π2
D.π4,23π
直线2xcos α-y-3=0的斜率k=2cos α. 由于 α∈π6,π3,所以12≤cos α≤ 23, 因此 k=2cos α∈[1, 3]. 设直线的倾斜角为 θ,则有 tan θ∈[1, 3]. 由于θ∈[0,π), 所以 θ∈π4,π3,即倾斜角的变化范围是π4,π3.
跟踪训练3 (1)直线l的方程为(a+1)x+y+3-a=0(a∈R),直线l过定点 _(_1_,__-__4_)_,若直线l不经过第三象限,则实数a的取值范围是_[_3_,__+__∞__)_.
直线l:(a+1)x+y+3-a=0可化为a(x-1)+x+y+3=0, 令xx-+1y+=30=,0, 解得xy==1-,4, ∴直线l过定点(1,-4), ∵直线l可化为y=-(a+1)x+a-3, 又直线l不经过第三象限, ∴- a-a3+≥10,<0, 解得 a≥3.
第
二 部 分
探究核心题型
题型一 直线的倾斜角与斜率
例 1 (1)若直线 l 过点 P(1,0),且与以 A(2,1),B(0, 3)为端点的线段
有公共点,则直线 l 的斜率的取值范围是
A.[- 3,1]
C.-
33,1
√B.(-∞,- 3]∪[1,+∞)
D.-∞,-
33∪[1,+∞)
如图,当直线 l 过点 B 时,设直线 l 的斜率为 k1,则 k1= 03--10=- 3;当直线 l 过点 A 时, 设直线 l 的斜率为 k2,则 k2=12--01=1,所以 要使直线 l 与线段 AB 有公共点,则直线 l 的 斜率的取值范围是(-∞,- 3]∪[1,+∞).
直线的方程课件-2025届高三数学一轮复习

为
3
2
.
[易错题]已知点 A (3,4),则经过点 A 且在两坐标轴上截距相等的直线方程为
4 x -3 y =0或 x + y -7=0
.
[解析] 设直线在 x 轴、 y 轴上的截距均为 a .(讨论截距是否为0)
①若 a =0,即直线过点(0,0)及(3,4),
2025届高考数学一轮复习讲义
平面解析几何之 直线的方程
一、知识点讲解及规律方法结论总结
1. 直线的倾斜角与斜率
直线的倾斜角
直线的斜率
(1)定义式:把一条直线的倾斜角α的正切值叫做
定义:当直线l与x轴相交时,
这条直线的斜率,斜率通常用小写字母k表示,
我们以x轴为基准,x轴正向
π
k=tan
α
即③
(α≠
D. 8
5−1
=-2,则线段 lAB : y -1=-2( x -4), x ∈[2,4],即
2−4
y =-2 x +9, x ∈[2,4],故2 x - y =2 x -(-2 x +9)=4 x -9, x ∈[2,4].设 h ( x )
1
1
1
1
差为0.1的等差数列,且直线 OA 的斜率为0.725,则 k 3=(
图1
A. 0.75
B. 0.8
D )
图2
C. 0.85
D. 0.9
[解析] 如图,连接 OA ,延长 AA 1与 x 轴交于点 A 2,则 OA 2=4 OD 1.因为 k 1, k 2,
2
k 3成公差为0.1的等差数列,所以 k 1= k 3-0.2, k 2= k 3-0.1,所以tan∠ AOA 2=
3
2
.
[易错题]已知点 A (3,4),则经过点 A 且在两坐标轴上截距相等的直线方程为
4 x -3 y =0或 x + y -7=0
.
[解析] 设直线在 x 轴、 y 轴上的截距均为 a .(讨论截距是否为0)
①若 a =0,即直线过点(0,0)及(3,4),
2025届高考数学一轮复习讲义
平面解析几何之 直线的方程
一、知识点讲解及规律方法结论总结
1. 直线的倾斜角与斜率
直线的倾斜角
直线的斜率
(1)定义式:把一条直线的倾斜角α的正切值叫做
定义:当直线l与x轴相交时,
这条直线的斜率,斜率通常用小写字母k表示,
我们以x轴为基准,x轴正向
π
k=tan
α
即③
(α≠
D. 8
5−1
=-2,则线段 lAB : y -1=-2( x -4), x ∈[2,4],即
2−4
y =-2 x +9, x ∈[2,4],故2 x - y =2 x -(-2 x +9)=4 x -9, x ∈[2,4].设 h ( x )
1
1
1
1
差为0.1的等差数列,且直线 OA 的斜率为0.725,则 k 3=(
图1
A. 0.75
B. 0.8
D )
图2
C. 0.85
D. 0.9
[解析] 如图,连接 OA ,延长 AA 1与 x 轴交于点 A 2,则 OA 2=4 OD 1.因为 k 1, k 2,
2
k 3成公差为0.1的等差数列,所以 k 1= k 3-0.2, k 2= k 3-0.1,所以tan∠ AOA 2=
高三数学一轮复习 第8篇 第1节 直线与方程课件 理

已知条件 斜率 k 与点 (x0,y0)
斜率 k 与截距 b
两点(x1,y1)、 (x2,y2) (其中 x1≠x2、y1 ≠y2)
截距 a 与 b
方程 y-y0=k(x-x0)
y=kx+b
适用范围 不含直线 x=x0 不含垂直于 x 轴的直线
y y1 x x1 y2 y1 x2 x1
不含直线 x=x1(x1=x2)和直线 y=y1(y1=y2)
(2)点线距离 点 P0(x0,y0)到直线 l:Ax+By+C=0(A、B 不同时为 0)的距离
d= Ax0 By0 C . A2 B2
(3)线线距离
两平行直线 Ax+By+C1=0 与 Ax+By+C2=0 间的距离 d= C1 C2 . A2 B2
精选ppt
11
质疑探究4:应用点到直线的距离和两平行线间的距离时应注意 什么? (提示:(1)将方程化为最简的一般形式;(2)利用两平行线之间的距 离公式时,应使两平行线方程中x、y的系数分别对应相等)
精选ppt
2
编写意图 直线是解析几何的重要内容,虽然在高考中一般不单独命 题考,但直线与圆、直线与圆锥曲线位置关系是高考的必考内容.本 节围绕高考命题的规律进行设点选题,重点突出求直线的倾斜角、斜 率、直线方程、点到直线的距离及其应用,突出方程思想、转化与化 归思想、数形结合思想的应用.
精选ppt
精选ppt
5
②过两点的直线的斜率公式.经过两点 P1(x1,y1),P2(x2,y2)(x1≠x2)的直
线的斜率公式为 k= y2 y1 . x2 x1
质疑探究1:任意一条直线都有倾斜角和斜率吗? (提示:每一条直线都有唯一的倾斜角,但并不是每一条直线都存在 斜率.倾斜角为90°的直线斜率不存在) 质疑探究2:直线的倾斜角θ越大,斜率k就越大,这种说法正确吗?
《直线与方程》复习课件(17张ppt)

方程组:
A1x+B1y+C1=0
A2x+B2y+C2=0的解
一组 无数解
无解
两条直线L1,L2的公共点 一个 无数个 零个
直线L1,L2间的位置关系 相交 重合
平行
5、3种距离
(1).两点距离公式 | AB | (x1 x2)2 ( y1 y2)2
(2)点线距离公式 设点(x0,y0),直线Ax+By+C=0,
a=1或-3
求满足下列条件的直线方程: (1)经过点P(2,-1)且与直线2x+3y+12=0平行;
2x+3y-1=0
(2)经过点Q(-1,3)且与直线x+2y-1=0垂直; 2x-y+5=0
.
(3)经过点R(-2,3)且在两坐标轴上截距相等; x+y-1=0或3x+2y=0
直线的交点个数与直线位置的关系
6
D.
π
6
B
3、直线的5种方程
名 称 已知条件
标准方程 适用范围
点斜式 点P1(x1,y1)和斜率k y y1 k(x x1) 不垂直于x轴的直线
斜截式 斜率k和y轴上的截距 y kx b 不垂直于x轴的直线
两点式 点P1(x1,y1)和点P2(x2,y2) 截距式 在x轴上的截距a
在y轴上的截距b
d | Ax0 By0 C | A2 B2
(3)两平行线距离:l1:Ax+By+C1=0,l2:Ax+By+C2=0 d | C1 C2 | A2 B2
点(1,3)到直线3x 4 y 4 0的距离为
中点坐标公式
x0
y0