北京航空航天大学五系流体力学实验染色液流动显示实验报告

合集下载

流体力学实验报告

流体力学实验报告

实验一 柏努利实验一、实验目的1、通过实测静止和流动的流体中各项压头及其相互转换,验证流体静力学原理和柏努利方程。

2、通过实测流速的变化和与之相应的压头损失的变化,确定两者之间的关系。

二、基本原理流动的流体具有三种机械能:位能、动能和静压能,这三种能量可以互相转换。

在没有摩擦损失且不输入外功的情况下,流体在稳定流动中流过各截面上的机械能总和是相等的。

在有摩擦而没有外功输入时,任意两截面间机械能的差即为摩擦损失。

流体静压能可用测压管中液柱的高度来表示,取流动系统中的任意两测试点,列柏努利方程式:∑+++=++f h p u g Z P u g Z ρρ2222121122对于水平管,Z 1=Z 2,则 ∑++=+f h p u p u ρρ22212122若u 1=u 2, 则P 2<P 1;在不考虑阻力损失的情况下,即Σh f =0时,若u 1=u 2, 则P 2=P 1。

若u 1>u 2 , p 1<p 2;在静止状态下,即u 1= u 2= 0时,p 1=p 2。

三、实验装置及仪器图2-2 伯努利实验装置图装置由一个液面高度保持不变的水箱,与管径不均匀的玻璃实验管连接,实验管路上取有不同的测压点由玻璃管连接。

水的流量由出口阀门调节,出口阀关闭时流体静止。

四、实验步骤及思考题3、关闭出口阀7,打开阀门3、5,排出系统中空气;然后关闭阀7、3、5,观察并记录各测压管中的液压高度。

思考:所有测压管中的液柱高度是否在同一标高上?应否在同一标高上?为什么?4、将阀7、3半开,观察并记录各个测压管的高度,并思考:(1)A、E两管中液位高度是否相等?若不等,其差值代表什么?(2)B、D两管中,C、D两管中液位高度是否相等?若不等,其差值代表什么?5、将阀全开,观察并记录各测压管的高度,并思考:各测压管内液位高度是否变化?为什么变化?这一现象说明了什么?五、实验数据记录.液柱高度 A B C D E阀门关闭半开全开实验二 雷诺实验一、实验目的1、 观察流体在管内流动的两种不同型态,加强层流和湍流两种流动类型的感性认识;2、掌握雷诺准数Re 的测定与计算;3、测定临界雷诺数。

(完整word版)流体力学流动演示实验

(完整word版)流体力学流动演示实验

(完整word版)流体⼒学流动演⽰实验流体⼒学流动演⽰实验流体⼒学演⽰实验包括流线流谱演⽰实验、流动演⽰实验两部分。

各实验具体内容如下:第1部分流线流谱演⽰实验1.1 实验⽬的1)了解电化学法流动显⽰原理。

2)观察流体运动的流线和迹线,了解各种简单势流的流谱。

3)观察流体流经不同固体边界时的流动现象和流线流谱特征。

1.2 实验装置实验装置见图1.1。

图1.1 流线流谱实验装置图说明:本实验装置包括3种型号的流谱仪,Ⅰ型演⽰机翼绕流流线分布,Ⅱ型演⽰圆柱绕流流线分布,Ⅲ型演⽰⽂丘⾥管、孔板、突缩、突扩、闸板等流段纵剖⾯上的流谱。

流谱仪由⽔泵、⼯作液体、流速调节阀、对⽐度调节旋钮与正负电极、夹缝流道显- 1 -⽰⾯、灯光、机翼、圆柱、⽂丘⾥管流道等组成。

1.3 实验原理流线流谱显⽰仪采⽤电化学法电极染⾊显⽰技术,以平板间夹缝式流道为流动显⽰平⾯,⼯作液体在⽔泵驱动下从显⽰⾯底部流出,⼯作液体是由酸碱度指⽰剂配制的⽔溶液,在直流电极作⽤下会发⽣⽔解电离,在阴极附近液体变为碱性,从⽽液体呈现紫红⾊。

在阳极附近液体变为酸性,从⽽液体呈现黄⾊。

其他液体仍为中性的橘黄⾊。

带有⼀定颜⾊的流体在流动过程中形成紫红⾊和黄⾊相间的流线或迹线。

流线或迹线的形状,反映了机翼绕流、圆柱绕流流动特性,反映了⽂丘⾥管、孔板、突缩、突扩、闸板等流道内流动特性。

流体⾃下⽽上流过夹缝流道显⽰⾯后经顶端的汇流孔流回⽔箱中,经⽔泵混合,中和消⾊,循环使⽤。

实验指导与分析如下:1)Ⅰ型演⽰仪。

演⽰机翼绕流的流线分布。

由流动显⽰图像可见,机翼右侧即向天侧流线较密,由连续⽅程和能量⽅程可知,流线密,表明流速⼤、压强低;⽽机翼左侧即向地侧流线较稀疏,表明速低、压强较⾼。

这表明机翼在实际飞⾏中受到⼀个向上的合⼒即升⼒。

本仪器通过机翼腰部孔道流体流动⽅向可以显⽰出升⼒⽅向。

此外,在流道出⼝端还可以观察到流线汇集后,并⽆交叉,从⽽验证流线不会重和的特性。

流体力学报告

流体力学报告

流体力学结课报告摘要:流体力学主要研究在各种力的作用下,流体本身的状态,以及流体和固体壁面、流体和流体间、流体与其他运动形态之间的相互作用的力学分支。

流体力学发展简史人类同洪水斗争的历史,可以追溯到遥远的上古时期。

在中国古代的典籍中,就有相传4000多年以前大禹治水,“疏壅导滞”使滔滔洪水各归于河的记载。

先秦时期(公元256~公元251)在四川岷江中游建都江堰,从此成都平原“水旱从人,不知饥馑,时无荒年”。

隋朝自文帝始,历二世(公元584~610),修浚并贯通南北大运河,“自是天下利于转输”,“运漕商旅,往来不绝”。

又如隋大业年间(公元605~公元617),工匠李春在交河上建赵州桥,这座石拱桥的跨径37.4米,拱背上还有4个小拱,既减轻了主拱的负载,又可泄洪,迄今为止1380年依然完好。

历史上,这些伟大的工程,皆因“顺应水性”,,才能跨江河逾千年而不毁。

对流体力学学科的形成作出第一个贡献的是古希腊的阿基米德,他建立了包括物理浮力定律和浮体稳定性在内的液体平衡理论,奠定了流体静力学的基础。

此后千余年间,流体力学没有重大发展。

直到15世纪,意大利达·芬奇的著作才谈到水波、管流、水力机械、鸟的飞翔原理等问题;17世纪,帕斯卡阐明了静止流体中压力的概念。

但流体力学尤其是流体动力学作为一门严密的科学,却是随着经典力学建立了速度、加速度,力、流场等概念,以及质量、动量、能量三个守恒定律的奠定之后才逐步形成的。

流体力学成为一门独立的科学,是在16世纪欧洲文艺复兴以后至18世纪中叶。

这个时期,作为近代自然科学基础的经典力学已相当成熟,为流体力学的建立,奠定了理论基础。

资本主义工商业的崛起,航海、造船、水利以及城市建设等新兴产业的要求,是流体力学建立和发展的推动力。

20世纪以来,随着航空技术的发展,以及大型水利工程、环境工程的需要,流体力学得到了空前的发展。

近年来,由于科学技术的飞速进步,流体力学与其他学科相互渗透,形成了一系列边缘学科,如电磁流体力学、化学流体力学、生物流体力学、高温气体力学、爆炸力学等等。

流体演示实验实验报告

流体演示实验实验报告

流体演示实验实验报告流体演示实验实验报告一、引言流体力学是研究流体运动的力学学科,其应用广泛且深入。

为了更好地理解流体力学的基本原理和现象,我们进行了一系列流体演示实验。

本实验报告旨在总结实验过程、分析实验数据,并对实验结果进行讨论。

二、实验目的1. 通过观察流体在不同条件下的行为,理解流体的基本性质和行为规律。

2. 利用实验数据,验证流体力学的基本方程和理论模型。

3. 培养实验操作和数据处理的能力。

三、实验装置与方法本次实验主要使用了以下装置和方法:1. 流体容器:采用透明的玻璃容器,便于观察流体的运动。

2. 流体介质:使用水作为流体介质,因其流动性好且易观察。

3. 流体控制装置:通过调节阀门、泵等装置,控制流体的流量和压力。

4. 流体测量设备:使用流量计、压力计等设备,测量流体的流量和压力。

5. 观察工具:借助显微镜、放大镜等工具,观察流体的微观行为。

四、实验过程与结果1. 流体的黏性实验我们将一小滴染料加入水中,并观察其在水中的扩散情况。

结果显示,染料逐渐扩散开来,形成一个较大的扩散圈。

这表明水具有一定的黏性,即流体的内部存在摩擦力,阻碍了其自由扩散。

2. 流体的压力传递实验我们将一个小孔打在容器的侧面,并从孔处注入水。

观察到水会从孔口喷出,喷出的高度与注入水的高度成正比关系。

这说明流体的压力会沿着容器内的各个方向传递,且传递的速度相同。

3. 流体的流动实验我们调节流体控制装置,使水从一端流入容器,然后从另一端流出。

观察到水在容器内形成了一个明显的流动状态,且流速在不同位置处不同。

这表明流体在受力作用下会产生流动,并且流速与位置有关。

4. 流体的表面张力实验我们在容器中加入一些肥皂水,并在其表面放置一根细棍。

观察到肥皂水的表面形成了一个凹陷,细棍也被吸附在表面上。

这说明肥皂水具有较大的表面张力,能够使表面呈现一定的弹性。

五、实验讨论与分析通过以上实验结果,我们可以得出以下结论:1. 流体具有黏性,内部存在摩擦力,阻碍了其自由扩散。

《流体力学》课程实验(上机)指导书及实验报告格式

《流体力学》课程实验(上机)指导书及实验报告格式

《流体力学》课程实验指导书袁守利编汽车工程学院2005年9月前言1.实验总体目标、任务与要求1)学生在学习了《流体力学》基本理论的基础上,通过伯努利方程实验、雷诺实验、阻力综合实验和动量方程实验,实现对基本理论的验证。

2)通过实验,使学生对水柱(水银柱)、U型压差计、毕托管、孔板流量计、文丘里流量计等流体力学常用的测压、测流量装置的结构、原理和使用有基本认识。

2.适用专业热能与动力工程3.先修课程《流体力学》相关章节。

4.实验项目与学时分配5. 实验改革与特色根据实验内容和现有实验条件,在实验过程中,采取学生自己动手和教师演示相结合的方法,力求达到较好的实验效果。

实验一阻力综合实验一、实验目的1.观察和测试流体稳定地在等直管道中流动及通过阀门时的能量损失情况;2.掌握管道沿程阻力系数和局部阻力系数的测定方法;3.熟悉流量的测量和测定文丘里及孔板流量计的流量系数;4.熟悉毕托管的使用。

二、实验条件阻力综合实验台三、实验原理1.实验装置:图一阻力综合实验台结构示意图1.水泵电机2.水泵3.循环储水箱4.计量水箱5.孔板及比托管实验管段进水阀6.阀门阻力实验管段进水阀7. D=14mm沿程阻力实验管段进水阀8.D=14mm沿程阻力实验管段9. 阀门阻力实验管段10.孔板流量计11. 比托管12. 测阻阀门13.测压管及测压管固定板14. D=14mm沿程阻力实验管段出水阀15阀门阻力实验管段出水阀16. 孔板及比托管实验管段出水阀17.文丘里实验管段出水阀18. D=10mm沿程阻力实验管段出水阀19.管支架20. D=10mm沿程阻力实验管段21. 文丘里流量计22排水阀门2.工作原理阻力综合实验台为多用途实验装置,利用这种实验台可进行下列实验:A 、阻力实验。

1). 两种不同直径管路的沿程阻力实验。

2).阀门局部阻力实验。

B 、孔板流量计流量系数和文丘里流量计流量系数的测定方法。

C 、皮托管测流速和流量的方法。

北京航空航天大学五系流体力学实验染色液流动显示实验报告

北京航空航天大学五系流体力学实验染色液流动显示实验报告

研究生《流体力学实验》——飞机标模染色液流动显示实验报告班级姓名实验日期指导教师北京航空航天大学流体力学研究所一、实验目的1. 掌握染色流动显示技术的基本原理、应用方法和实验过程中应注意的技术问题。

2. 了解战斗机典型绕流现象和特性,包括机翼前缘涡(边条涡)、机头涡的形态、特征、涡系间相互作用,以及攻角影响等,并分析这些流动现象对飞机气动性能的影响。

二、基本原理流动显示技术是显示技术包括方法、设备、记录手段、图像处理和数据分析等方面,逐渐形成专门的实验技术。

水洞中常用的流动显示技术有氢气泡方法和染色方法等(属于示踪粒子方法),配以激光片光源等辅助手段可以得到很多有意义的细节结果。

染色线流动显示是在在被观测的流场中设置若干个点,在这些点上不断释放某种颜色的液体,它随流过该点的流体微团一起往下游流去,流过该点的所有流体微团组成了可视的染色线。

染料选取应注意:1.所选取的染料应使染色线扩散慢、稳定性好;2.染色液应与水流具有尽可能相同的密度(与酒精混合);3.染料颜色与流场背景形成强的反差(荧光染料)注入方式;4.在绕流物体表面开孔;5.直接注入流场中所需要观测的位置。

本实验选用飞机标模,利用染色液方法观察其绕流的典型流动现象,重点关注机头涡、边条涡及其对基本翼(主翼也称后翼)流动的影响。

三、实验装置及模型1.实验模型飞机标模由机身、机翼、尾翼构成,见图2。

机身为尖拱型头部加圆柱形后体,机翼为大后掠边条加中度后略三角翼主翼,尾翼包括水平尾翼和垂直尾翼(单立尾)。

各部分表面都布有染色液出孔。

2.实验风洞北航1.2米多用途低速串联水平回流式水洞。

该水洞实验段尺寸大、流场品质高,与同类设备比较,不但在国内领先,而且达到国际先进水平。

设备主实验段1.2米×1米×16米(高×宽×长),流速范围0.1~1.0米/秒。

主实验段主要流场品质:湍流度0.27%~0.45%,截面速度不均匀度:0.46%。

流体力学实验

流体力学实验

2.1 雷诺试验一、实验目的(一) 观察流体在管道中的流动状态; (二) 测定几种状态下的雷诺数; (三) 了解流态与雷诺数的关系。

二、实验原理雷诺数计算公式 νπυμρd Qvd vd Re 4=== d=0.014m三、准备工作实验前将综合实验台各阀门关闭,开启水泵,保证少量溢流。

用温度计测量水温。

四、实验步骤(一)观察流态打开颜料水,其与实验管中水迅速混合成淡颜色水,此时为紊流,随着出水阀门的不断关小,颜料水与雷诺实验管中的水掺混程度逐渐减弱,直至颜料水与雷诺实验管形成一条清晰的线流,此时为层流。

(二)测量几种状态下的雷诺数全开出水阀门,逐渐关小出水阀门,在观察流态的同时,在每一状态下(层流或紊流)测量体积流量和水温,并计算出相应的雷诺数。

处理数据并绘制雷诺数与体积流量关系曲线图。

(三)测定下临界雷诺数当阀门关小到某一程度,管内颜料水开始成为一条直线时,即由紊流变为层流的下临界状态,记录此时的相关数据,并求出下临界雷诺数。

五、实验记录表1 实验数据六、实验结果讨论(一)雷诺数与体积流量关系曲线图(二)下临界雷诺数2.2 伯努利方程实验一、实验目的(一)观察能量转换情况,对实验出现的现象加以分析,加深对伯努利方程的理解;(二)掌握一种测量流量流体速度的原理。

二、实验原理粘流伯努利方程w h gv gp z gv gp z +++=++222222221111αραρ测速原理h g u ∆=2三、准备工作开启水泵注满水,调节上水阀门使水箱水位始终保持不变,并有少量溢流。

四、实验条件以管径轴心位置最低处为基准面。

五、实验步骤(一)理解伯努利方程调节出水阀门至一定开度,测定能量方程实验管的四个断面四组测压管的液柱高度,并用计量水箱(尺)和秒表测流量;改变阀门开度,重复上述方法进行测试,将数据记入表1。

(二)测速:能量方程实验管上的四组测压管上四组测压管的任一组都相当于一个皮托管,可测得瞬时流速(轴心处)。

流体力学实验报告

流体力学实验报告

附加:实验前用实验报告纸写好预习报告,预习报告包括下方实验内容中的:实验目的、实验内容、数据记录及整理(表格一定要画),报告只写“能量方程实验”!“雷诺实验”暂时不写能量方程实验一、实验目的1.观察流体流经能量方程实验管时的能量转化情况,并对实验中出现的现象进行分析,从而加深对能量方程的理解。

2.掌握一种测量流体流速的方法。

二、实验内容1.测出能量方程实验管的四个断面四组测压管的液柱高度,并利用计量水箱和秒表测定流量。

2.根据测试数据和计算结果,绘出某一流量下的各种水头线,并运用能量方程进行分析,解释各测点各种能头的变化规律。

三、实验设备综合实验台:由下水箱、水泵、阀、上水箱、有机玻璃管路、测压计、计量水箱等组成,如图1所示。

图1 综合实验台示意图四、实验步骤1.将实验台的各个阀门置于关闭状态;开启水泵,全开上水阀门,使上水箱快速注满水;全开能量方程实验管路的出水阀门,调节上水阀门,使上水箱的水位保持不变,并有少量溢出。

2.关闭能量方程实验管路的出水阀门,此时能量方程试验管的四个断面四组测压管的液柱应位于同一高度,此为起始总水头,记入数据表中。

3.调节能量方程实验管路的出水阀门至某一开度(工况1),测定能量方程试验管的四个断面四组测压管的液柱高度,并利用秒表和计量水箱测定流量,记入数据表中。

4.改变能量方程实验管路的出水阀门的开度(工况2),测定能量方程试验管的四个断面四组测压管的液柱高度,并利用秒表和计量水箱测定流量,记入数据表中。

5.整理实验数据。

五、注意事项数据测定必须待流体流动稳定时方可读数。

六、数据记录及整理1.实验数据记录计量水箱底面积A(cm2):表1 流量测定数据记录及整理表2.实验数据整理 (1) 体积流量:()tAh h Q 12-=m 3/s注意:式中h 1、h 2的单位为m ,A 的单位为m 2,t 的单位为s 。

(2) 速度水头h ∆=总压水头-测压管水头能量损失=前后断面总压水头之差(3) 平均流速:24dQU π= m/s轴心流速:h g V ∆=2 m/s注意:式中Q 的单位为m 3/s ,d 的单位为m ,h ∆的单位为m 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

研究生《流体力学实验》
——飞机标模染色液流动显示
实验报告
班级
姓名
实验日期
指导教师
北京航空航天大学流体力学研究所
一、实验目的
1. 掌握染色流动显示技术的基本原理、应用方法和实验过程中应注意的技术问题。

2. 了解战斗机典型绕流现象和特性,包括机翼前缘涡(边条涡)、机头涡的形态、特征、涡
系间相互作用,以及攻角影响等,并分析这些流动现象对飞机气动性能的影响。

二、基本原理
流动显示技术是显示技术包括方法、设备、记录手段、图像处理和数据分析等方面,逐渐形成专门的实验技术。

水洞中常用的流动显示技术有氢气泡方法和染色方法等(属于示踪粒子方法),配以激光片光源等辅助手段可以得到很多有意义的细节结果。

染色线流动显示是在在被观测的流场中设置若干个点,在这些点上不断释放某种颜色的液体,它随流过该点的流体微团一起往下游流去,流过该点的所有流体微团组成了可视的染色线。

染料选取应注意:1.所选取的染料应使染色线扩散慢、稳定性好;2.染色液应与水流具有尽可能相同的密度(与酒精混合);
3.
染料颜色与流场背景形成强的反差(荧光染料)注入方式;4.在绕流物体表面开孔;5.直接注入流场中所需要观测的位置。

本实验选用飞机标模,利用染色液方法观察其绕流的典型流动现象,重点关注机头涡、边条涡及其对基本翼(主翼也称后翼)流动的影响。

三、实验装置及模型
1.实验模型
飞机标模由机身、机翼、尾翼构成,见图2。

机身为尖拱型头部加圆柱形后体,机翼为大后掠边条加中度后略三角翼主翼,尾翼包括水平尾翼和垂直尾翼(单立尾)。

各部分表面都布有染色液出孔。

2.实验风洞
北航1.2米多用途低速串联水平回流式水洞。

该水洞实验段尺寸大、流场品质高,与同类设备比较,不但在国内领先,而且达到国际先进水平。

设备主实验段1.2米×1米×16米(高×宽×长),流速范围0.1~1.0米/秒。

主实验段主要流场品质:湍流度0.27%~0.45%,截面速度不均匀度:0.46%。

四、实验步骤
1.实验准备,将染色液注入系统;
2.开启水洞,水流速度稳定到10cm/s;
3.调整攻角;
4.待流场稳定后,调节染色液流量,得到清晰的流动结构显示形态;
5.待流动稳定后,观察稳定的流态,拍摄照片;
6. 将攻角分别调整到0 o,5o,10o,15o,20o,25o,30o,35o,40o,45o,50o,55o,60o,重复步骤5,直到所要求的攻角状态实验全部完成。

五、实验结果报告
1.实验条件:
①水温t=20o C;
水的运动粘性系数υ=0.878×10-6米2秒;
附:水的运动粘性系数随温度的变化:
②水流速度 U = 0.1 米/秒;
③特征长度C=0.115m (C为模型机翼平均弦长)
计算:雷诺数 Re = UC /υ= 1.310×104;
2.实验结果和分析
结合实验观测结果,描述和分析:
1.边条涡的形态随迎角的变化;不同攻角状态下边条涡对主翼流动(包括与主翼涡系的相
互干扰及其对主翼流动分离等)的影响。

2.机头涡的形态及其随攻角变化特性。

其中各集中涡(机头涡、边条涡和主翼涡)的形态及其随攻角变化特性包括:随攻角增加,各集中涡的形成、发展(强度变化)、破裂现象及其破裂点位置变化等的规律性。

本实验结果用相机和DV分别从模型侧面和上面拍摄侧视图和俯视图,以便更好地观察涡的结构。

实验结果如下:
在迎角下,机身没有出现涡结构,整个流场的流动平稳。

随着迎角增加到,在图中可以看到在边条的前缘形成了对称的前缘脱体涡。

当迎角增加到时,边条前缘形成的脱体涡仍只对内翼流动产生影响。

在时,边条涡的强度达到足够强,且边条涡向主翼两端流动;主翼上发生了流动分离,通过侧图可以看到,边条涡具有抑制流动分离的作用,并出现机头涡。

迎角继续增加到,边条涡发生破裂,破裂点如图所示,由于边条涡的破裂,对外翼的诱导作用大大减弱。

从图中可以看到,边条涡的破裂点位置往前移动,已经非常靠近前缘折点。

此时,流体流过机头后发生分离形成一对对称的漩涡。

边条涡的破裂点位置继续往前移动,基本已在折点处的前方。

在下,机头涡仍然呈现对称性。

大致在机身中部位置发生破裂。

边条涡的破裂点往前方移动,很靠近边条翼的前缘。

机头涡的破裂位置前移。

边条涡的破裂点往前方移动,基本靠近产生的位置。

边条涡一产生,基本就发生了破裂。

机头涡仍然呈现对称状态。

边条涡一产生,就发生了破裂。

在下,由于迎角很大,边条涡破裂点基本就在产生的位置,机头涡在此迎角下,大部分还呈现对称状态。

当迎角为时,边条涡和机头涡耦合在一起;而流动的不对称性则进一步加剧,边条涡和机头涡耦合在一起向主翼的一端偏斜,三秒后向另一端偏斜,可见流动的不稳定性进一步加剧。

综上,在迎角为以前,边条翼产生的边条涡都是沿着主翼的内翼部分往后延伸,在时,出现边条涡,并开始沿着翼展方向对外翼流场产生作用,此时边条涡增加了主翼边界层抵抗分离的能力,此有利干扰引起了涡升力。

当迎角达到时,边条涡在主翼上发生破裂,破裂点在主翼中间位置,往后随着迎角继续增大,破裂点一直往前移动,直至产生位置。

机头涡在大约时产生,且呈现对称状态。

漩涡破裂点也是随着迎角的增大而前移,在,涡都基本呈现对称,达到,涡系呈现非对称状态,涡在上下方向有运动,破裂点位置也在交替往复运动。

八.思考题
1.染色液流动显示实验中,为得到可靠的流动显示结果,有哪些问题需要注意?
色液的物理性质(如比重和运动粘性系数等)要求尽量和水接近以满足跟随性要求。

染色液物理性质与水接近,流量稳定,避免射流,拍摄角度要好,避免倒影反光等的影响。

2.边条对机翼流动和飞机气动性能有何影响?
一定角度内提供较大涡升力,对主翼流场也有较大影响,减阻增升,可为战斗机提供高机动性。

3.机头涡的非对称性是如何产生的,对飞机气动力会带来哪些影响?
模型不对称和雷诺数影响造成的不对称分离是形成非对称漩涡流型的原因。

只要机头稍有不对称(包括物面粗糙程度)将引起边界层转捩不对称从而导致边界层的分离不对称,最后形成非对称的机头涡。

当迎角增加到一定值后,即使侧滑角为零,在机身上会受到一定大小的侧向力。

4.尖前缘后掠翼大攻角流动为何对Re数变化不敏感?飞机的飞行环境是空气,不同于水,但飞机大攻角流动及涡系干扰的流动问题为何能够在水中进行模拟?
尖前缘分离点固定,本实验气动力系数与Re数无关,相似参数一致就可以,Re数影响分离位置。

相似准则与介质无关,位于自相似区。

参考文献:
[1]范洁川. 近代流动显示技术. 国防工业出版社,2002
[2]夏雪湔,邓学蓥. 工程分离流动力学. 北京航空航天大学出版社,1991
[3]StaceyLt., Cotton J. and Bjarke LJ. Flow-Visualization Study of the X-29A Aircraft at High Angles of Attack Using a 1/48-Scale Model. NASA TM 104268, 1994.。

相关文档
最新文档