高铬铸铁的应用研究

合集下载

TiC_x-高铬铸铁复合材料的制备及性能研究1

TiC_x-高铬铸铁复合材料的制备及性能研究1

TiC_x-高铬铸铁复合材料的制备及性能研究摘要:本文研究了 TiC_x/高铬铸铁复合材料的制备及性能。

通过石墨烯氧化物还原法制备了 TiC_x 纳米粉末,将其添加到高铬铸铁中,制备出不同比例的 TiC_x/高铬铸铁复合材料。

对样品进行了微观结构、力学性能和耐磨性能等方面的测试,结果表明:当 TiC_x 含量为5%时,复合材料的力学性能最佳,其摩擦系数和耐磨性能均得到了显著提高。

同时,通过扫描电镜和X射线衍射等分析方法,确定了 TiC_x 纳米颗粒和高铬铸铁间的强耦合作用,进一步验证了 TiC_x/高铬铸铁复合材料制备的可行性和有效性。

关键词:TiC_x;高铬铸铁;复合材料;石墨烯氧化物还原法;力学性能;耐磨性能1. 引言高铬铸铁具有优异的高温性能和耐腐蚀性能,被广泛应用于航空、汽车、机械等领域中。

然而,在一些高负荷、高摩擦、高温、高磨损等恶劣环境下,高铬铸铁的性能存在一定的局限性。

为了克服这些问题,研究人员将其与其他材料复合,制备出了一系列优异性能的复合材料。

TiC_x 纳米粉末是一种具有优异耐磨性和高硬度的材料,将其添加到高铬铸铁中可以有效提高其力学性能和耐磨性能。

2. 实验材料和方法2.1 材料高铬铸铁、TiC_x 纳米粉末、石墨烯氧化物、异丙醇、乙二醇等。

2.2 方法首先通过石墨烯氧化物还原法制备出 TiC_x 纳米粉末,然后将其添加到高铬铸铁中,并采用真空感应炉对样品进行热处理。

通过SEM、XRD、TEM等分析手段对样品进行了微观结构和物理性能等方面的测试。

3. 结果与分析通过SEM观察得到,TiC_x 纳米颗粒均匀分布于高铬铸铁基体中,并且与基体间存在强耦合。

随着 TiC_x 含量的增加,样品的硬度和强度均呈现出上升趋势。

当 TiC_x 含量为5%时,复合材料的力学性能最佳,其摩擦系数和耐磨性能均得到了显著提高。

4. 结论本文采用石墨烯氧化物还原法制备了 TiC_x 纳米颗粒,并将其添加到高铬铸铁中,制备出了 TiC_x/高铬铸铁复合材料。

简述高铬铸铁轧辊的铸造和应用

简述高铬铸铁轧辊的铸造和应用

简述高铬铸铁轧辊的铸造和应用摘要:高铬铸铁轧辊现已广泛应用于热轧中宽带钢精轧机组前架及部分小型棒线、型钢精轧机组,以其良好的耐磨性和抗“斑带”性能广受用户的青睐。

本文对高铬铸铁轧辊的铸造、热处理过程进行简要阐述,对使用中易出现的问题加以分析。

关键词:高铬铸铁轧辊、耐磨、抗“斑带”、铸造、热处理一、高铬铸铁轧辊的生产方式当前,几乎所有的高铬铸铁轧辊均采用离心铸造方式,只是离心机有水平式、立式和倾斜式3中形式。

相比较“溢流法”等以前的生产方式,离心铸造可以使少量的高铬铸铁外壳迅速冷却,以便获得更加细小分散的碳化物组织,且生产效率进一步提高。

轧辊的芯部通常采用高强度球墨铸铁,由于外层的铬含量较高,芯部成份中的硅含量和镍含量应较普通轧辊适当提高,以便减少芯部组织中碳化物含量、增强芯部强度。

通常情况下,为防止外层含量较高的铬成份在浇注芯部时向芯部扩散,要在外层浇注完毕时择机浇入过渡层,过渡层铁水可采用中铬铸铁、半钢、灰铸铁等材料。

浇入的时间、温度和铁水量要进行严格控制。

二、高铬铸铁轧辊的冶金性能在Fe-Cr-C合金中,如果铬的含量超过15%,渗碳体就会变得不稳定,其将会被具有复杂结构的六边形碳化物M7C3代替,该种碳化物被称为铬碳化物,主要成分为铬和铁,可能含有少量的其它合金元素。

高铬铸铁轧辊外层材质的基本特征是显微组织中共晶碳化物以(Cr,Fe)7C3型为主,其显微硬度为1500-1800HV,而渗碳体的显微硬度为1000-1200HV,这也是高铬铸铁轧辊有较强耐磨性能的原因。

高铬铸铁轧辊的主要化学成分(%)为:C2.2~3.4,Cr10~25,Mo0.3~4,Ni0.3~3.0。

铬碳比(Cr/C)决定了高铬铸铁外层组织中碳化物的类型,C、Cr、Mo等元素的含量决定了碳化物的数量。

Ni和Mo的作用一方面是强化基体,另一方面是增加基体组织的淬透性。

对Fe-Cr-C合金系的研究大多基于以下Fe-Cr-C合金相图生产工艺高铬铸铁一般采用感应电炉或电弧炉熔炼,常用的原料为生铁、废钢、回炉料、铬铁、钼铁,镍等。

大型水泥立磨用高铬铸铁的研究与应用

大型水泥立磨用高铬铸铁的研究与应用

大型水泥立磨用高铬铸铁的研究与应用--------------------------------------------------------------------------------作者:-作者:杨震华单位:沈阳重型机械集团有限责任公司摘要高铬铸铁的每个合金元素对厚大件的组织和性能存在不同的作用和影响。

在高铬铸铁的整个生产过程中要把好控制要点。

工业生产实践证明高铬铸铁在大型水泥立磨上具有良好的耐磨性。

关键词高铬铸铁厚大件当前,随着我国经济的飞速发展,特别是一些大型水泥磨项目的开发,对耐磨材料提出了更高的要求。

传统耐磨材料镍硬铸铁碳化物形状为连续网状,相比之下,高铬铸铁碳化物分布为近似孤立的形状,耐磨性好于镍硬铸铁。

为此,我公司于20世纪80年代开发了价格较低的锰钼复合高铬铸铁,并成功地应用于中速磨磨辊上,取得了良好的经济效益。

但由于该材料对于厚大件其淬透性、耐磨性都不理想,仅适用于有效截面在100~140 mm的铸件上。

因此,根据市场需要,我公司专门成立了项目组,开发了厚大截面(一般为200 mln左右)需要的有一定抗冲击能力的高铬铸铁品种,用于大型水泥立磨。

1基础试验1.1成分设计1.1.1化学成分要求控制高铬铸铁的化学成分,主要达到以下两点:(1)保证碳化物有一定数量,并具有理想的形状及类型;(2)保证热处理后形成以马氏体为主加少量残余奥氏体的基体组织,抑制珠光体的形成。

化学元素中对前者起决定作用的是碳和铬以及Cr/C比值,与后者有关的是影响淬透性的合金元素,如:Cr NiMoCu等。

1.1.2合金元素的作用碳和铬:碳是影响碳化物数量的主要因素,碳化物越多,淬透性越差。

提高含碳量,可改善耐磨性,但过高的含碳量将降低材料的韧性。

有关资料表明:碳化物含量30%左右,含碳量变化不大,且耐磨性最佳。

铬是高铬铸铁中的重要元素,铬和碳合理配合,可保证铸铁既有高硬度,又有一定的韧性。

在高铬铸铁中,铬主要以碳化物形式存在,当铬含量大于12%时,M7C3型与M3C型碳化物相比,M。

高铬抗磨铸铁的特性及应用

高铬抗磨铸铁的特性及应用

高铬抗磨铸铁的特性及应用含铬量为12。

30%,含碳量为2.4。

3.6%的高铬铸铁,通过高合金化和热处理手段可得到马氏体或奥氏体或二者混合型的基体以及铬的特殊碳化物。

这种特殊碳化物为呈六角晶系的Me,C,,其硬度高达HVl200。

1600,远高于渗碳体型碳化物和常见的矿物磨检的硬度。

这类碳化物的存在是高铬铸铁获得高抗磨性的主要原因、此外,高铬铸铁中的共晶结构与一般铸铁中的莱氏体不同。

一般铸铁中的莱氏体呈连续网状,而合高铬的共晶碳化物呈断开的块、条状态。

相当于在基体上镶嵌入高硬度的颗粒。

因此,不仅抗磨性好,而且大大削弱了高硬度相的脆化作用,相对而言有较好的韧性。

高铬铸铁中的高硬度马氏体基体,强有力地支承碳化物颗粒,避免工作过程中碳化物从磨损表面脱落,保证了材料的高抗磨性。

因此高铬铸铁作为高抗磨材料已有效地应用于破碎、研磨、物料输送等机械和冶金设备。

尤其在磨料磨损和冲击磨损的机件(如:破碎机滚筒、料仓衬板、高炉料钟、料斗、运煤槽衬板、磨煤机辊套、轧辊、渣浆泵过流部件等)方面应用更为广泛。

通过分析衬板在正常的工况条件下的磨损机理及材料相应的特性,确定衬板合理的组织和化学成分,研制中碳低合金耐磨钢ZG40Cr2SiMnMoV,机械性能:σb≥1 200 MPa, HRC≥50,αK≥18 J/cm2.试制后测定工艺性,结合生产实际,制订各工序的操作要点和工艺参数,正式投产,产品符合设计要求,使用寿命为高锰钢衬板的2~3倍,成本持平,是高锰钢理想的替代材料.铸造后水韧,就是和用水淬火一样的过程,温度1100摄氏度,获得过饱和的单相奥氏体,因为它的奥氏体能在常温下存在,组织硬度,强度不高,但表面在受到强烈的挤压和摩擦后发生强烈的加工硬化,相变成马氏体并析出碳化物,获得高的耐磨性,而心部还是高抗冲击的奥氏体.表面的硬化层磨损后,露出的心部又产生加工硬化.,水韧后就不再热处理了.否则在加热到250时会变脆可以理解为固溶处理!一般的水地韧处理为ZGMn13类高锰钢,主要用于承受冲击载荷工作的零件,其它如陆丰所言.奥氏体表面在受到冲击作用时,产生强烈的加工硬化,当硬化层被磨/崩掉后,又露出新鲜的奥氏体,重新硬化,如此反复.因其有强烈的加工硬化,故不可采用机械加工方法成形,主要用铸造方法所得,所以为铸钢.近年来有降低含锰量的做法,做出中锰钢,同样可以采用水韧处理.在模具钢中,早期的(约1982年出版的书中就有此说法)双细化处理工艺第一步有时称之为水韧(或油韧)具体为在模具钢进行锻造后,在钢之ACm点上,将钢淬入热水中(称水韧),淬入油中(称油韧),目的在于将碳化物大部分溶入奥氏体中,在淬火后重新高温回火后得到细而均匀的精粒状碳化物.再进行正常(或比正常奥体化温度略低)加热淬火,以期提升模具的韧性,耐磨性.锰钢主要用于需要承受冲击、挤压、物料磨损等恶劣工况条件,破坏形式以磨损消耗为主,部分断裂、变形。

高铬铸铁_??????

高铬铸铁_??????

高铬铸铁
高铬铸铁是一种含有高铬(一般大于12%)的铸铁材料。

它具有良好的耐磨、耐热、抗腐蚀等性能,广泛应用于矿山、冶金、水泥、电力等行业中需要抗磨、抗腐蚀性能较高的零部件制造。

高铬铸铁的主要优点有:
1. 良好的耐磨性:高铬铸铁中的高铬元素可以形成较硬的碳化铬(Cr7C3),提高材料的硬度和耐磨性。

2. 良好的耐热性:高铬铸铁中的高铬元素可以提高材料的热稳定性和耐高温性能,适用于高温环境下的工作。

3. 抗腐蚀性能优异:高铬铸铁中的高铬元素可以形成致密的氧化铬(Cr2O3)保护膜,有效阻止氧、水和其他腐蚀介质的侵蚀。

4. 加工性能好:高铬铸铁具有良好的铸造流动性和机械加工性能,可以通过各种铸造和加工方法进行成型。

尽管高铬铸铁具有许多优点,但也存在一些缺点,如易产生铬酸盐等有害物质,需要注意环保和安全问题。

此外,高铬铸铁较为脆性,对冲击和震动敏感,需合理设计和使用。

高铬铸铁

高铬铸铁
例如,分级变质工艺是出液前向炉内加入0.06%—0.10%的钛铁和0.3%-0.4%的1号稀土硅铁合金,出铁液前将0.08%-0.12%Si20A150Fe+0.04%-0.08%Mg合金投入铁液包,出铁液时随流加入0.05%-0.10%Bi,转包时在包中加入0.6%-1.0%的1#稀土硅铁合金或在瞬时随流浇注时加入0.04%—0.08%的Ce-RE。
(2)添加微量V、Ti、W、Nb等元素,一则形成更高硬度的MC型碳化物,二则由于此类MC型碳化物熔点高,在凝固初期就弥散形核细化了共晶组织,随凝固时间的延续,晶粒数不断增加,液膜逐渐减少,变形减小,塑性增强,热裂敏感性也显著减小。
合金元素可在预脱氧后加入炉内,亦可安排在炉前进行处理。在Cr元素为12%-20%的质量百分比浓度的条件下,其微合金元素加入量Ti—V渣如前述:Mo为1.5%-2.5%;Mn为1.5%-3%;Cu为1.5%-2.0%;Nb为0.07%~0.10%。
1 冶金处理技术
冶金处理技术对优质高铬白口铸铁的改性作用受制于在处理过程中所应具备的相关的动力学条件,其中包括温度和成分浓度条件。实践也证明,这两个条件对提高高铬白口铸铁的使用寿命至关重要。高铬白口铸铁的冶炼温度以1520-1580℃、处理温度1440—1480℃、浇注温度1380-1420 ℃为宜;碳量应控制在2.4%-过冷倾向,使冷却速度对结晶过冷度的影响减弱,从而表现为厚大铸件断面的组织、性能趋以一致;
(6)变质处理、孕育处理和微合金化的共同作用细化了晶粒;消除了碳化物的网状析出;减少了夹杂数量、改变了夹杂形态、净化了晶界和铁液;增大了处理效果的稳定性,延长了“衰退”时间,为获得良好的亚温处理效果提供了有利的铸态组织和性能保证。
3 结语
分级化变质复合处理、孕育复合处理和微合金化处理的新工艺,为优质高铬白口铸铁的生产提供了简便稳定的技术支持。而建立动力学条件的冶金处理过程的局部和整体效果影响的理念,不论是运用该工艺,还是不断完善它都是必要的。

高铬铸铁综合实验报告

高铬铸铁综合实验报告

高铬铸铁综合实验报告第一篇基础实验第一部分铸造综合设计实验在进行高铬铸铁试样制备之前先了解一下铸造实验室主要大型设备和常用设备的原理,使用维护和注意事项。

1、中频感应电炉使用可控硅元件连接成三相全控桥电路,将三相工频交流电压整流为单相直流电压。

(电压从0伏-540伏可调节)为逆变电路提供了电源。

炉体的感应线圈(铜管绕制)与补偿电容组成振荡电路,从而将三相工频电压转换成单相的中频电压(1000Hz)。

此电压通入感应线圈就可熔炼金属,也可中频淬火。

中频感应电炉在使用过程中一定要保证冷却水管畅通无阻。

在调节功率时不要超过额定值(电压<750V,电流<300A)。

2、真空热电炉利用可控硅调压器以及大功率变压器提供给石墨发热体可调节电压(0-30伏),石墨发热体安置在耐用钢板制作的炉体内,此炉体通过机械真空泵及扩散泵的工作将炉体内的空气抽出形成真空。

这样在一定的真空度夏可烧结材料。

真空热压炉在使用过程中同样保持冷水管畅通。

实验一铸造合金流动性测定实验内容:配制Al—Cu5%的合金,用螺旋型板制作砂型,将熔化好的试验材料浇入砂型,等凝固后,清理出螺旋形试样,测量出螺旋形试样长度,分析浇注温度、铸型性质对合金流动性的影响。

1、同种合金,铸型性质相同,分析浇注温度对合金流动性的影响。

由实验数据可知,同种合金,铸型性质相同,浇注温度越高,凝固后清理出的螺旋线长度就越长,说明合金流动性越好。

2、同种合金,浇注温度相同,分析铸型性质对合金流动性的影响。

由实验数据可知,同种合金,浇注温度相同,型腔内涂了黑烟的砂型比普通砂型凝固后清理出的螺旋线长度长,说明合金流动性较好。

实验二高铬铸铁试样的制备1、概述高铬铸铁是一种耐磨合金白口铁,它具有很高的抗磨料磨损性能、适当的韧性以及较高的抗磨蚀性,并且经退火后能被切割加工。

因此在世界上它得到了越来越多的应用,已被成功地用于各种磨煤机,矿石破碎机、水泥磨机、抛丸机、泥浆泵等受磨损严重的零件上,并获得显著的经济效益。

Cr 27高铬铸铁生产工艺的实验研究

Cr 27高铬铸铁生产工艺的实验研究

Cr 27高铬铸铁生产工艺的实验研究cr27高铬铸铁生产工艺的实验研究Cr27高铬铸铁生产工艺试验研究由于一些特种泵工作条件恶劣,承受磨损和腐蚀等多种作用,国外生产企业多采用含cr23%~30%的高铬铸铁提高耐磨件使用寿命,如英国用含cg25%高铬铸铁生产杂质泵,挖掘海底沙石,寿命可达2年。

国内某些生产厂家采用含铬26%~28%的高铬铸铁生产特种泵铸件,取得一定效果,但在实际应用中存在使用寿命低、质量不稳定、加工困难等问题,本文对含铬26%~28%高铬铸铁的熔炼及热处理工艺进行了实验研究,选定了合金的成分及生产工艺。

1金成分的选定碳和铬。

碳是提高合金硬度的主要添加剂元素。

增加碳含量可以增加碳化物的含量,这比增加铬含量更显著,但会降低铸件的韧性。

由于特种泵铸件冲击载荷小,应选择高碳,合金含碳量可选择为2.5%~3.5%。

铬是高铬铸铁的主要添加元素。

特殊泵主要耐腐蚀和磨损。

考虑到耐蚀性的影响,确定铬含量为26%~28%,铬碳比为8~10。

根据经验公式,基体中的铬含量为Cr%=1.95cr/-2.47,合金基体的平均铬含量约为14%,大于11.7%,具有良好的耐蚀性。

碳、铬和碳化物之间的关系如下:碳化物%=12.33%C+0.55%cr-15.2%。

合金中碳化物含量为30%~35%,具有良好的耐磨性。

大多数铬形成合金碳化物。

由于合金的淬透性较差,必须添加其他合金元素以提高其淬透性。

钼,钼的主要作用是提高合金淬透性,钼降低ms点的作用不大。

当钼和铜联合使用时,提高淬透性更明显。

含钼量控制在1.5~3.0%。

镍是一种非碳化物形成元素,完全溶解在奥氏体中,这显著降低了MS点。

镍含量应控制在2.0%以下。

硅,硅可由合金炉料带入及以脱氧剂形式加入。

硅可提高ms点,但降低合金淬透性。

硅固溶于基体中增加铸铁脆性,含硅量可控制在0.50%~1.0%。

锰、锰可以提高合金的淬透性,但会强烈降低MS点,显著增加残余奥氏体,降低硬度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档