【学习课件】第七讲matlab实现非线性拟合
基于MATLAB的非线性曲线拟合

基于MATLAB的非线性曲线拟合一、本文概述随着科技的不断进步,数据分析和处理在各个领域中都发挥着越来越重要的作用。
非线性曲线拟合作为一种重要的数据处理方法,被广泛应用于科学研究、工程实践以及日常生活等多个领域。
MATLAB作为一款强大的数学计算和数据分析软件,为非线性曲线拟合提供了便捷的工具和丰富的函数库。
本文旨在介绍基于MATLAB的非线性曲线拟合方法,包括非线性模型的建立、参数估计、模型验证等步骤,并通过具体实例展示MATLAB在非线性曲线拟合中的应用。
本文首先简要介绍了非线性曲线拟合的基本概念和研究背景,阐述了非线性曲线拟合在实际应用中的重要性。
接着,详细介绍了MATLAB 中非线性曲线拟合的实现过程,包括非线性模型的构建、数据预处理、参数估计方法的选择、模型拟合和评估等方面。
在此基础上,通过实例分析,展示了MATLAB在非线性曲线拟合中的实际应用,并对拟合结果进行了分析和讨论。
对全文进行了总结,指出了非线性曲线拟合在实际应用中的潜在价值和未来研究方向。
通过本文的学习,读者可以了解非线性曲线拟合的基本原理和方法,掌握MATLAB在非线性曲线拟合中的应用技巧,提高数据处理和分析能力,为相关领域的研究和实践提供有力支持。
二、非线性曲线拟合基础在数据分析和科学研究中,我们经常遇到需要通过一组离散的数据点来寻找其潜在的非线性关系。
非线性曲线拟合就是这样一个过程,它旨在找到最能描述数据点之间关系的非线性函数。
与线性拟合不同,非线性拟合的模型函数通常包含非线性参数,这些参数需要通过一定的优化算法来求解。
MATLAB作为一款强大的数学软件,提供了多种非线性曲线拟合的工具和函数。
在MATLAB中,非线性曲线拟合通常通过lsqcurvefit、lsqnonlin或fit等函数实现。
这些函数允许用户定义自己的非线性模型函数,并通过迭代优化算法来寻找最佳拟合参数。
在进行非线性曲线拟合时,选择合适的模型函数至关重要。
【精选】Matlab数据拟合.PPT课件

plot(x,w,'*',x,y1,'r-')
已知应力-应变关系可以用一条指数曲线来描述, 即假设
k1ek2
式中, 表示应力, 单位是 N/m2; 表示应变.
令
zln, a0k2, a1lnk1,
则
z a0 a1
求得 a 0 k 2 - 4 9 4 . 5 2 0 9 ,a 1 l n k 1 8 . 3 0 0 9 ,
求三个参数 a, b, c的值, 使得曲线 f(x)=aex+bx2+cx3 与 已知数据点在最小二乘意义上充分接近. 说明: 最小二乘意义上的最佳拟合函数为
f(x)= 3ex+ 4.03x2 + 0.94 x3.
此时的残差是: 0.0912.
拟合函数为: f(x)= 3ex+ 4.03x2 + 0.94 x3.
练习:
1. 已知观测数据点如表所示
x 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 y 3.1 3.27 3.81 4.5 5.18 6 7.05 8.56 9.69 11.25 13.17 求用三次多项式进行拟合的曲线方程.
2. 已知观测数据点如表所示
x 1.6 2.7 1.3 4.1 3.6 2.3 0.6 4.9 3 2.4 y 17.7 49 13.1 189.4 110.8 34.5 4 409.1 65 36.9 求a, b, c的值, 使得曲线 f(x)=aex+bsin x+c lnx 与已知数据 点在最小二乘意义上充分接近.
Matlab数据拟合.
例1 已知观测数据点如表所示
matlab-非线性拟合函数lsqcurvefit的使用和初值选取

matlab-⾮线性拟合函数lsqcurvefit的使⽤和初值选取所解决问题:我们知道我们的表达式是y=A+B*exp(-x.^2)-C./log(x), ⽽且现在我们⼿⾥⾯有x与y对应的⼀⼤把数据。
我们需要根据x, y的值找出最佳的A、B、C值。
则我们现在借助Matlab的函数lsqcurvefit,当然你也可以使⽤nlinfit、lsqnonlin甚⾄cftool拟合⼯具箱.其具体⽤法请⾃⼰⽤Matlab的帮助命令进⾏查看。
这⾥仅简单介绍⼀下常⽤的函数lsqcurvefit。
正⽂:格式:lsqcurvefit(f,a,x,y)f: 符号函数句柄,如果是以m⽂件的形式调⽤的时候,别忘记加@.这⾥需要注意,f函数的返回值是和y匹对的,即拟合参数的标准是(f-y)^2取最⼩值,具体看下⾯的例⼦a:最开始预估的值(预拟合的未知参数的估计值)。
如上⾯的问题如果我们预估A为1,B为2,C为3,则a=[1 2 3]x:我们已经获知的x的值y:我们已经获知的x对应的y的值例:问题:对于函数y=a*sin(x)*exp(x)-b/log(x)我们现在已经有多组(x,y)的数据,我们要求最佳的a,b值%针对上⾯的问题,我们可以来演⽰下如何使⽤这个函数以及看下其效果x=2:10;y=8*sin(x).*exp(x)-12./log(x);%上⾯假如是我们事先获得的值a=[1 2];f=@(a,x)a(1)*sin(x).*exp(x)-a(2)./log(x);%使⽤lsqcurvefit[A,resnorm]=lsqcurvefit(f,a,x,y) %resnorm残差平⽅和 A是参数答案是 A = 8.0000 12.0000 resnorm =7.7179e-20问题:我们知道函数是 y=A+B*exp(-(x/C).^2), 以及x y的数据xdata=[950;1150;1350];ydata=[200;100;50];fun1 = @(x,xdata)x(1)+x(2)*exp(-(xdata./x(3)).^2); %⾃定义函数类型X0=[0,1120,740]; %初始参数[X,resnorm]=lsqcurvefit(fun1,X0,xdata,ydata); %resnorm残差平⽅和 X是参数disp(X) %得到所求参数%画图xi=800:1500;yi=fun1(X,xi); %调⽤函数句柄plot(xi,yi)hold onplot(xdata,ydata,'or')关于这个问题,我们发现它的初值设置的⾮常巧妙,对于初值的选取,我在⼤佬的⼀篇⽂章()阅读到:拟合初值的选取问题因为初值对拟合速度甚⾄结果有⼀定影响,因此这⾥就简单说⼀下确定数学模型后,拟合⾮线性问题时,初值的选取的问题。
MATLAB神经网络(2)BP神经网络的非线性系统建模——非线性函数拟合

MATLAB神经⽹络(2)BP神经⽹络的⾮线性系统建模——⾮线性函数拟合2.1 案例背景在⼯程应⽤中经常会遇到⼀些复杂的⾮线性系统,这些系统状态⽅程复杂,难以⽤数学⽅法准确建模。
在这种情况下,可以建⽴BP神经⽹络表达这些⾮线性系统。
该⽅法把未知系统看成是⼀个⿊箱,⾸先⽤系统输⼊输出数据训练BP神经⽹络,使⽹络能够表达该未知函数,然后⽤训练好的BP神经⽹络预测系统输出。
本章拟合的⾮线性函数为y=x12+x22该函数的图形如下图所⽰。
t=-5:0.1:5;[x1,x2] =meshgrid(t);y=x1.^2+x2.^2;surfc(x1,x2,y);shading interpxlabel('x1');ylabel('x2');zlabel('y');title('⾮线性函数');2.2 模型建⽴神经⽹络结构:2-5-1从⾮线性函数中随机得到2000组输⼊输出数据,从中随机选择1900 组作为训练数据,⽤于⽹络训练,100组作为测试数据,⽤于测试⽹络的拟合性能。
2.3 MATLAB实现2.3.1 BP神经⽹络⼯具箱函数newffBP神经⽹络参数设置函数。
net=newff(P, T, S, TF, BTF, BLF, PF, IPF, OPF, DDF)P:输⼊数据矩阵;T:输出数据矩阵;S:隐含层节点数;TF:结点传递函数。
包括硬限幅传递函数hardlim、对称硬限幅传递函数hardlims、线性传递函数purelin、正切型传递函数tansig、对数型传递函数logsig;x=-5:0.1:5;subplot(2,6,[2,3]);y=hardlim(x);plot(x,y,'LineWidth',1.5);title('hardlim');subplot(2,6,[4,5]);y=hardlims(x);plot(x,y,'LineWidth',1.5);title('hardlims');subplot(2,6,[7,8]);y=purelin(x);plot(x,y,'LineWidth',1.5);title('purelin');subplot(2,6,[9,10]);y=tansig(x);plot(x,y,'LineWidth',1.5);title('tansig');subplot(2,6,[11,12]);y=logsig(x);plot(x,y,'LineWidth',1.5);title('logsig');BTF:训练函数。
matlab 非线性拟合函数lsqcurvefit

matlab 非线性拟合函数lsqcurvefit---logistic人口模型参数估计x= lsqcurvefit(fun,x0,xdata,ydata)x = lsqcurvefit(fun,x0,xdata,ydata,lb,ub)x = lsqcurvefit(fun,x0,xdata,ydata,lb,ub,options)x = lsqcurvefit(problem)[x,resnorm] = lsqcurvefit(...)[x,resnorm,residual] = lsqcurvefit(...)[x,resnorm,residual,exitflag] = lsqcurvefit(...)[x,resnorm,residual,exitflag,output] = lsqcurvefit(...)[x,resnorm,residual,exitflag,output,lambda] = lsqcurvefit(...)[x,resnorm,residual,exitflag,output,lambda,jacobian] = lsqcurvefit(.. .)x0为初始解向量;xdata,ydata为满足关系ydata=F(x, xdata)的数据;lb、ub为解向量的下界和上界,若没有指定界,则lb=[ ],ub=[ ];options为指定的优化参数;fun为拟合函数,其定义方式为:x = lsqcurvefit(@myfun,x0,xdata,ydata),其中myfun已定义为 function F = myfun(x,xdata)F = … % 计算x处拟合函数值fun的用法与前面相同;resnorm=sum ((fun(x,xdata)-ydata).^2),即在x处残差的平方和;residual=fun(x,xdata)-ydata,即在x处的残差;exitflag为终止迭代的条件;output为输出的优化信息;lambda为解x处的Lagrange乘子;jacobian为解x处拟合函数fun的jacobian矩阵。
《非线性拟合》课件

梯度下降法
梯度下降法是一种迭代优
1
化算法,通过不断迭代更
新参数来最小化目标函数
。
4
梯度下降法的缺点是收敛 速度较慢,可能需要多次 迭代才能找到最优解,且 对初始值敏感。
梯度下降法的核心思想是
2
沿着负梯度的方向搜索参
数空间,以最快的方式找
到最小值点。
3 梯度下降法的优点是简单
易行,适用于大规模数据
的拟合,而且能够给出全
考虑模型的复杂度和解释性
在选择模型时,需平衡模型的复杂度和解释性。
参数估计
STEP 02
STEP 01
参数优化
参数初始值设定
为模型参数设定合适的初 始值。
STБайду номын сангаасP 03
参数诊断
对参数进行诊断,确保参 数的合理性和有效性。
使用合适的优化算法对模 型参数进行优化。
模型验证
内部验证
使用交叉验证等方法对模型进行内部验证,评估模型 的性能。
《非线性拟合》PPT 课件
• 非线性拟合的基本概念 • 非线性拟合的方法 • 非线性拟合的步骤 • 非线性拟合的实例 • 非线性拟合的注意事项
目录
Part
01
非线性拟合的基本概念
定义与特性
总结词
非线性拟合的定义、特性
详细描述
非线性拟合是指通过非线性函数对数据进行拟合的方法。它能够更好地描述现实世界中的复杂关系,因为现实世 界中的许多现象都受到非线性因素的影响。非线性拟合具有更高的灵活性和适应性,能够更好地捕捉数据中的复 杂模式和结构。
Part
03
非线性拟合的步骤
数据准备
数据收集
收集相关数据,确保数据 的准确性和完整性。
最新用MATLAB进行数据拟合PPT课件

于是
k 1 4 .0 2 7 5 1 0 3 ,k 2 4 9 4 .5 2 0 9
拟合曲线为: 4 .0 2 7 5 1 0 3e - 4 9 4 .5 2 0 9
在实际应用中常见的拟合曲线有:
直线 ya0xa1
多项式 y a 0 x n a 1 x n 1 a n 一般 n=2, 3, 不宜过高.
0
-2
0
0.2
0.4
0.6
0.8
1
y=[-0.447 1.978 3.28 6.16 7.08 7.34 7.66 9.56 9.48 9.30 11.2];
A=polyfit(x,y,2) z=polyval(A,x); plot(x,y,'k+',x,z,'r')
MATLAB(zxec2)
%作出数据点和拟合曲线的图形
切削时间 t/h 9 10 11 12 13 14 15 16 刀具厚度 y/cm 26.8 26.5 26.3 26.1 25.7 25.3 24.8 24.0
拟合曲线为: y=-0.3012t+29.3804
例4 一个15.4cm×30.48cm的混凝土柱在加压实验中的 应力-应变关系测试点的数据如表所示
可得最小二乘意义下的解。
3.多项式在x处的值y可用以下命令计算: y=polyval(a,x)
例1 对下面一组数据作二次多项式拟合
xi 0.1 0.2 0.4 0.5 0.6 0.7 0.8 0.9 1 yi 1.978 3.28 6.16 7.34 7.66 9.58 9.48 9.30 11.2
用MATLAB进行数据拟 合
拟合
1. 拟合问题引例 2.拟合的基本原理
matlab非线性参数拟合估计_很好的参考材料

使用nlinfit 、fminsearch 在matlab 中实现基于最小二乘法的非线性参数拟合(整理自网上资源) 最小二乘法在曲线拟合中比较普遍。
拟合的模型主要有1. 直线型2. 多项式型3. 分数函数型4. 指数函数型5. 对数线性型6. 高斯函数型一般对于 LS 问题,通常利用反斜杠运算“”、 fminsearch 或优化工具箱提供的极小化函数求解。
在 Matlab 中,曲线拟合工具箱也提供了曲线拟合的图形界面操作。
在命令提示符后键入: cftool ,即可根据数据,选择适当的拟合模型。
“”命令1. 假设要拟合的多项式是:y=a+b*x+c*xT.首先建立设计矩阵X:X=[o nes(size(x)) x x A2];执行:para=X\ypara 中包含了三个参数: para(1)=a;para(2)=b;para(3)=c;这种方法对于系数是线性的模型也适应。
2. 假设要拟合: y=a+b*exp(x)+cx*exp(xA2)设计矩阵 X 为X=[ones(size(x)) exp(x) x.*exp(x.A2)];para=X\y3. 多重回归(乘积回归)设要拟合: y=a+b*x+c*t ,其中 x 和 t 是预测变量, y 是响应变量。
设计矩阵为X=[ones(size(x)) x t] % 注意 x,t 大小相等!para=X\y polyfit 函数polyfit 函数不需要输入设计矩阵,在参数估计中, polyfit 会根据输入的数据生成设计矩阵。
1. 假设要拟合的多项式是: y=a+b*x+c*xA2 p=polyfit(x,y,2)然后可以使用 polyval 在 t 处预测: y_hat=polyval(p,t)polyfit 函数可以给出置信区间。
[p S]=polyfit(x,y,2) %S 中包含了标准差[y_fit,delta] = polyval(p,t,S) % 按照拟合模型在 t 处预测在每个 t 处的 95%CI为:(y_fit-1.96*delta, y_fit+1.96*delta)2. 指数模型也适应假设要拟合: y = a+b*exp(x)+c*exp(x.?2) p=polyfit(x,log(y),2)fminsearch 函数fminsearch 是优化工具箱的极小化函数。