时间序列分析实验2 时间序列模型的识别、参数估计
时间序列分析实验指导

时间序列分析实验指导时间序列分析是一种常用的统计方法,用于分析时间上的变化趋势和周期性变化。
它能够帮助我们预测未来的趋势和判断时间序列数据之间的因果关系。
本文将详细介绍进行时间序列分析的实验指导,包括实验准备、数据处理和模型建立等内容。
一、实验准备1. 确定实验目标:首先需要确定想要分析的时间序列的目标,如销售额、股票价格等。
明确实验目标有助于确定实验的方向和方法。
2. 数据采集:根据实验目标,选择合适的数据源,并采集相关数据。
常见的数据源包括数据库、API接口和互联网上的公开数据等。
3. 数据预处理:对采集到的数据进行预处理,包括数据清洗、填补缺失值和去除异常值等操作。
确保数据的准确性和一致性。
二、数据处理1. 数据可视化:将采集到的数据进行可视化,以便更好地理解数据的特征和变化趋势。
可以通过绘制时间序列图、箱线图和自相关图等方式进行数据可视化。
2. 数据平稳化:时间序列分析要求数据是平稳的,即均值和方差不随时间变化。
如果数据不平稳,需要进行平稳化处理。
常见的平稳化方法包括差分和对数变换。
3. 自相关性检验:利用自相关函数(ACF)和偏自相关函数(PACF)来检验数据的自相关性。
分析自相关系数的大小和延迟的时间间隔,判断是否存在显著的自相关关系。
4. 白噪声检验:利用残差的自相关函数和偏自相关函数来检验数据是否为白噪声。
如果数据是白噪声,说明数据中不存在周期性和趋势,不适合进行时间序列分析。
三、模型建立1. 模型选择:根据数据的特征和目标确定合适的时间序列模型。
常见的时间序列模型包括AR模型、MA模型、ARMA模型和ARIMA模型等。
2. 参数估计:对选择的模型进行参数估计,可以使用极大似然估计、最小二乘法或贝叶斯估计等方法。
3. 模型诊断:对模型进行诊断,判断模型的拟合程度和残差的性质。
可以使用残差自相关函数和偏自相关函数来检验模型的拟合优度。
4. 模型预测:利用已建立的模型对未来的数据进行预测。
实验报告-时间序列

实验报告----平稳时间序列模型的建立08经济统计I60814030王思瑶一.实验目的从观察到的化工生产过程产量的70个数据样本出发,通过对模型的识别、模型的定价、模型的参数估计等步骤建立起适合序列的模型。
以下是化工生产过程的产量数据:obs BF obs BF1 47 36582 64 37453 23 38544 71 39365 38 40546 64 41487 55 42558 41 43459 59 445710 48 455011 71 466212 35 474413 57 486414 40 494315 58 505216 44 513817 80 525918 55 535519 37 544120 74 555321 51 564922 57 573423 50 583524 60 595425 45 604526 57 616827 50 623828 45 635029 25 646030 59 653931 50 665932 71 674033 56 685734 74 695435 50 7023可以明显看出序列均值显著非零,所以用样本均值作为其估计对序列进行零均值化。
obs BF 零均值化后的数据Y obs BF零均值化后的数据Y1 47 -4.12857 3658 6.871432 64 12.87143 3745-6.128573 23 -28.12857 3854 2.871434 71 19.87143 3936-15.128575 38 -13.12857 4054 2.871436 64 12.87143 4148-3.128577 55 3.87143 4255 3.871438 41 -10.12857 4345-6.128579 59 7.87143 4457 5.8714310 48 -3.12857 4550-1.1285711 71 19.87143 466210.8714312 35 -16.12857 4744-7.1285713 57 5.87143 486412.8714314 40 -11.12857 4943-8.1285715 58 6.87143 50520.8714316 44 -7.12857 5138-13.1285717 80 28.87143 52597.8714318 55 3.87143 5355 3.8714319 37 -14.12857 5441-10.1285720 74 22.87143 5553 1.8714321 51 -0.12857 5649-2.1285722 57 5.87143 5734-17.1285723 50 -1.12857 5835-16.1285724 60 8.87143 5954 2.8714325 45 -6.12857 6045-6.1285726 57 5.87143 616816.8714327 50 -1.12857 6238-13.1285728 45 -6.12857 6350-1.1285729 25 -26.12857 64608.8714330 59 7.87143 6539-12.1285731 50 -1.12857 66597.8714332 71 19.87143 6740-11.1285733 56 4.87143 6857 5.8714334 74 22.87143 6954 2.8714335 50 -1.12857 7023-28.12857二.实验步骤1.模型识别零均值平稳序列的自相关函数与偏相关函数的统计特性如下:模型 AR(n) MA(m) ARMA(n,m)自相关函数拖尾截尾拖尾偏自相关函数截尾拖尾拖尾所以,作零均值化后数据的自相关函数与偏自相关函数图Date: 04/25/11 Time: 22:35Sample: 2001 2070Included observations: 70Autocorrelation Partial Correlation AC PAC Q-Stat Prob***| . | ***| . | 1 -0.382 -0.382 10.638 0.001. |** | . |** | 2 0.325 0.209 18.444 0.000**| . | . | . | 3 -0.193 -0.018 21.234 0.000. |*. | . | . | 4 0.090 -0.049 21.857 0.000.*| . | .*| . | 5 -0.162 -0.126 23.900 0.000. | . | .*| . | 6 0.014 -0.094 23.916 0.001. | . | . | . | 7 0.012 0.065 23.928 0.001.*| . | .*| . | 8 -0.085 -0.079 24.519 0.002. | . | . | . | 9 0.039 -0.051 24.644 0.003. | . | . |*. | 10 0.033 0.080 24.736 0.006. |*. | . |*. | 11 0.090 0.125 25.426 0.008.*| . | . | . | 12 -0.077 -0.054 25.942 0.011. | . | . | . | 13 0.063 -0.045 26.291 0.016. | . | . |*. | 14 0.051 0.134 26.524 0.022. | . | . |*. | 15 -0.006 0.079 26.528 0.033. |*. | . |*. | 16 0.126 0.145 28.016 0.031.*| . | . | . | 17 -0.090 -0.040 28.792 0.036. | . | .*| . | 18 0.017 -0.084 28.820 0.051.*| . | . | . | 19 -0.099 -0.017 29.795 0.054. | . | . | . | 20 0.006 -0.036 29.798 0.073. | . | . | . | 21 0.015 0.055 29.820 0.096. | . | . | . | 22 -0.037 -0.015 29.968 0.119. | . | . | . | 23 0.013 -0.051 29.985 0.150. | . | . | . | 24 0.010 0.010 29.997 0.185. | . | . | . | 25 0.015 -0.016 30.023 0.223. | . | . | . | 26 0.036 0.023 30.172 0.261. | . | . | . | 27 -0.016 -0.036 30.202 0.305. | . | . | . | 28 0.033 0.030 30.335 0.347. | . | . | . | 29 -0.057 -0.015 30.735 0.378. | . | . | . | 30 0.051 -0.003 31.064 0.412.*| . | . | . | 31 -0.070 -0.053 31.706 0.431. | . | . | . | 32 0.057 -0.003 32.141 0.460由上图可知Autocorrelation与Partial Correlation序列均有收敛到零的趋势,可以认为Y的自相关函数与偏自相关函数均是拖尾的,所以初步判断该序列适合ARMA模型。
时间序列分析实验报告

引言概述:
时间序列分析是一种用于研究时间数据的统计方法,主要关注数据随时间的变化趋势、季节性和周期性等特征。
时间序列分析应用广泛,可以用于金融预测、经济分析、气象预测等领域。
本实验报告旨在介绍时间序列分析的基本概念和方法,并通过实例分析来展示其应用。
正文内容:
1.时间序列分析基本概念
1.1时间序列的定义
1.2时间序列的模式
1.3时间序列分析的目的
2.时间序列分析方法
2.1随机游走模型
2.2移动平均模型
2.3自回归移动平均模型
2.4季节性模型
2.5ARCH和GARCH模型
3.时间序列数据预处理
3.1数据平稳性检验
3.2数据平滑
3.3缺失值填补
3.4离群值检测
3.5数据变换
4.时间序列模型建立与评估
4.1模型的选择
4.2参数估计
4.3拟合优度检验
4.4模型诊断
4.5预测准确性评估
5.实例分析:某公司销售数据时间序列分析
5.1数据收集与预处理
5.2模型建立与评估
5.3预测分析与结果解释
5.4预测精度评估
5.5结果讨论与进一步改进方向
总结:
时间序列分析是一种重要的统计方法,可用于预测和分析时间相关的数据。
本报告介绍了时间序列分析的基本概念和方法,并通
过实例分析展示了其应用过程。
通过时间序列分析,可以更好地理解数据的趋势和周期性,并进行准确的预测。
时间序列分析也面临着多样的挑战,如数据质量问题和模型选择困难等。
因此,在实际应用中,需要综合考虑多种因素,灵活运用合适的方法和技巧,以提高预测准确性和分析可靠性。
时间序列实验报告(ARMA模型的参数估计)

时间序列分析实验报告实验课程名称时间序列分析
实验项目名称 ARMA,ARIMA模型的参数估计年级
专业
学生姓名
成绩
理学院
实验时间:2015 年11月20日
学生所在学院:理学院专业:金融学班级:数学班
1、判断该序列的稳定性和纯随机性
该序列的时序图如下:
从图中可以看出具有很明显的下降趋势和周期性,所以通常是非平稳的。
在做它的自相关图。
由该时序图我们基本可以认为其是平稳的,再做DX自相关图和偏自相关图
自相关图显示延迟12阶自相关系数显著大于2倍标准差范围。
说明差分后序列中仍蕴含着非常显著的季节效应。
3、模型参数估计和建模
普通最小二乘法下,输入D(X,1,12) AR(1) MA(1) SAR(12) SMA(12) ,得到下图,其中,所有的参数估计量的
于0.05,均显著。
AIC为1.896653,SC为1.964273 。
普通最小二乘法,输入D(X,1,12)AR(1 )MA(1)SAR(12)SAR(24)SMA(12),
值小于0.05,均显著。
AIC为1.640316,SC为1.728672 。
4、参数估计结果
比较这两个模型,因为第二个模型的SC值小于第一个模型的SC值,所以相对而言,第二个模型是最优模型。
模型结果为:。
第六章 时间序列分析-参数估计

例:求MA(1)模型系数的矩估计
MA(1)模型 方程 xt t 1 t 1
0 (1 12 ) 2 1 1 1 2 矩估计 0 1 12 1 1
ˆ 1 1 4 12 ˆ1 ˆ 2 1
f X1 , X 2 , X3 x1 , x2 , x3 ; , 2 f X1 , X 2 x1 , x2 ; , 2 f X3 X 2 , X1 x3 x2 , x1 ; , 2
24
极大似然估计
一般地,样本中第 t 个 X t 在前 t-1 个已知的条件下,由于模 型的特点,实际上前 t-1 个 X t 1 ,, X1 只有 X t 1 作用于 X t ,因此 有
ˆ 其中 k y
ˆˆ ˆ
i 0 j 0 i
p
p
j i j k
, k 0,1,, q
13
对矩估计的评价
优点
估计思想简单直观 不需要假设总体分布 计算量小(低阶模型场合)
缺点
信息浪费严重 只用到了p+q个样本自相关系数信息,其他信息都被忽
15
极大似然估计
本节将要讨论的是根据极大似然原理,给出模型参数 1 ,, p ,
1 ,,q 和白噪声方差 2 的极大似然估计。为此,首先需要给定样本
x1,, xT 的联合分布,
F x1,, xT ; θ
θ 1 , , p , 1 , , q , 2 。 其中
3. ARMA模型的矩估计 第一步,先给出AR部分的参数 估计。
1 ,, p
的矩
q1 q 12 q p 1 p q 1 q 1 1 q 2 q p 2 p q 2 q p 11 q p 22 q p q p
时间序列模型参数的统计推断

时间序列模型参数的统计推断时间序列模型是一种用于分析和预测时间序列数据的统计模型。
在构建时间序列模型时,需要估计一些参数,例如模型的系数、自协方差和方差等。
统计推断是一种通过观察样本数据来推断总体参数的方法。
在时间序列分析中,统计推断可以用于估计参数的值、检验参数的显著性和模型的适配性等。
通常,时间序列模型参数的统计推断涉及以下几个步骤:1. 参数估计:参数估计的目标是利用观测数据来估计模型中的未知参数。
最常用的估计方法是最大似然估计(MLE)和最小二乘法(OLS)。
MLE方法根据给定数据的概率密度函数,找到使得数据观测概率最大的参数值。
OLS方法通过最小化残差平方和来估计参数值。
参数估计的结果通常以点估计和置信区间的形式给出。
2. 参数显著性检验:参数显著性检验用于判断参数估计值是否显著不同于零。
常用的方法包括t检验和F检验。
t检验适用于单个参数的检验,通常用于检验某个系数是否显著。
F检验适用于多个参数的检验,例如用于检验整个模型的适配性。
3. 模型适配检验:模型适配检验用于评估时间序列模型的适配度。
最常用的适配度检验方法是残差分析和信息准则(如AIC 和BIC)等。
残差分析用于检验模型中是否存在未解释的结构,包括自相关、偏自相关和白噪声等。
信息准则用于选择最佳模型,其中AIC和BIC是常用的模型选择准则,较小的值表示模型拟合效果更好。
以上是时间序列模型参数的统计推断的一般步骤。
值得注意的是,参数的统计推断依赖于一些假设,例如观测数据是独立同分布的、残差是白噪声等。
违反这些假设可能导致推断结果不准确。
因此,在进行参数的统计推断时,需要仔细检查时间序列模型的假设是否成立,并评估推断结果的稳健性。
时间序列模型的参数统计推断是一种重要的数据分析方法,可以帮助我们理解时间序列数据中的潜在规律和趋势。
在这个过程中,我们需要估计模型的参数,并使用统计推断方法来检验参数的显著性和模型的适配性。
本文将进一步介绍时间序列模型参数的统计推断的一些关键内容。
时间序列分析:方法与应用(第二版)传统时间序列分析模型

型。
例1.1
9
例1.1
Y
3,000 2,500 2,000 1,500 1,000
500 0 1955 1960 1965 1970 1975 1980
社会商品零售总额时序图 10
例1.2
Y
9,000 8,000 7,000 6,000 5,000 4,000 3,000 2,000 1,000
10,000
9,000
8,000
7,000
6,000
5,000
4,000 1995
1996
1997
1998
1999
2000
Y
YY
37
为评价模型的预测效果,也可以象例1.12一样, 预留部分数据作为试测数据,评价模型的适用性。
38
fi 为季节指数
T为季节周期的长度,4或12
26
2. 适用条件:
既有季节变动,又有趋势变动 且波动幅度不断变化的时间序列
至少需要5年分月或分季的数据
3. 应用
例1.12 我国工业总产值序列
27
1)时序变化分析 绘制时序曲线图
明显的线性增长趋势、季节波动,且波动幅度随趋 势的增加而变大。
Y
6,000
3. 应用
例1.13 我国社会商品零售总额的分析预测
33
1)时序变化分析 绘制时序曲线图
明显的线性增长趋势、季节波动,且波动幅度随趋势 的增加基本不变。
Y
10,000
9,000
8,000
7,000
6,000
5,000
4,000
1995
1996
时间序列模型的参数估计与研究

时间序列模型的参数估计与研究时间序列模型是一种用于分析时间序列数据的数学模型。
在时间序列分析中,通常需要对模型的参数进行估计,以便于对未来的数据进行预测和分析。
本文将介绍时间序列模型的参数估计方法以及相关的研究进展。
一、时间序列模型的参数估计方法在时间序列模型中,常见的参数估计方法包括最大似然估计(Maximum Likelihood Estimation,简称MLE)、贝叶斯估计(Bayesian Estimation)等。
不同的方法对于参数估计的要求和假设不同,具体的选择需要根据实际情况和模型的特点来决定。
最大似然估计是一种常用的参数估计方法,其基本思想是通过找到使得观测数据出现的概率最大的参数值来进行估计。
最大似然估计要求数据必须满足独立同分布(Independent and Identically Distributed,简称IID)的假设。
在时间序列模型中,常用的最大似然估计算法包括最大似然估计函数法(Maximizing Likelihood Function)、期望最大化算法(Expectation-Maximization,简称EM算法)等。
贝叶斯估计是一种基于贝叶斯理论的参数估计方法,它将参数估计问题转化为后验概率分布的计算问题。
贝叶斯估计方法通过引入先验概率分布和似然函数来计算参数的后验概率分布。
贝叶斯估计的优点是可以利用先验知识对参数进行估计,从而提高参数估计的准确性。
在时间序列模型中,贝叶斯估计方法常用的算法包括马尔可夫链蒙特卡洛(Markov Chain Monte Carlo,简称MCMC)方法、变分推断法(Variational Inference)等。
二、时间序列模型参数估计的研究进展随着时间序列分析领域的发展,对于时间序列模型参数估计的研究也取得了许多进展。
以下是一些相关的研究方向和方法:1. 参数约束估计:传统的参数估计方法对于参数的取值范围没有做出限制,而实际问题中,某些参数可能存在一定的约束条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验2:时间序列模型的识别、参数估计
实验目的:
1. 掌握时间序列的平稳性检验、纯随机性检验。
2. 能够利用自相关系数和偏自相关系数对时间序列模型进行识别。
3. 掌握参数估计的方法。
实验内容:
利用教材P151习题7.6所给的样本数据,在Eviews中实现下列内容:(1)画出时序图;
(2)给出直至滞后48期的所有样本自相关系数和样本偏自相关系数;
(3)利用(2)的结果判断该序列的平稳性和纯随机性;
解:由(2)的序列分析结果:a、可以看出自相关系数(AC)始终在零周围波动,判定该序列为平稳时间序列;b、看Q统计量的P值:该统计量的原假设为X的1期,2期……k期的自相关系数均等于0,备择假设为自相关系数中至少有一个不等于0,因此如图知,该P值几乎都<5%的显著性水平,所以拒绝原假设,即序列不是纯随机序列(白噪声序列)。
(4)对该序列建立不同的模型,并进行比较,最后选择一个最优的模型;
解:观察(2)的图形,我们可以假设模型为MA(q)、AR(p)或ARMA(p,q)模型。
下面对每一个模型进行检验。
对MA(1):
如图所示:c对应的prob<0.05,故拒绝原假设,不能省去c。
MA(1)对应的prob<0.05,故此模型有意义。
AIC为0.3354.
对MA(2):
MA(2)(p>0.05故此模型没有意义)。
如图所示:c对应的prob<0.05,故拒绝原假设,不能省去c;AR(1)对应的prob<0.05,故此模型有意义。
AIC值为0.3092.
对AR(2):
AR(2)对应的p>0.05故此模型没有意义。
对ARMA(1,1):
AR(1)对应的p>0.05故此模型没有意义。
c对应的prob<0.05,故拒绝原假设,不能省去c;AR(1),MA(1),
MA(2)对应的p均小于0.05,故此模型有意义。
AIC值为0.2594.
如此所示进行重复实验(不再重复),发现,ARMA(1,2)对应的AIC值最小(为0.2594),由AIC准则,ARMA(1,2)模型对模型的拟合最好。
(5)给出模型各个参数估计值。