1.4.1特征函数定义与常见分布的特征函数
概率论_特征函数

概率论_特征函数特征函数(characteristic function)是概率论中一个非常重要的工具,它能够完全描述一个随机变量的分布,并且可以用来推导和证明一系列的性质和定理。
特征函数具有许多重要的性质,如唯一决定定理、独立性的性质、收敛性的性质等。
特征函数的定义如下:对于一个随机变量X,它的特征函数$\varphi(t)$定义为$E[e^{itX}]$,其中 i 是复数单位,t 是实数。
特征函数是关于 t 的复数函数,其实部和虚部分别是 $\cos(tx)$ 和$\sin(tx)$。
特征函数的一个重要性质是唯一决定性(uniqueness),即对于一个分布,它的特征函数是唯一确定的,并且确定了分布的所有性质。
这一性质使得特征函数成为一种描述概率分布的有效工具。
对于连续分布,特征函数可以通过概率密度函数和积分的关系得到,对于离散分布,特征函数可以通过概率质量函数和求和的关系得到。
另一个重要的性质是独立性的性质。
如果两个随机变量 X 和 Y 是独立的,那么它们的特征函数的乘积等于它们各自的特征函数的乘积。
即$\varphi_{X+Y}(t)=\varphi_X(t)\varphi_Y(t)$。
这个性质可以用来推导和证明随机变量的和的分布。
特别地,如果 X 和 Y 是独立同分布的,那么它们的特征函数的乘积等于它们特征函数的平方。
特征函数还有一个重要的性质是收敛性的性质。
对于一个随机变量序列X₁,X₂,...,如果它们的特征函数逐点收敛于一个函数,那么这个函数也是一个随机变量的特征函数,且收敛到的分布是弱收敛的。
这个性质可以用来证明中心极限定理等重要的结果。
特征函数在概率论和统计学中有广泛的应用。
它被用来推导和证明许多重要的定理,如中心极限定理、大数定律、极限理论等。
它还可以用来计算随机变量的矩、协方差、相关系数等统计量,并且可以用来推导各种分布族的性质。
特征函数的计算通常比较简单,只需计算指数函数的期望。
概率论_特征函数

f ( t ) e dF ( x ) e itx dF ( x ) f ( t ).
- itx
9
【系1】 (唯一性定理) 两分布函数恒等的充要条 件是它们各自的特征函数恒等。
即:分布函数由其特征函数唯一确定
23
三、性质与定理的应用 例1 若X~B(n1 , p)、Y~B( n2 , p),且X与Y相互独立
性质3:设Y aX b, 这里a, b为常数,则fY (t ) ei bt f X (at ).
29
f ( t ) E (e ) e f ( x )dx
itX itx
这就是密度函数f(x)的傅里叶变换
5
常见分布的特征函数
【单点分布】
f ( t ) pk e
k 1
itxk
e
ita
【二项分布】
f (t ) C p q
k 0 k n k
n
nk
e
itk
C ( p e ) q
k 0 k n it k
n
n k
( pe q)
it
n
【泊松分布】
it k ( e ) itk eit (eit 1) f (t ) e e e e e k! k 0 k ! k 0
6
k
【均匀分布】X~U [a, b]
【注1】 e
itx
cos tx i sin tx (欧拉公式)
3
【注2】 f (t ) cos txdF ( x ) i sin txdF ( x )
【注3】
特征函数的计算中用到复变函数,为此注意:
特征函数的概念及意义

特征函数的概念及意义目录:一.特征函数的定义。
二.常用分布的特征函数。
三.特征函数的应用。
四.绪论。
一.特征函数的定义设X 是一个随机变量,称 ()()itXe t E =ϕ, +∞<<∞-t ,为X 的特征函数.因为=1Xit e ,所以()itX e E 总是存在的,即任一随机变量的特征函数总是存在的.当离散随机变量X 的分布列为() ,3,2,1,P p k ===k x X k ,则X 的特征函数为()∑+∞==1k k itx p e t k ϕ, +∞<<∞-t .当连续随机变量X 的密度函数为()x p ,则X 的特征函数为 ()()⎰+∞∞-=dx x p e t k itx ϕ, +∞<<∞-t .与随机变量的数学期望,方差及各阶矩阵一样,特征函数只依赖于随机变量的分布,分布相同则特征函数也相同,所以我们也常称为某分布的特征函数.二.常用分布的特征函数1、单点分布:().1P ==a X 其特征函数为 ().e t it a =ϕ2、10-分布:()(),10x p 1p x X P x1x =-==-,,其特征函数为()q pe t it +=ϕ,其中p 1q -=.3、泊松分布()λP :()λλ-==e k k X P k!,k=0,1, ,其特征函数为()()∑+∞=---===0k 1e e kiktitit e e e e k et λλλλλϕ!. 4、均匀分布()b a U ,:因为密度函数为()⎪⎩⎪⎨⎧<<-=.;,0,1其他b x a a b x p所以特征函数为()()⎰--=-=b aiatibt itx a b it e e dx a b e x ϕ. 5、标准正态分布()1,0N :因为密度函数为()2221x e x p -=π, +∞<<∞-x .所以特征函数为()()⎰⎰∞+∞-∞+∞-----∞==dxit x t x itx e edx e x 2222222121πϕ=⎰-∞+-∞----=ititt t t edz ee22222221π.其中⎰-∞+-∞--=ititx dz eπ222 .三.特征函数的应用1、在求数字特征上的应用求()2N σμ,分布的数学期望和方差. 由于()2N σμ,的分布的特征函数为()2t i 22et σμϕ=,于是由()k k k i 0ξϕE =得,()μϕξi 0i ′==E , ()22″220i σμϕξ--==E , 由此即得()222D σξξξμξ=E -E ==E ,.我们可以看出用特征函数求正态分布的数学期望和方差, 要比从定义计算方便的多.2、 在求独立随机变量和的分布上的应用利用归纳法, 不难把性质4推广到n 个独立随机变量的场合,而n21,ξξξ ,,是n 个相互独立的随机变量, 相应的特征函数为()()()∑==n 1i i n 21t t t ξξϕϕϕ,则,,, 的特征函数为()()∏==n1i i t t ϕϕ.设()n ,,21j j ,=ξ是n 个相互独立的,且服从正态分布()2N j j a σ,的正态随机变量.试求∑==n1j j ξξ的分布.由于j ξ的分布为()2N j j a σ,,故相应的特征为()222tia j j je t σϕ=.由特征函数的性质()()ξϕϕ可知∏==nj j t t 1的特征函数为()()21212221112t t a i n j nj tia j nj j nj j j jeet t ⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛==∑∑=====∏∏σσϕϕ.而这正是⎪⎪⎭⎫ ⎝⎛∑∑==n j j n j j a N 121,σ的特征函数.由分布函数与特征函数的一一对应关系即知ξ服从⎪⎪⎭⎫ ⎝⎛∑∑==n j j n j j a N 121,σ. 3、 在证明二项分布收敛于正态分布上的应用在n 重贝努力实验中,事件A 每次出现的概率为p(0<p<1),n μ为n 次试验中事件A 出现的次数,则dt e x npq np P xt nn ⎰∞-∞→=⎪⎪⎭⎫ ⎝⎛<-2221lim πμ.要证明上述结论只需证明下面的结论,因为它是下面的结论一个特例. 若 ,,21ξξ是一列独立同分布的随机变量,且(),,2,1,0,22 =>==E k D a k k σσξξ则有dt e x nna P xt n k k n ⎰∑∞-=∞→=⎪⎪⎪⎪⎭⎫ ⎝⎛<-21221lim πσξ.证明 设a k -ξ的特征函数为(),t ϕ则∑∑==-=-nk k nk kn anna11σξσξ的特征函数为nn t ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛σϕ又因为()(),,02σξξ=-=-E a D a k k 所以()()20,00σϕϕ-=''=' 于是特征函数()t ϕ有展开式()()()()()()222222112000t t t t t t οσοϕϕϕϕ+-=+''+'+=.从而对任意的t 有,∞→→⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-n e n t nt n t tn,2122222οσϕ. 而22t e-是()1,0N 分布的特征函数,由连续定理可知dt e x n na P xt n k k n ⎰∑∞-=∞→=⎪⎪⎪⎪⎭⎫ ⎝⎛<-21221lim πσξ.成立,证毕.我们知道在n 2221P lim μπμ中dt e x npq np xt n n ⎰∞-∞→=⎪⎪⎭⎫⎝⎛<-是服从二项分布.()n k q p C k p kn k k n n ≤≤==-0,μ.的随机变量,dt e x xt ⎰∞-∞→=⎪⎭⎫⎝⎛<-2221P lim πλλξλλ为“泊松分布收敛于正态分布” , 我们把上面的结论常常称为“ 二项分布收敛于正态分布”.4、在求某些积分上的应用我们知道⎰+∞-022dx e x x k 可以用递推法,现在我们用特征函数来解决随机变量ξ服从⎪⎭⎫ ⎝⎛21,0N ,其密度函数为:()21x e x p -=π,其特征函数为:()∑⎰∞+=-∞+∞--⎪⎭⎫ ⎝⎛-==⋅⋅=0241!41122i tit x itx i tedx e e t πϕξ, 故 ()()()() +++⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛-=+!131241!!241212k t k k k t k kkξϕ ,所以 ()()()!!1221!!24102-⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-=k k k kkk ξϕ,由特征函数的性质 ()()()kk kk k i 2!!120222-=-=E ξϕξ,又 ⎰+∞-=E 0222dx e x x k kξ,故()⎰∞+∞-+--=122!!122k x k k dx e x .即 ()⎰∞++--=0122!!122k x k k dx e x四.结论从上面的内容可以看出:特征函数并不是一个抽象概念,在概率论与数理统计的许多问题中,无论是证明还是应用,通过构造特征函数,比如在求分布的数学期望和方差;在求独立随机变量和的分布上的应用,利用独立随机变量和的特征函数为特征函数的积性质推广,往往能使问题得到简化;在证明二项分布收敛于正态分布上的应用,可以从特例到一般问题,从而使问题迎刃而解;在求某些积分上的时候,可以通过构造特征函数使问题简单.。
常见分布的特征函数

常见分布的特征函数特征函数概述特征函数是概率论和数理统计中的常用概念,它是一个复数函数,描述了随机变量的特征信息。
对于一个随机变量X,它的特征函数f(t)定义为:f(t) = E[e^(itX)],其中i为虚数单位,E为期望运算符。
特征函数不仅对概率密度函数具有很好的描述和表达作用,还可以描述随机变量的各种性质,比如分布、矩和相关系数等。
下面将具体介绍几种常见的分布的特征函数。
1.正态分布正态分布是自然界中多种现象的分布模式,其概率密度函数在数学上也能很好地描述为高斯函数。
其特征函数如下:f(t) = e^(-t^2/2)该特征函数具有良好的解析性质和奇偶性质,能很好地反映正态分布的对称性和峰态。
2.泊松分布泊松分布是描述单位时间内某个随机事件发生次数的概率分布,例如单位时间内打进一个电话亭电话而来的电话数量、在网球场内接到的球的数量等。
其特征函数如下:f(t) = e^(λ(e^(it)-1))其中λ为单位时间内事件发生的平均次数。
3.指数分布指数分布是描述随机事件发生的时间间隔的概率分布,例如寿命、等待时间、顾客到达时间等。
其特征函数如下:f(t) = 1 / (1-it/λ),其中λ为事件发生的平均速率。
4.卡方分布卡方分布是应用最广泛的概率分布之一,常用于分析样本差异性和偏离程度,例如方差分析、偏度分析、正态性检验等。
其特征函数如下:f(t) = (1-2it)^(-k/2)其中k为自由度。
5. beta分布beta分布是应用广泛的概率分布之一,常用于贝叶斯统计、假设检验、数据挖掘等领域。
其特征函数如下:f(t) = B(a+it,b-it) / B(a,b)其中B(a,b)表示beta函数,a,b为形状参数。
上述几种分布是常见的概率分布,它们的特征函数形式各不相同,但都能很好地反映分布的各种性质和特点,为进一步分析和研究提供了便利。
常用分布函数及特征函数

常用分布函数及特征函数概述:在概率论和统计学中,分布函数和特征函数是描述随机变量的重要工具。
分布函数描述了随机变量的取值与概率之间的关系,而特征函数则描述了随机变量的特性。
下面将介绍一些常用的分布函数及其对应的特征函数。
1. 正态分布(Normal distribution):正态分布是自然界中非常常见的一种连续型概率分布。
正态分布的分布函数由两个参数决定:均值(mean)和标准差(standard deviation)。
其特征函数可以写成:φ(t) = exp(itμ-σ^2t^2/2)其中,μ是均值,σ是标准差。
2. 泊松分布(Poisson distribution):泊松分布是一种离散型概率分布,常用于描述单位时间内事件发生的次数。
泊松分布的分布函数由一个参数决定:λ(平均事件发生率)。
其特征函数可以写成:φ(t) = exp(λ(e^(it)-1))3. 二项分布(Binomial distribution):二项分布是一种离散型概率分布,常用于描述在一系列独立的是/非试验中成功次数的概率。
二项分布的分布函数由两个参数决定:n(试验次数)和p(成功的概率)。
其特征函数可以写成:φ(t) = (pe^(it) + q)^n其中,q=1-p。
4. 均匀分布(Uniform distribution):均匀分布是一种连续型概率分布,指随机变量在其中一区间内的取值概率相等。
均匀分布的分布函数由两个参数决定:a(下界)和b(上界)。
其特征函数可以写成:φ(t) = (sin(t(b-a)/2))/(t(b-a)/2)5. 指数分布(Exponential distribution):指数分布是一种连续型概率分布,常用于描述独立随机事件的时间间隔。
指数分布的分布函数由一个参数决定:λ(平均事件发生率的倒数)。
其特征函数可以写成:φ(t) = (1 - it/λ)^(-1)总结:分布函数和特征函数是概率论和统计学中非常重要的概念。
特征函数

回忆: 所谓可加性,是指若ξ与η相互独立,服从同一 类型分布,则其和ξ+η也服从该类分布,且其分布中 的参数是ξ与η的相应参数之和. 可加性也称再生性.
例8 设X和Y分别服从参数为1和2 的泊松分布, 且二者独立 试证X+Y服从参数为 1 2 的泊松分布.
f (t) 1 1 it
三、性质
性质1 f (t) f (0) 1 性质2 f (t) f (t) 性质3 设η= aξ+b, a,b是任意常数,则
f (t) eibt f (at)
性质4 若 1 , 2 ,, n 相互独立, 1 2 n , i
的特征函数为 fi (t) ,则 f (t) f1 (t) f 2 (t) f n (t)
f (t ) e(eit 1) 例4 均匀分布U [a, b] 的特征函数
f (t) eitb eita (b a)it
例5 正态分布 N (, 2 ) 的特征函数
i t 2t 2
f (t) e 2 特别地,标准正态分布的特征函数为
t2
f (t) e 2
例6 指数分布 Exp() 的特征函数
(e it
e it ) =
1 eit 2
1 eit 2
这是分布列为
11/ 2
1/
12
的随机变量的特征函数.
一般,若能把f (t)写成 aneixnt 的形式,其中 an 0,
an 1,
n1
则f (t)是特征函数,它的分布列为 P( xn ) an , n 1,2,
关于分布函数的可加性
证明: 由泊松分布的特征函数知
f X (t ) e1(eit 1) ,
14特征函数
性质6 特征函数与矩的关系,若随机变量X的 n阶矩存在,则X的特征函数 g ( t ) 的k 阶导数 g ( t )
k
存在,且
E( X k ) i ( k ) g k (0),
(k n).
Ex.8 X N ( , 2 ) ,利用特征函数求期望与 方差。
三、反演公式及唯一性定理 由随机变量X的分布函数可惟一确定其特征 函数: F ( x ) φ(t ).
唯一性定理 分布函数F ( x1 , x2 ,, xn )由其特 征函数唯一决定
(5) 性质5
若(1 , 2 , , n )的特征函数为f ( t1 , t2 ,, t n ),而 j 的特征函数为f j ( t ), j 1, 2, , n, 则随机变量1 , 2 , , n相互独立的充要条件为
如果f ( t1 , t 2 , , t n )是(1 , 2 , , n )的特征函数 则 a11 a2 2 an n的特征函数为
f (t ) f (a1t , a2t ,, ant )
(3) 性质3
n
如果矩E( )存在,则 kn E (1k1 2k2 n )
k
e
k 0,1, 2,
(t ) e
k 0
ikt
k
k!
e
e e
e it
e
( e it 1)
.
Ex.4 设X ~ N (0,1), 求其特征函数。
解:由X ~ N (0,1)知概率密度为 2 所以特征函数为 f ( x) 1 e
x2 2
x
问题
能否由X的特征函数唯一确定其分布函数?
1.4.11.4特征函数的定义
,
i
则
MY
t
M n
i1 Xi
ait
20 X
X1,, X n 为n维实值随机向量,
t
M
t
t1,, E
tn e(
Rn,X的 矩 E X1t1 X ntn )
母 e
函数
X ,t
定
义
为
,
X
30 矩母函数与分布函数也是一一对应关系 .
13
E e i X ,t
n维实值随机向量的特征函数为n元函数.
10
矩母函数
概率空间,F , P 上实值随机变量X ,密度函数 为p x,t R,矩母函数定义为
MX t
E etX
etx p x dx
t 2 x2
1
tx
2!
t n xn
n!
p
x
dx
1 tEX t 2 E X 2 t n E X n
50 X t 一致连续.
0,
X t h X t eitx eihx 1 p x dx
a
e ihx 1 p x dx e ihx 1 p x dx 2 p x dx
a
x a
1) 取 a 充 分 大 ,使 得 2 p x dx
2) x a , 取 h x a
目录
条件期望 特征函数
1
目录
1.4 特征函数的定义
从傅里叶变换到特征函数,再到矩母函数
2
特征函数前传
一 、卷积
如果随机变量X 与Y 相互独立,则它们的和 Z X Y的密度函数等于X 与Y 密度函数的 卷积:
fZ z f X x * fY y
f Z z f X x fY z x dx
《概率论与数理统计课件》 特征函数
k
it n
.
20
k 1
例 如果我们已知 X ~ N 0, 1 的特征函数是 t e 令Y ~ N
t2 2
,
,
2 ,则 Y X ,因此,
Y t X t e X t
it
eit X t eit e
所以其特征函数
x0 , x0
x ixt ixt x x t e f x dx e e dx e costxdx i e sin txdx 0 0 0
t it 2 2 i 2 2 1 . t t
e ihx 1 e
i hx 2 hx i i hx hx hx 2 2 e e 2 sin 2 2 2 ha 2 .
24
所以,对于所有的 t ,
,有
t h t
x a
e
ihx
2 2
dx
e
it
i t
2t 2
2
1 2
it
it
dz e
i t
2t 2
2
.
在计算积分
it
e
z2 2
dz 中,我们用到了复变函数中的围道积分.
12
二.特征函数的性质
13
性质 1 证明:
t 0 1 .
我们只就 X 是连续型随机变量的情形予以证明. X 是 设 连续型随机变量,其密度函数为 f x .
t
e ixt f x dx
第08章特征函数
第八章特征函数第一节特征函数一、复随机变量1、定义:设与均为上的一维随机变量,称为上的复随机变量.2、的数学期望: ,若、均存在.3、相互独立:设()独立,称()独立.4、性质:(1),其中为复常数.证明:.(2).证明:.精彩文档精彩文档(3).证明:仅证离散型.设,则||||)(,,Z E p iy x p iy xlk kl l k lk kl l k∑∑=+≤+=.(4)|||1|x e ix≤-, R ∈∀x .证明:|||||1|0x dt edt e e xitx it ix=≤=-⎰⎰.(5)若k k k iY X Z +=独立,则. 证明:仅证明时成立即可.因独立,则与独立, 从而与,与,与,与,均独立.那么.(6),必存在.证明:仅证连续型. 因 ,,故与存在,从而存在.精彩文档二、特征函数 1、定义:设为上的一维随机变量,,规定,称为的特征函数.显然:①.② 若为离散型,则.③ 若为连续型,则.2、性质: (1);证明:.(2);证明:.(3)在上一致连续;证明:R ∈∀t ,R ∈∀h ,|])1[(||||)()(|)(itX ihX itX X h t i X X e e E Ee Ee t h t -=-=-++ψψ⎰⎰+∞∞-+∞∞--≤-=dx x edx x e e ihxitxihx)(|1|)()1(ϕϕ⎰∞∞-=dx x hx)(2sin2ϕ 其中:2sin222|1|222hx ie eeex h i x h i x h i ihx=-=--;精彩文档由于 0>∀ε, 0>∃K ..t s ⎰>Kx dx x ||)(ϕε<, (因为1)(=⎰+∞∞-dx x ϕ收敛)取0>=Kεδ , 当δ<||h 时,⎰⎰->+≤-+KKK x X X dx x hxdx x hx t h t )(2sin 2)(2sin 2|)()(|||ϕϕψψ⎰⎰⎰-->+<+≤KKKKKx dx x K h dx x hx dx x )(||22)(||2)(2||ϕεϕϕεϕεε4)(22≤++<⎰-KKdx x .(4),为常数;证明:.(5)设()独立, 则.证明:仅证明时成立即可..(6),若存在.证明:因 .所以 .三、常见分布的特征函数1、离散型(1)退化分布:.证明:.(2):,其中.证明:.(3):.证明:,服从参数为的(0-1)分布,且独立, , 所以.(3):.证明:.2、连续型(1):.特别:①:;②:.精彩文档精彩文档证明:(2):.(3):.证明:.(4) :.证明:222122221 221t t i it itz t t i edz eeσμσσσμπ--+∞-∞---==⎰.其中:.2222)(2σσσμσμσσμit it x x it x z +--⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛--=精彩文档22222σμσμt it xit x -+-⎪⎭⎫ ⎝⎛-= 222221212t t i itx x z σμσμ+-+⎪⎭⎫ ⎝⎛--=- 下面计算 πσσ22222==⎰⎰-+∞-∞---it itz Lz dz edz e:,.,,在上, ,π2022=+→+=⎰⎰⎰⎰+∞∞---dx ex l xxL xx.第二节 唯一性定理一、逆转公式 1、预备知识 (1)设有函数,使得,,收敛,则在上一致收敛. 于是有;又若在上连续,则.华东师大《数学分析(下)》(2)狄里克莱积分: 华东师大《数学分析(下)》,.(3)设,,则2、逆转公式:设的分布函数为,特征函数为,又是的连续点,则证明: 不妨设,且,令,因为精彩文档.又收敛,则又因为存在,故. 所以.二、唯一性定理1、唯一性定理: 的分布函数由其特征函数为唯一确定.证明:在的每一个连续点上,取也为的连续点,于是有.因由其上连续点唯一确定,故由唯一确定.精彩文档精彩文档2、设,且,则⎰∞∞--='=dt t ex F x X itxX )(21)()(ψπϕ.证明: 因,故连续.,,有, 又 ,且 ,于是⎰⎰∞∞--+∞∞-∆+--→∆=∆-=dt t e dt t x it e e X itxX x x it itx x )(21)(lim 21)(0ψπψπ.注意为解析函数,.三、分布函数的再生性 1、,独立,则: . 证明:因,.由唯一性定理知, .2、,独立,则: .证明:因,.由唯一性定理知, .3、,独立,则: .证明:,,由唯一性定理知, .4、,独立,则: .证明:,, 由唯一性定理知, .第三节维随机变量的特征函数一、特征函数1、定义:设为上的维随机变量,,规定,称为精彩文档精彩文档的特征函数. 显然:① 若为离散型,则.② 若为连续型,则.注:∑==⎪⎪⎪⎪⎪⎭⎫ ⎝⎛='nk k k n n X t X X X t t t X t 12121) (M Λ2、性质: (1);证明:.(2);证明:.(3)在上一致连续; 证明:,,.其中:2121|||)()(|||X X t t X t '∆'∆≤'∆,注:∑=∆='∆nk k kX tX t 1,∑=∆∆=∆'∆nk k k t t t t 1,∑=='nk k k X X X X 1此式利用了许瓦兹不等式:精彩文档.因,由判别式可得.为方便起见,以下引入记号: ①,,.②,,特别记: ,.例: )4(}4,2{N I ⊂=,)1,0,1,0(1=I ,)0,1,0,0(11}3{3==.③ ,其中,.特别记,为单位矩阵.例: )4(}4,2{N I ⊂=,精彩文档⎪⎪⎪⎪⎪⎭⎫⎝⎛=1000000000100000I E , ⎪⎪⎪⎪⎪⎭⎫⎝⎛==0000010000000000}3{3E E .④ t E t I I =, 为t 的取有行的向量,I I I AE E A =, 为的取有行和列的矩阵,例: ),,,(4321t t t t t =,)4(}4,2{N I ⊂=,⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==43214242100000000010000000),0,,0(t t t t t t t t t I ,⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛=00000010000100000000010000000000000000000444342413433323124232221141312114422a a a a a a a a a a a a a a a a a a A I ④ ,,但均为非负整数. (4),为常量,为常矩阵. 证明:.精彩文档注:A B AB ''=')((5) 边缘分布:,, 特别,证明:.其中:X t E X E t X E E t X E t E X t I I I I I I I I )()()('='='='='(6),若存在,.说明:n kn kkkt t t t ∂∂∂=∂Λ2121二、逆转公式 1、逆转公式:设的分布函数为,特征函数为,在体面上概率为0,则⎰∏∈=---=-n kk k k x nk k b it a it X n dt it e e t a F b F R 1)()2(1)()(ψπ.2、唯一性定理:的分布函数由其特征函数唯一确定.⎰∏∈=---∞→-=n k k k k x nk k x it y it X n y dt it e e t x F R1)()2(1lim )(ψπ.三、独立性 1、设()独立, 则.证明:仅证明时成立即可.精彩文档.2、设为维随机变量,则 ,独立 ⇔ ∏==nk k X X t t k1)()(ψψ.证明:“”因为,独立,从而, 所以. “”因为,所以⎰∏∈=---∞→-=n kk k k x nk k x it y it X n y dt it e e t x F R1)()2(1lim )(ψπ⎰∏∈=---∞→-=n k kk k k x nk k X k x it y it n y dt t it e e R 1)()2(1lim ψπ ∏∏⎰==∈---∞→=-=nk k X nk t k k X k x it y it y x F dt t it e e k k k kk k k 11)()(21lim Rψπ.故,独立.第四节 n 维正态分布矩阵回顾:(1) 正定,记为; 非负定,记为.(2) ,.(3) 所有主子式存在,,使得存在,,使得.(4) 所有主子式存在,使得.(5) . 这时即的主子式.(6) ,则.(7) 对称合同于对角矩阵,即存在,,使得为对角矩阵.一、n维正态分布1、定义:设,,为阶正定矩阵,且,称服从维正态分布,记作.2、验算:验算确实是维随机变量的密度函数.(1)显然:,;(2)因,故存在,,使得,且.令,于是,这样,而,有,那么精彩文档,从而.于是.3、特别,当时, .二、特征函数1、的特征函数:.证明:,令,.由于,而,令,, 有,所以.精彩文档精彩文档2、I X 的特征函数: ,因此也是正态分布),(~I I I C N X μ. 其中,,为二次型的矩阵,也是正定矩阵.特别: ,.证明:.三、数字特征 1、设,则μ=EX .证明:因,从而,,所以.2、设,则. 因此有.预备工作: (1)设,为含自变量的可微函数,定义:.(2).证明:⎪⎪⎭⎫ ⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂∂=∂∂∑∑==)()(11n j jl kj nj jl kj B A t B A t t AB .(3)设,与无关,则精彩文档,.下面证明.证明:因)()()(202l k l k t l k X X X E X X E i t t t -==∂∂∂=ψ,又,而,,kl k l l k lk C C C t t Z -='-'-=∂∂∂111121212, lk Z k l Z k Z l l k X t t Z e t Z t Z e t Z e t t t t ∂∂∂+∂∂⎪⎪⎭⎫ ⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂∂∂∂=∂∂∂22)(ψ, 于是kl k l t l k X C i i t t t -=∂∂∂=))(()(02μμψ,从而,所以.四、独立性设,则独立,,证明:“”显然. “”因,,)(ex p()ex p()(221121kk k nk k k X C t it Ct t t i t -='-'=∑=μμψ∏∏===-=nk k X n k kkk k k t C t it k 11221)()ex p(ψμ. 所以 独立.精彩文档五、线性变换 1、,,,,则.证明:因})()( ex p{21t A AC t A t i ''-'=μ, 下面证明.因,,,故存在,,使得,且, 于是.可见.2、,,服从一维正态分布.证明:“”取,由1知.“”①先证明,当,,时., ,令,,,有,,已知,精彩文档那么.故 .显然,可见, 有,又X X k k 1'=服从一维正态分布,有0),cov(>==k k k kk DX X X C ,可知, 所以. ②再证明一般地也有.由于为实对称矩阵,故存在,,使得为对角矩阵.令,由条件知,,,,也服从一维正态分布, 而由知道,,,由①知,又,由1知.3、独立,),0(~E N X .证明:“”因,那么,故独立,.“”因,故,,服从一维正态分布.因此,又因独立,,所以.精彩文档作业:1、设nk X P X 1}{~==,.,,2,1n k Λ= 求)(t X ψ2、设X 服从几何分布,求)(t X ψ、EX 及DX .3、设||21)(~x e x X -=ϕ, 求)(t X ψ.4、已知itt X -=11)(ψ,求)(),(x x F ϕ.5、已知)1,0(~N X ,32+=X Y ,求)(t Y ψ.6、设X0 1 3P21 83 81 Y 01P 31 32 已知X 与Y 独立,求Y X Z +=的概率分布.7、已知),1,1,0,0(~ρN X ,求)(21X X E . 8、证明:若)(t k ψ,.,,2,1n k Λ=均为特征函数,则∏=nk kt 1)(ψ也是特征函数.9、已知)21,1,1,0,0(~N X ,⎩⎨⎧--=++=11211211X X Y X X Y ,求),(21y y Y ϕ.精彩文档作业:1、设nk X P X 1}{~==,.,,2,1n k Λ= 求)(t X ψ解: )1()1()(1)( 1111it t in it nk k it itn k ikt nk k itx itXX e n e e ene e n p eEet k--=====∑∑∑=-==ψ )1(1 --=-it tin e n e .2、设X 服从几何分布,求)(t X ψ、EX 及DX . 解:(1) qe p qe pe qepep qe Eet it it it k k it itk k ikt itXX -=-====-∞=-∞=-∑∑1)()(1111ψ. (2)由于kk k EX i X =)0()(ψ,而22)()()()(q e ipe i e q e p t it it itit X -=---='----ψ,精彩文档22)()()(2))(()(q e i e q e ipe q e i ipe t it it it it it it X ---⋅---=''------ψ32)(q e pe pqe it ti it ---=---. 于是 pq p i i EX X1)1()0(22=--='-=ψ. 又 2321)1()0(p q q p pq EX X +=----=''-=ψ, 从而 2222211)(p q p p q EX EX DX =-+=-=.3、设||21)(~x e x X -=ϕ, 求)(t X ψ.解: ⎰⎰⎰+∞∞-+∞∞-+∞∞-+===txdx x i txdx x dx x e Eet itxitXX sin )(cos )()()(ϕϕϕψ220||111)cos sin (cos cos 21t t tx tx t e txdx e txdx e x xx +=+-===+∞-+∞-+∞∞--⎰⎰.4、已知itt X -=11)(ψ,求)(),(x x F ϕ.解: 由于1111)(-⎪⎭⎫⎝⎛-=-=λψit it t X , 可见 )1(~Exp X .所以 ⎩⎨⎧≤>=- .0 ,0,0 ,)(x x e x x X ϕ⎩⎨⎧≤>-=- .0 ,0,0 ,1)(x x e x F x X精彩文档另解: ⎰⎰⎰∞∞--∞∞--∞∞--++=-==dt t e it dt it e dt t e x itxitx X itxX 21)1(21121)(21)(ππψπϕ ⎰⎰∞∞---∞∞--⎩⎨⎧≤>=+=+++= .0 ,0 ,0 ,121212122x x e iI I dt t te idt t e x itxitx ππ其中: ⎪⎩⎪⎨⎧≤>=- .0 ,21 ,0 ,211x e x e I xx⎪⎩⎪⎨⎧≤->=- .0 ,21 ,0 ,212x e x e iI x x 于是 ⎩⎨⎧≤>-=- .0 ,0 ,0 ,1)(x x e x F x X5、已知)1,0(~N X ,32+=X Y ,求)(t Y ψ. 解: 由于 2212221 )(t t t i X ee t --==σμψ,而)()(at e t X ibtb aX ψψ=+, 那么222212212323)2(3332)2()()(t t i t t i t t i X t i X Y e eee t e t t ---+=====ψψψ.可见 3=EY ,422==DY ,由唯一性定理知: )4,3(~N Y .6、设X0 1 3P21 83 81 Y 01P 31 32 已知X 与Y 独立,求Y X Z +=的概率分布. 解: 310818321)(⋅⋅⋅++==it it it itXX e e e Eet ψ, 103231)(⋅⋅+==it it itY Y e e Ee t ψ,因 X 与Y 独立, 于是精彩文档4321012124141241161)()()(⋅⋅⋅⋅⋅++++==it it it it it itX Y X Z e e e e e Ee t t t ψψψ, 所以,由唯一性定理知Z1234P612411 41 241 1217、已知),1,1,0,0(~ρN X ,求)(21X X E . 解: 由于) ex p()(21Ct t t i t X '-'=μψ,而 ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=0021μμμ, ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=1122212121ρρσσρσσρσσC , ()⎪⎪⎭⎫ ⎝⎛++=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛='211221212111)(t t t t t t t t t t Ct t ρρρρ222121212221212t t t t t t t t t t ++=+++=ρρρ, 于是 u t t t t X e eCt t t =='-=++-)2(2121222121)ex p()(ρψ因 ,而uu X e t t t t e t t )(222)(21211ρρψ+-=⎪⎭⎫ ⎝⎛+-=∂∂, )()()(1221212t t e t t e t t t u u X ρρρψ+++-=∂∂∂,所以 ρψ=∂∂∂-==021221)()(t X t t t X X E .精彩文档8、证明:若)(t k ψ,.,,2,1n k Λ=均为特征函数,则∏=nk kt 1)(ψ也是特征函数.证明: 设k X 的特征函数为)(t k ψ,.,,2,1n k Λ=且独立,则∑==n k k X X 1的特征函数为=∏=n k X t k 1)(ψ∏=nk k t 1)(ψ.因此∏=nk kt 1)(ψ也是特征函数.9、已知)21,1,1,0,0(~N X ,⎩⎨⎧--=++=11211211X X Y X X Y ,求),(21y y Y ϕ.解: 由于b AX Y +=,因 })()( ex p{)()()(21t A AC t A t i e t A e t t bt i X b t i b AX Y ''-'='==''+μψψψ,})()( ex p{21t A AC t b A t i ''-+'=μ, 由唯一性定理知 ),(~A AC b A N Y '+μ.而 ⎪⎪⎭⎫ ⎝⎛-=1111A ,⎪⎪⎭⎫ ⎝⎛-=11b ,⎪⎪⎭⎫⎝⎛=11ρρC , 有 b b A =+μ,⎪⎪⎭⎫ ⎝⎛-+=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-='ρρρρ2200221111111111A AC , 从而 1,121-==y y μμ,0,)1(2,)1(22121=-=+=y y y y ρρσρσ,于是 ⎥⎥⎦⎤⎢⎢⎣⎡-+++---=ρρρπϕ1)1(1)1(412212221141),(y y ey y2)1(6)1(2221321+---=y y eπ.参考:精彩文档,⎥⎥⎦⎤⎢⎢⎣⎡-+-------=2222212121212)())((2)()1(21221121),(σμσσμμρσμρρσπσϕy y x x ey x .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。