浙教版八年级下数学综合复习资料(十)

合集下载

浙教版八下数学基础知识点复习提纲

浙教版八下数学基础知识点复习提纲

浙教版八下数学各章节知识点及重难点第一章 二次根式 一.知识点:1. 二次根式的定义:形如√a (a ≥0)的代数式叫做二次根式。

如:√2,,√3,√π,5√11,-3√2,……2. 二次根式的性质:⑴ a ≥ 0(双重非负性); ⑵()=2a a (a ≥0)⑶=2a ∣a ∣;(4)=ab √a ×√(0,0≥≥b a );(5) =b a√a ÷√b (0,0>≥b a ).强调:二次根式具有双重非负性。

3.最简二次根式:被开方数不含有开得尽方的数,所含因式是一次式(就是字母的次数是一次),被开方数不含分母。

满足这三个条件的二次根式称为最简二次根式。

4.同类二次根式:化成最简二次根式后,被开方数相同的几个二次根式称为同类二次根式。

5.二次根式的运算(1)加(减)法:先化简,再合并。

(2)乘(除)法:先乘除,再化简。

6.分母有理化:分母有理化也称为有理化分母。

就是将分母含有根号的代数式变成分母不含根号的代数式,这个过程叫做分母有理化。

(1) 形如:√3=√3√3×√3=23√3 (2) 形如:√3−√2=√3+√2)(√3−√2)(√3+√2)=2(√3+√2)=2√3+2√27.关于具有双重根号的二次根式。

如: √6+2√5=√1+2√5+5=√12+2×1×√5+(√5)2=√(1+√5)2=1+√5二.重点和难点:重点:二次根式的运算。

难点:混合运算以及应用。

第二章 一元二次方程 一.知识点:1. 定义:形如a x 2+bx +c =0(a ≠0) 的方程叫做一元二次方 程,其中,a x 2 叫做二次项。

a 叫做二次项系数,bx 叫做一次项,b 叫做一次项系数,c 叫做常数项。

2.一元二次方程的解法:(1)直接开平方法;(2)因式分解分(提公因式法、乘法公式法、十字相乘法);(3)配方法;(4)求根公式法;(5)换元法。

浙教版八年级数学下册各章复习讲义并附带讲义分析

浙教版八年级数学下册各章复习讲义并附带讲义分析

浙教版八年级数学下册各章复习讲义并附带讲义分析集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]第一章《二次根式》复习这样表示的算术平方根,且根号内含字母的代数式叫做二次根式为了方便,我们把一个数的算术平方根(如)也叫做二次根式。

二、二次根式被开方数不小于01、下列各式中不是二次根式的是 ( )(A )12+x (B )4- (C )0 (D )()2b a - 2、判断下列代数式中哪些是二次根式 ⑴21, ⑵16-, ⑶9+a , ⑷12+x , ⑸222++a a , ⑹x -(0≤x ), ⑺()23-m 。

答:_____________________3、下列各式是二次根式的是( )A4、下列各式中,不是二次根式的是( )A B D 5、下列各式中,是二次根式是( ).(A )(B (C ) (D )6、若01=++-y x x ,则20052006y x +的值为: ( )A 、0B 、1C 、 -1D 、 27、已知1y =,则y x= 。

8、若x 、y 都为实数,且152********+-+-=x x y ,则y x +2=________。

三、含二次根式的代数式有意义(1)二次根式被开方数不小于0(2)分母含有字母的,分母不等于01、x ( ) (A )x > 45 (B )x <54 (C )x ≥54- (D ) x ≤54-2、如果x--35是二次根式,那么x 应适合的条件是( ) A 、x ≥3 B 、x ≤3 C 、x >3 D 、x <33、求下列二次根式中字母的取值范围(1)x x --+315;(2)22)-(x ;4、使代数式3x -有意义的x 取值范围是( ) A .2x ≠-; B .32x x <≠-且,; C .32x x ≠且,;≤ D .32x x ≠-且,;≤5、求下列二次根式中字母x 的取值范围:⑴ 12-x , ⑵ 32+x , ⑶ 52-x , ⑷ x x --+22, ⑸ 11-+x x , ⑹ xx -22. 6、二次根式212--x x 有意义时的x 的范围是______ 7、求下列二次根式中字母的取值范围:(1)3a +; (2)13a--; (3)21a + 8、使代数式8a a -+有意义的a 的范围是( )A 、0>aB 、0<aC 、0=aD 、不存在9、二次根式32a -中,a 的取值范围是 。

浙教版八年级下册初二数学(基础版)(全册知识点考点梳理、重点题型分类巩固练习)(家教、补习、复习用)

浙教版八年级下册初二数学(基础版)(全册知识点考点梳理、重点题型分类巩固练习)(家教、补习、复习用)

浙教版八年级下册初中数学全册知识点梳理及重点题型巩固练习二次根式的概念和性质(基础)知识讲解【学习目标】1、理解二次根式的概念,了解被开方数是非负数的理由.2、理解并掌握下列结论:,,,并利用它们进行计算和化简.3、理解并掌握同类二次根式和最简二次根式的概念,能运用二次根式的有关性质进行化简. 【要点梳理】要点一、二次根式及代数式的概念1.二次根式:一般地,我们把形如(a ≥0)•的式子叫做二次根式,“”称为二次根号.要点诠释:二次根式的两个要素:①根指数为2;②被开方数为非负数.2.代数式:形如5,a ,a+b ,ab ,,x 3,这些式子,用基本的运算符号(基本运算包括加、减、乘、除、乘方、开方)把数和表示数的字母连接起来的式子,我们称这样的式子为代数式. 要点二、二次根式的性质 1、; 2.;3..要点诠释: 1.二次根式(a ≥0)的值是非负数。

一个非负数可以写成它的算术平方根的形式,即2(0a a a =≥).2a 2()a 要注意区别与联系:1).a 的取值范围不同,2)a 中a ≥02a a 为任意值。

2).a ≥0时,2()a 2a a ;a <0时,2)a 2a a -.要点三、最简二次根式(1)被开方数不含有分母;(2)被开方数中不含能开得尽方的因数或因式. 满足这两个条件的二次根式叫最简二次根式.要点诠释:二次根式化成最简二次根式主要有以下两种情况:(1) 被开方数是分数或分式;(2)含有能开方的因数或因式.要点四、同类二次根式1. 定义:几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式就叫做同类二次根式 要点诠释:(1)判断几个二次根式是否是同类二次根式,必须先将二次根式化成最简二次根式,再看被开方数是否相同;(2)几个二次根式是否是同类二次根式,只与被开方数及根指数有关,而与根号外的因式无关. 2.合并同类二次根式合并同类二次根式,只把系数相加减,根指数和被开方数不变.(合并同类二次根式的方法与整式加减运算中的合并同类项类似) 要点诠释:(1)根号外面的因式就是这个根式的系数; (2)二次根式的系数是带分数的要变成假分数的形式 【典型例题】类型一、二次根式的概念1.当x 为实数时,下列各式()2223,1,,,,x x x x x --,,,属二次根式的有____ 个. 【答案】 3 【解析】 ()22,,x x x - 这三个式子满足无论x 取何值,被开方数都大于等于零.【总结升华】二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或0.举一反三:【变式】下列式子中二次根式的个数有( ) (113(23-; (3)21x -+(4)8; (521()3-;(61x -1x >)A .2 B.3 C.4 D.5 【答案】B 【::381279:二次根式及其乘除法(上)经典例题1】2. x 取何值时,下列函数在实数范围内有意义?(1)1y x =-; (2)y=2+x -x 23-;【答案与解析】 (1)1x -≥0,所以x ≥1.(2)2x +≥0,32x -≥0,所以2-≤x ≤32;【总结升华】重点考查二次根式的概念:被开方数是正数或零. 举一反三:【变式】下列格式中,一定是二次根式的是( ) A. 23- B. ()20.3- C. 2- D. x【答案】B.类型二、二次根式的性质3. 计算下列各式:(1)232()4-⨯- (2)2(3.14)π-【答案与解析】(1) 33=-2=-42⨯原式. (2) =3.14-=-3.14ππ原式. 【总结升华】 二次根式性质的运用. 举一反三 【::381279:二次根式及其乘除法(上)经典例题3】 【变式】(1)2)252(-=_____________ (2)2)2(2a a ---=_____________【答案】(1) 10;(2) 0.4. (2015•蓬溪县校级模拟)已知:实数a ,b 在数轴上的位置如图所示,化简:﹣|a ﹣b|.【答案与解析】解:从数轴上a 、b 的位置关系可知:﹣2<a <﹣1,1<b <2,且b >a ,故a+1<0,b ﹣1>0,a ﹣b <0, 原式=|a+1|+2|b ﹣1|﹣|a ﹣b|=﹣(a+1)+2(b ﹣1)+(a ﹣b )=b ﹣3.【总结升华】本题主要考查了利用数轴比较两个数的大小和利用二次根式的性质进行化简,属于基础题. 举一反三【变式】若整数m 满足条件22(1)1,,5m m m +=+<且则m 的值是___________. 【答案】m =0或m =-1.类型三、最简二次根式5.下列各式中,哪些是最简二次根式?哪些不是?请说明理由.(1);(2);(3);(4);(5);(6);(7).【答案与解析】和都是最简二次根式,其余的都不是,理由如下:的被开方数是小数,能写成分数,含有分母;和的被开方数中都含有分母;和的被开方数中分别含有能开得尽方的因数和因式.【总结升华】判断一个二次根式是不是最简二次根式,就看它是否满足最简二次根式的两个条件: (1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式;不满足其中任何一条的二次根式都不是 最简二次根式. 举一反三【变式】(2015•东莞二模)下列各式中,是最简二次根式的是( ) A .15B .0.1C .15 D.212【答案】C.类型四:同类二次根式6. (20163( )18 B. 13149 1150【答案】 B. 【解析】故选B.【总结升华】同类二次根式的判断,关键是能够熟练准确地化二次根式为最简二次根式. 举一反三:【变式】如果两个最简二次根式和是同类二次根式,那么a 、b 的值是( ) A.a =2,b =1 B.a =1,b =2 C. a =1,b =-1 D. a =1,b =1【答案】 D. 根据题意,得解之,得,故选D.二次根式的概念和性质(基础)巩固练习【巩固练习】一.选择题1. (2016•宁波)使二次根式有意义的x 的取值范围是( )A .x ≠1B .x >1C .x ≤1D .x ≥12. 若1a <,化简2(1)-1=a - ( ).A.2a -B.2a -C.aD.a - 3. 下面说法正确的是( )A. 被开方数相同的二次根式一定是同类二次根式B.与是同类二次根式.C. 与不是同类二次根式D. 同类二次根式是根指数为2的根式4.(2015•蓬溪县校级模拟)下列各式中正确的是( )2a 2a ±a 2a ﹣a 2a 5.下列根式是最简二次根式的是( )A .8B .24x y +C .D .6. 已知,化简二次根式的正确结果为( )A. B. C. D.二. 填空题7.(2016•营山县一模)使式子有意义的x 的取值范围是 .8.=____________. 若,则____________.9.(1)2)53(-=_____________.(2)9622++-a a a (a>0)=__________________________.10.若22x x -+-=0,则2(1)1x x--=_______________. 11.当x ≤0时,化简21-x x -=________________________.12. 计算134893123-+=__________________. 三 综合题13. 当x 为何值时,下列式子有意义?(1)21x + (2)2x -(3)11y x =-; (4)11y x =-;14.(北京市海淀区) 已知实数x ,y 满足,求代数式的值.15.(2015春•江夏区期中)已知实数x ,y 满足y=+﹣65,求.【答案与解析】一、选择题 1.【答案】D.【解析】由题意得,x ﹣1≥0,解得x ≥1. 2.【答案】D.【解析】因为1a < 原式=1111a a a --=--=-. 3.【答案】A. 4.【答案】D.【解析】解:A 、当a <0时,=﹣a ,故选项错误;B 、表示算术平方根,故选项错误;C 、当a >0时,=a ,故选项错误;D 、正确.故选D .5.【答案】B.【解析】 根据最简二次根式的性质,A,D 选项都含有能开方的项,C 选项含有分母,所以选B. 6.【答案】D. 【解析】因为,2yx -是被开方数,所以y<0,x<0, 所以原式=x y x-y --.二、填空题7.【答案】x ≥﹣3且x ≠5.【解析】由题意得,x +3≥0,x ﹣5≠0,解得x ≥﹣3且x ≠5. 8 【答案】2;7x m -=± 9.【答案】(1) 45; (2) -3 10.【答案】 -1【解析】因为22x x -+-=0,所以2-x ≥0,x-2≥0,所以x=2;则原式=2(12)112-=--. 11.【答案】1 12.【答案】153【解析】134893121233363(1236)31533-+=-+=-+=. 三.解答题13.【解析】 (1)21x +≥0,即x 为任意实数; (2)2x -≥0,即2x ≤0,即x =0. (3)10,1x x ->∴>(4)0,10,0 1.x x x x ≥-≠∴≥≠且.14.【解析】 因为. ,所以x=5,y=-4.则=2008(54)-=115.【解析】解:∵实数x ,y 满足y=+﹣65,∴x-1≥0,且1-x ≥0, ∴x=1,y=﹣65, ∴==—4.二次根式的运算(基础)知识讲解【学习目标】1、理解并掌握二次根式的加减法法则,会合并同类二次根式,进行简单的二次根式加减运算;2、掌握二次根式的乘除法法则和化简二次根式的常用方法,熟练进行二次根式的乘除运算;3、会利用运算律和运算法则进行二次根式的混合运算.【要点梳理】要点一、二次根式的加减二次根式的加减实质就是合并同类二次根式,即先把各个二次根式化成最简二次根式,再把其中的同类二次根式进行合并.对于没有合并的二次根式,仍要写到结果中.要点诠释:(1)在进行二次根式的加减运算时,整式加减运算中的交换律、结合律及去括号、添括号法则仍然适用.(2)二次根式加减运算的步骤:1)将每个二次根式都化简成为最简二次根式;2)判断哪些二次根式是同类二次根式,把同类的二次根式结合为一组;要点二、二次根式的乘法及积的算术平方根1.乘法法则:(a≥0,b≥0),即两个二次根式相乘,根指数不变,只把被开方数相乘.要点诠释:(1).在运用二次根式的乘法法则进行运算时,一定要注意:公式中a、b都必须是非负数;(在本章中,如果没有特别说明,所有字母都表示非负数).(2).该法则可以推广到多个二次根式相乘的运算:≥0,≥0,…..≥0).(3).若二次根式相乘的结果能写成的形式,则应化简,如.2.积的算术平方根:(a≥0,b≥0),即积的算术平方根等于积中各因式的算术平方根的积.要点诠释:(1)在这个性质中,a、b可以是数,也可以是代数式,无论是数,还是代数式,都必须满足a≥0,b≥0,才能用此式进行计算或化简,如果不满足这个条件,等式右边就没有意义,等式也就不能成立了; (2)二次根式的化简关键是将被开方数分解因数,把含有形式的a移到根号外面.要点三、二次根式的除法及商的算术平方根1.除法法则:(a≥0,b>0),即两个二次根式相除,根指数不变,把被开方数相除.要点诠释:(1)在进行二次根式的除法运算时,对于公式中被开方数a 、b 的取值范围应特别注意,a ≥0,b >0,因为b 在分母上,故b 不能为0.(2)运用二次根式的除法法则,可将分母中的根号去掉,二次根式的运算结果要尽量化简,最后结果中分母不能带根号. 2.商的算术平方根的性质:(a ≥0,b >0),即商的算术平方根等于被除式的算术平方根除以除式的算术平方根.要点诠释:运用此性质也可以进行二次根式的化简,运用时仍要注意符号问题. 要点四、二次根式的混合运算二次根式的混合运算是对二次根式的乘除及加减运算法则的综合运用. 要点诠释:(1)二次根式的混合运算顺序与实数中的运算顺序一样,先乘方,后乘除,最后算加减,有括号要先算括号里面的;(2)在实数运算和整式运算中的运算律和乘法公式在二次根式的运算中仍然适用; (3)二次根式混合运算的结果要写成最简形式. 【典型例题】类型一、二次根式的加减运算1.计算: (1).+(2). 311932a a a a a+- 【答案与解析】(1)+=2232(23)252+=+=31111(2)9332321117(3)326a a a a a a a a a+-=+-=+-= 【总结升华】一定要注意二次根式的加减要做到先化简,再合并. 举一反三:【变式】计算:011(1)()527232π--++-- 【答案】011(1)()527232π--++--125332333352332=++--=+--=-类型二、二次根式的乘除法2.(1)×; (2)×; (3); (4);【答案与解析】(1)×=;(2)×==;(3)===2;(4)==×2=2.【总结升华】直接利用计算即可.举一反三【变式】各式是否正确,不正确的请予以改正: (1);(2)×=4××=4×=4=8.【答案】(1)不正确. 改正:==×=2×3=6;(2)不正确. 改正:×=×====4.【:二次根式及其乘除法(下)例9(1),(2)】3.算:(1))4323(4819-÷- (2)21521)74181(2133÷-⨯ 【答案与解析】(1)214=(9)()3483-⨯-⨯原式=6136=1; (2)原式=171123282711⎛⎫⨯-⨯⨯⨯⨯ ⎪⎝⎭=34-.【总结升华】掌握乘除运算的法则,并能灵活运用.类型三、二次根式的混合运算4.(2016•聊城模拟)下列计算正确的是( )A .5﹣2=3B .2×3=6C .=3 D .3=3【思路点拨】根据二次根式的运算法则逐一判断即可. 【答案】D. 【解析】解:A 、﹣2=3,此选项错误;B 、2×3=12,此选项错误;C 、+2=3,此选项错误;D 、3÷=3,此选项正确; 故选D .【总结升华】此题主要考查了二次根式的混合运算,熟练掌握二次根式基本运算是解题关键. 【:: 388064巩固练习4-5】5、计算: 已知625,625-=+=b a ,则ab =_______,a b +=________. 【答案】1;10. 【解析】225+26526,5(26)1a b ab ==-∴=-=,10a b +=【总结升华】数学运算包含着很多技巧性的东西,技巧运用得好计算就很简便而且准确. 举一反三:【变式】(2015春•汉阳区期中)已知x=1﹣,y=1+,则x 2+y 2﹣xy ﹣2x ﹣2y 的值为 .【答案与解析】解:∵x=1﹣,y=1+,∴x 2+y 2﹣xy ﹣2x ﹣2y=(x+y )2﹣2(x+y )+1﹣3xy ﹣1=(x+y ﹣1)2﹣3xy ﹣1 =1﹣3×(1﹣)(1+)﹣1 =1+3﹣1 =3.二次根式的运算(基础)巩固练习【巩固练习】一、 选择题1.计算18827÷⨯的结果是( ). A .463 B.186 C.932 D.1642. (2016•广西)下列计算正确的是( ) A .﹣=B .3×2=6C .(2)2=16D .=13. 化简二次根式3a -的正确结果是( ).A .a a --B .a a -C .a aD .a a - 4. (2015•泰安模拟)下列计算或化简正确的是( ). A. 2+4=6B.=4C.=﹣3D.=35.若,则的值等于( ).A. 4B.C. 2D.6.下列计算正确的是( ).A. 2=b a b ++(a ) B.a b ab += C.22+a b a b =+ D. 1aa a= 二. 填空题 7.计算:4118(2854)33-÷⋅=____________________________. 8.(2016•潍坊)计算:(+)= .9. 化简:(1).111a a +=_________,(2).2411a a a+=___________. 10. (2015春•新泰市期末)若=,则x 的取值范围为 .11. 一个三角形的三边长分别为,,,则它的周长是________cm.12. 101100103103)()(-+=________________. 三 综合题13. (1)11(318504)5232(2)()1212328-⎪⎭⎫⎝⎛+--14.(2014秋•市南区校级期中)某居民小区有一块长方形绿地,先进行如下改造:将长方形的长减少米,宽增加米,得到一块正方形绿地,它的面积是原长方形绿地的2倍,求改造后的正方形绿地的边长是多少米?(结果精确到1米)15.(1)先化简,再求值:(3a +)()3(6)a a a ---,其中152a =+.(2).已知251,251+=-=b a ,求722++b a 的值.【答案与解析】一、选择题 1.【答案】C. 2.【答案】B. 【解析】A 、不能化简,所以此选项错误;B 、3×=6,所以此选项正确;C 、(2)2=4×2=8,所以此选项错误;D 、==,所以此选项错误.3.【答案】A. 【解析】20,=a a a a a a a <∴-⋅=-=--原式.4.【答案】D.【解析】解:A 、2与4不能合并,所以A 选项错误;B 、原式=2,所以B 选项错误;C 、原式=|﹣3|=3,所以C 选项错误;D 、原式==3,所以D 选项正确. 故选D . 5.【答案】C.【解析】先化简再解方程。

浙教版八下数学知识点(完整版)

浙教版八下数学知识点(完整版)

浙教版八年级数学下册知识点汇总八年级(下册)第1章二次根式1.1二次根式1.2二次根式的性质1.3二次根式的运算第2章一元二次方程2.1一元二次方程2.2一元二次方程的解法2.3一元二次方程的应用2.4一元二次方程根与系数的关系第3章数据分析初步3.1平均数3.2中位数和众数3.3方差和标准差第4章平行四边形4.1多边形4.2平行四边形及其性质4.3中心对称4.4平行四边形的判定定理4.5三角形的中位线4.6反证法第5章特殊平行四边形5.1矩形5.2菱形5.3正方形第6章反比例函数6.1反比例函数6.2反比例函数的图像和性质第一章 二次根式1.1. 二次根式 像3,4a 2++b 这样表示算术平方根的代数式叫做二次根式,二次根号内字母的取值范围必须满足被开方数大于或等于零。

1.2. 二次根式的性质()()0a 2≥=a a ()()⎩⎨⎧<-≥==00a 2a a a a a ()0,0a ab ≥≥⨯=b a b()0,0a >≥=b a ba b 像57,这样,在根号内不含字母,不含开得尽方的因数或因式,这样的二次根式称为最简二次根式。

1.3. 二次根式的运算()0,0ab a ≥≥=⨯b a b()0,0a >≥=b a b ba第二章一元二次方程2.1一元二次方程像方程x 2+3x=4的两边都是整式,只含有一个未知数,并且未知数的最高次数是2次,这样的方程叫做一元二次方程。

能使一元二次方程两边相等的未知数的值叫做一元二次方程的解(或根)。

任何一个关于x 的一元二次方程都可以化为ax 2+bx+c=0的形式。

ax 2+bx+c=0(a,b,c 为已知数,a ≠0)称为一元二次方程的一般形式,其中ax 2,bx ,c 分别称为二次项、一次项和常数项,a,b 分别称为二次项系数和一次项系数。

2.2一元二次方程的解法1、因式分解法:利用因式分解解一元二次方程的方法叫做因式分解法,这种方法把解一个一元二次方程转化为解两个一元一次方程,常见ax 2+bx=0(无常数项)、及类似3x(x -1)=x -1等也可以使用因式分解法。

浙教版八下数学知识点(K12教育文档)

浙教版八下数学知识点(K12教育文档)

第一章浙教版八下数学知识点(word版可编辑修改)第二章第三章第四章编辑整理:第五章第六章第七章第八章第九章尊敬的读者朋友们:第十章这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(浙教版八下数学知识点(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

第十一章本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为浙教版八下数学知识点(word版可编辑修改)的全部内容。

第十二章第十三章 二次根式1. 二次根式的定义:形如 a (a ≥0)的代数式叫做二次根式。

(被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根)2.取值范围:二次根式被开方数大于等于0分式分母不为0 2. 二次根式的性质:1.二次根式有双重非负性(0a ≥,0a ≥)2.平方在根号里面(里平方)2(0)(0)a a a a a a ≥⎧==⎨-<⎩3平方在根号外面(外平方)2a a =区别:2a 表示一个正数a 的算术平方根的平方,而表示一个实数a 的平方的算术平方根; 相同点:最后的值都是正数3. (0,0)ab a b a b =≥≥ 0,0)a a a b b b=≥> 根号里面只有乘除才能分开来,加减不能4: 最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母;⑶分母中不含根式。

满足这三个条件的二次根式称为最简二次根式。

5、分母有理化: 1aa 2a b+分子分母同乘以a b 3a b -a b题型:根式的化简和运算(简单题前几题,选择题,填空题)根式的定义、取值范围(选择题,填空题)第二章 一元二次方程1.方程中只含有 个未知数,并且整理后未知数的最高次数是 ,这样的 方程叫做一元二次方程。

浙教版八下数学基础知识点复习提纲

浙教版八下数学基础知识点复习提纲

浙教版八下数学各章节知识点及重难点第一章 二次根式 一.知识点:1. 二次根式的定义:形如√a (a ≥0)的代数式叫做二次根式。

如:√2,,√3,√π,5√11,-3√2,…… 2. 二次根式的性质:⑴ a ≥ 0(双重非负性); ⑵ ()=2a a (a ≥0)⑶ =2a ∣a ∣;(4)=ab √a ×√(0,0≥≥b a );(5)=ba√a ÷√b (0,0>≥b a ). 强调:二次根式具有双重非负性。

3.最简二次根式:被开方数不含有开得尽方的数,所含因式是一次式(就是字母的次数是一次),被开方数不含分母。

满足这三个条件的二次根式称为最简二次根式。

4.同类二次根式:化成最简二次根式后,被开方数相同的几个二次根式称为同类二次根式。

5.二次根式的运算(1)加(减)法:先化简,再合并。

(2)乘(除)法:先乘除,再化简。

6.分母有理化:分母有理化也称为有理化分母。

就是将分母含有根号的代数式变成分母不含根号的代数式,这个过程叫做分母有理化。

(1) 形如:√3=√3√3×√3=23√3(2) 形如:√3−√2=√3+√2)(√3−√2)(√3+√2)=2(√3+√2)=2√3+2√27.关于具有双重根号的二次根式。

如: √6+2√5=√1+2√5+5=√12+2×1×√5+(√5)2=√(1+√5)2=1+√5二.重点和难点:重点:二次根式的运算。

难点:混合运算以及应用。

第二章 一元二次方程 一.知识点:1. 定义:形如a x 2+bx +c =0(a ≠0) 的方程叫做一元二次方 程,其中,a x 2 叫做二次项。

a叫做二次项系数,b x叫做一次项,b 叫做一次项系数,c 叫做常数项。

2.一元二次方程的解法:(1)直接开平方法;(2)因式分解分(提公因式法、乘法公式法、十字相乘法);(3)配方法;(4)求根公式法;(5)换元法。

浙教版八下数学基础知识点复习提纲

浙教版八下数学各章节知识点及重难点第一章 二次根式 一.知识点:1. 二次根式的定义:形如√a (a ≥0)的代数式叫做二次根式。

如:√2,,√3,√π,5√11,-3√2,……2. 二次根式的性质:⑴ a ≥ 0(双重非负性); ⑵ ()=2a a (a ≥0)⑶ =2a ∣a ∣;(4)=ab √a ×√(0,0≥≥b a );(5)=ba√a ÷√b (0,0>≥b a ). 强调:二次根式具有双重非负性。

3.最简二次根式:被开方数不含有开得尽方的数,所含因式是一次式(就是字母的次数是一次),被开方数不含分母。

满足这三个条件的二次根式称为最简二次根式。

4.同类二次根式:化成最简二次根式后,被开方数相同的几个二次根式称为同类二次根式。

5.二次根式的运算(1)加(减)法:先化简,再合并。

(2)乘(除)法:先乘除,再化简。

6.分母有理化:分母有理化也称为有理化分母。

就是将分母含有根号的代数式变成分母不含根号的代数式,这个过程叫做分母有理化。

(1) 形如:√3=√3√3×√3=23√3 (2) 形如:√3−√2=√3+√2)(√3−√2)(√3+√2)=2(√3+√2)=2√3+2√27.关于具有双重根号的二次根式。

如: √6+2√5=√1+2√5+5=√12+2×1×√5+(√5)2=√(1+√5)2=1+√5二.重点和难点:重点:二次根式的运算。

难点:混合运算以及应用。

第二章 一元二次方程 一.知识点:1. 定义:形如a x 2+bx +c =0(a ≠0) 的方程叫做一元二次方 程,其中,a x 2 叫做二次项。

a 叫做二次项系数,bx 叫做一次项,b 叫做一次项系数,c 叫做常数项。

2.一元二次方程的解法:(1)直接开平方法;(2)因式分解分(提公因式法、乘法公式法、十字相乘法);(3)配方法;(4)求根公式法;(5)换元法。

浙教版八年级数学下册知识点汇总

浙教版八年级数学下册知识点汇总一、知识点梳理1、代数式(1)代数式的概念:把运算或表示数的一些字母用数字填空,从而形成一个明确的式子,这就是代数式。

(2)代数式的书写格式:在一个代数式里,书写数字和字母时要注意以下几点:①数字写在字母的前面;②除号写成分数线;③乘号写成点乘或省略不写;④带分数要写成假分数;⑤有括号的要先算括号里面的。

(3)代数式的求值:求代数式的值一般要按以下步骤进行:①把已知数代入代数式;②化简;③求出所求代数式的值。

2、因式分解因式分解的概念:因式分解是指将一个多项式写成几个整式乘积的形式。

因式分解的方法:常用的方法有提公因式法和公式法。

3、分式分式的概念:如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式。

其中A叫做分式的分子,B叫做分式的分母。

分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不等于0的整式,分式的值不变。

分式的约分:把一个分式的分子和分母的公因式约去,叫做分式的约分。

最简分式:一个分式的分子和分母没有公因式时,叫最简分式。

4、实数平方根、算术平方根的概念及性质。

立方根的概念及性质。

二、知识点精讲1、代数式求值的方法:整体代入法、化简求值、一般求法。

2、因式分解的作用:应用因式分解解决一些实际问题,如计算某些数的平方等;用来证明一些定理和题目;应用因式分解进行大数计算。

3、分式的约分作用:化简分式,使分式的运算简便。

4、实数中的算术平方根与立方根的作用:进行开平方运算与开立方运算,解决实际问题中计算平方数与立方数的问题。

5、平方根与立方根的区别与:从定义上看,平方根和立方根的区别在于一个根数是另一个数的平方,立方根是另一个数的立方;从表示符号看,平方根用“±”表示,立方根用“±3√”表示;从运算上看,平方根与立方根的是都可以进行化简运算。

6、实数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的反而小。

浙教版八年级下数学综合复习资料(十)

(十)一、 填空题(2×12=24分) 1、23是__________的算术平方根. 2、每一个外角都是720的多边形的边数是______,这个多边形的内角和等于 度。

3、已知32==d c b a ,且4=-c a , 则=-d b ________。

4、23-的倒数为 。

5、数轴上表示5-的点到原点的距离等于_____________ 。

6、如图,在△ABC 中,DE // BC,且AD =1,BD =2,则=BCDE________。

EDCB ADCAB7、如图,平行四边形ABCD 的周长为32cm ,AB =6cm ,对角线BD =8cm ,则此平行四边形ABCD 的面积为_______cm 28、比较大小:6______432--(填>或<)。

9、在Rt △ABC 中,两条直角边长分别为6和8,则斜边上的中线为 .10、一个等腰梯形的上底长为9cm ,下底长为15cm ,一个底角为60度,则其腰长为____cm 11、若2)2(2-=-x x x x 成立,则x 的取值范围是____________。

二、 选择题(3×6=18分)12、一个数如果有两个平方根,那么这两个平方根的积必定( )A 、大于0B 、等于0C 、小于0D 、小于或等于0 13、下列各式计算正确的是( )A 、238310=-B 、94)9)(4(-⋅-=--C 、a a a 2528821=+D 、51351322-=-14、下面四个命题;① 相邻的两个角都互补的四边形是平行四边形 ② 对角线相等的四边形是矩形③ 一组对边平行,另一组对边相等的四边形是平行四边形 ④ 对角线互相垂直平分的四边形是菱形。

其中正确的是( )A 、①④B 、②④C 、②③D 、①③15、如图,DE // FG // BC ,且DE 、FG 把△ABC 的面积三等份,若BC =12cm ,则FG 的长( )A 、6cmB 、8cmC 、34cmD 、 64cmGFE D CB A16 下列叙述错误的是 ( )A 、被开方数不同的二次根式,一定不是同类二次根式;B 、同类二次根式不一定是最简二次根式;C 、判别同类二次根式,首先要把二次根式化成最简二次根式;D 、同类二次根式化成最简二次根式后被开方数一定相同;17、在图形 ①线段;②角;③等腰三角形;④平行四边形;⑤菱形;⑥矩形中,既是轴对称图形又是中心对称图形的是( )A 、①③⑤B 、②③⑥C 、①⑤⑥D 、②④⑤ 三、计算或化简(每小题4分,共20分)18、计算233)34(271912216-+-⨯+- 19、计算2)322223324(÷+- 20、化简:222272)3121(y x y x x y ⋅-; 21、计算:323326226-+- 22、已知:1031-=x ,1031+=y 求22y xy x +-的值。

浙教版八下数学基础知识点复习提纲

浙教版八下数学各章节知识点及重难点第一章 二次根式一.知识点:1. 二次根式的定义:形如√a(a ≥0)的代数式叫做二次根式。

如:√2,,√3,√π,5√11,-3√2,……2. 二次根式的性质:⑴ a ≥ 0(双重非负性); ⑵ ()=2a a (a ≥0) ⑶ =2a ∣a ∣;(4) =ab √a×√b(0,0≥≥b a ); (5) =ba √a÷√b(0,0>≥b a ). 强调:二次根式具有双重非负性。

3.最简二次根式:被开方数不含有开得尽方的数,所含因式是一次式(就是字母的次数是一次),被开方数不含分母。

满足这三个条件的二次根式称为最简二次根式。

4.同类二次根式:化成最简二次根式后,被开方数相同的几个二次根式称为同类二次根式。

5.二次根式的运算(1)加(减)法:先化简,再合并。

(2)乘(除)法:先乘除,再化简。

6.分母有理化:分母有理化也称为有理化分母。

就是将分母含有根号的代数式变成分母不含根号的代数式,这个过程叫做分母有理化。

(1)形如:√3=3√3×√3=23√3(2)形如:√3−√2=3+2)(√3−√2)(√3+√2)=2(√3+√2)=2√3+2√27.关于具有双重根号的二次根式。

如:√=√=√12+2×1×√5+(√5)2=√(1+√5)2=1+√5二.重点和难点:重点:二次根式的运算。

难点:混合运算以及应用。

第二章一元二次方程一.知识点:1.定义:形如a x x+xx+x=x(x≠x)的方程叫做一元二次方程,其中,a x x叫做二次项。

a叫做二次项系数,bx叫做一次项,b叫做一次项系数,c叫做常数项。

2.一元二次方程的解法:(1)直接开平方法;(2)因式分解分(提公因式法、乘法公式法、十字相乘法);(3)配方法;(4)求根公式法;(5)换元法。

3.一元二次方程根的判别式:△=x x−xxx .△>0 ,方程有两个不相等的实数根;△=x,方程有两个相等的实数根;△<0,方程无实数根。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(十)
一、 填空题(2×12=24分) 1、
2
3
是__________的算术平方根。

2、每一个外角都是720的多边形的边数是______,这个多边形的内角和等于 度。

3、已知
3
2
==d c b a ,且4=-c a , 则=-d b ________。

4、23-的倒数为 。

5、数轴上表示5-的点到原点的距离等于_____________ 。

6、如图,在△ABC 中,DE // BC ,且AD =1,BD =2,则
=BC
DE
________。

E
D
C
B A
D
C
A
B
7、如图,平行四边形ABCD 的周长为32cm ,AB =6cm ,对角线BD =8cm ,则此平行四边形ABCD 的面积为_______cm 2 8、比较大小:6______4
3
2
--(填>或<)。

9、在Rt △ABC 中,两条直角边长分别为6和8,则斜边上的中线为 。

10、一个等腰梯形的上底长为9cm ,下底长为15cm ,一个底角为60度,则其腰长为____cm
11、若2)2(2
-=-x x x x 成立,则x 的取值范围是____________。

二、 选择题(3×6=18分)
12、一个数如果有两个平方根,那么这两个平方根的积必定( )
A 、大于0
B 、等于0
C 、小于0
D 、小于或等于0 13、下列各式计算正确的是( )
A 、238310=-
B 、94)9)(4(-⋅-=
--
C 、
a a a 252
8821=+ D 、51351322-=- 14、下面四个命题;
① 相邻的两个角都互补的四边形是平行四边形 ② 对角线相等的四边形是矩形
③ 一组对边平行,另一组对边相等的四边形是平行四边形 ④ 对角线互相垂直平分的四边形是菱形。

其中正确的是( )
A 、①④
B 、②④
C 、②③
D 、①③
15、如图,DE // FG // BC ,且DE 、FG 把△ABC 的面积三等份,若BC =12cm ,则FG 的
长( )
A 、6cm
B 、8cm
C 、34cm
D 、 64cm
G F E D C
B
A
16 下列叙述错误的是 ( )
A 、被开方数不同的二次根式,一定不是同类二次根式;
B 、同类二次根式不一定是最简二次根式;
C 、判别同类二次根式,首先要把二次根式化成最简二次根式;
D 、同类二次根式化成最简二次根式后被开方数一定相同;
17、在图形 ①线段;②角;③等腰三角形;④平行四边形;⑤菱形;⑥矩形中,既是轴对
称图形又是中心对称图形的是( )
A 、①③⑤
B 、②③⑥
C 、①⑤⑥
D 、②④⑤ 三、计算或化简(每小题4分,共20分) 18、计算233)34(271912216-+-
⨯+- 19、计算2)3
22223324(÷+- 20、化简:222
272)312
1
(
y x y x x y ⋅-; 21、计算:
3
23326226-+- 22、已知:10
31-=
x ,10
31+=
y 求22y xy x +-的值。

四、作图题。

(本题满分5分)
23、如图,已知线段AB ,在AB 上求作点C 、D ,使得AC ∶CD ∶DB =1∶2∶3 要求:①不写作法,保留作图痕迹
② 用一句话写明你作法的依据,并填在下面的横线上:作法的依据是 “_____________________ ___”定理
A
B
五、计算或证明:(5小题,共33分)
24、如图:△ABC 中,BD 、CE 是两条高,AM 是∠BAC 的平分线,且交DE 于N , 求证:
DE
BC
AN AM =(6分)
N
M
E
D
C
B
A
F
E
D
C
B A
25、如图,梯形ABCD 中,AD // BC ,AD =3cm ,BC =10cm ,EF // BC 交AB 、DC 分别于E 、F ,且AE =2EB 。

求线段EF 的长(6分)
26、如图,梯形ABCD 中,AD // BC ,AB =DC 。

(1)如果P 、E 、F 分别是BC 、AC 、BD 的中点,求证:AB =PE +PF
(2)如果P 是BC 上的任意一点(中点除外),PE // AB , PF // DC ,那么AB =PE +PF 这个结论还成立吗?如果成立,请证明,如果不成立,请说明理由。

(7分)
F
E
P D C
B A
F
E
P
D C B
A
27、△ABC 是一块直角三角形余料,∠B =Rt ∠,AB =8cm ,BC =6 cm ,如图将它加工成正方形零件,试说明哪种方法利用率高?(即得到的正方形面积较大)(8分)
F
E
D C
B
A
N
M Q
P
C
B
A
参考答案或提示 (第十套)
一:1、
49;2、5、5400;3、6;4、32--;5、5;6、31
;7、48;8、<; 9、5;10、6;11、x ≥2
二、CCADA ,C 三:18、3
10
-
;19、3611;20、y x x y 222322-;21、-1;22、39 四:23、平行线分线段成比例定理
五:24、△AEC ∽△ADB ⇒AE ·AB =AD ·AC ⇒△ADE ∽△ABC ⇒
⇒⎭

⎫∠=∠∠=∠CAM BAM ABC ADE △ADN ∽△ABM AD AB
AN AM =⇒ △ADE ∽△ABC DE
BC AD AB =⇒
25、延长BA 、CD 相交于点G ,设EB =k ,
AD ∥BC BC AD GB GA =⇒
k GA 79
=⇒ AD ∥EF GE GA EF AD =⇒3
23
=⇒EF 26、①由三角形中位线定理可知PE =
21AB ,PF =2
1
DC ,又∵AB =DC ∴AB =PE +PF ②成立。

1==⇒⎪⎭
⎪⎬⎫
=
⇒=

DC PF AB PE BC BP DC PF DC PF CB CP AB PE AB PE ;又∵AB =DC ∴AB =PE +PF 27、设正方形的边长为x cm 。

(1)如图1,FE ∥BC 7
24
688=⇒=-⇒=⇒x x x BC FE AB AF (2)如图2,MQ ∥AC ⇒△BMQ ∽△BCA 5738.4-=⇒-=⇒x X
x
AC MQ ∵7
24 <573- ∴方案二利用率高。

相关文档
最新文档