2018高考数学(理)二轮专题复习突破精练二:专题对点练15 4-1~4-2组合练(附解析)

合集下载

2018年高考数学(理)二轮复习 专项精练:压轴大题突破练(二)(含答案解析)

2018年高考数学(理)二轮复习 专项精练:压轴大题突破练(二)(含答案解析)

(二)直线与圆锥曲线(2)1.(2017届浙江省嘉兴一中适应性测试)如图,已知中心在原点,焦点在x 轴上的椭圆的一个焦点为(3,0),⎝ ⎛⎭⎪⎫1,32是椭圆上的一个点.(1)求椭圆的标准方程;(2)设椭圆的上、下顶点分别为A ,B ,P (x 0,y 0)(x 0≠0)是椭圆上异于A ,B 的任意一点,PQ ⊥y 轴,Q 为垂足,M 为线段PQ 的中点,直线AM 交直线l :y =-1于点C ,N 为线段BC 的中点,如果△MON 的面积为32,求y 0的值. 解 (1)设椭圆标准方程为x 2a 2+y 2b 2=1, 由题意,得c = 3.因为a 2-c 2=b 2,所以b 2=a 2-3.又⎝ ⎛⎭⎪⎫1,32是椭圆上的一个点, 所以1a 2+34a 2-3=1,解得a 2=4或a 2=34(舍去), 从而椭圆的标准方程为x 24+y 2=1. (2)因为P (x 0,y 0),x 0≠0,则Q (0,y 0),且x 204+y 20=1.因为M 为线段PQ 的中点, 所以M ⎝ ⎛⎭⎪⎫x 02,y 0. 又A (0,1),所以直线AM 的方程为y =2(y 0-1)x 0x +1. 因为x 0≠0,所以y 0≠1,令y =-1,得C ⎝ ⎛⎭⎪⎫x 01-y 0,-1.又B (0,-1), N 为线段BC 的中点,则N ⎝ ⎛⎭⎪⎫x 02(1-y 0),-1. 所以NM →=⎝ ⎛⎭⎪⎫x 02-x 02(1-y 0),y 0+1.因此,OM →·NM →=x 02⎝ ⎛⎭⎪⎫x 02-x 02(1-y 0)+y 0·(y 0+1) =x 204-x 204(1-y 0)+y 20+y 0 =⎝ ⎛⎭⎪⎫x 204+y 20-x 204(1-y 0)+y 0 =1-(1+y 0)+y 0=0.从而OM ⊥MN .因为|OM |=x 204+y 20=1, |ON |= x 204(1-y 0)2+1= 1-y 20(1-y 0)2+1= 21-y 0, 所以在Rt△MON 中,|MN |=|ON |2-|OM |2,因此S △MON =12|OM ||MN |=121+y 01-y 0. 从而有121+y 01-y 0=32,解得y 0=45. 2.(2017届江西省重点中学盟校联考)已知椭圆C :x 2a 2+y 2b 2=1(a >0,b >0)的右顶点为A (2,0),离心率e =32. (1)求椭圆C 的方程;(2)设B 为椭圆上顶点,P 是椭圆C 在第一象限上的一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,问△PMN 与△PAB 面积之差是否为定值?说明理由.解 (1)依题意得⎩⎪⎨⎪⎧a =2,c a =32,a 2-b 2=c 2, 解得⎩⎪⎨⎪⎧ a =2,b =1, 则椭圆C 的方程为x 24+y 2=1. (2)设P (x 0,y 0)(x 0>0,y 0>0),则x 20+4y 20=4,直线PA :y =y 0x 0-2(x -2),令x =0,得y M =-2y 0x 0-2, 则|BM |=|1-y M |=y M -1=-1-2y 0x 0-2. 直线PB :y =y 0-1x 0x +1,令y =0,得x N =-x 0y 0-1, 则|AN |=|2-x N |=x N -2=-2-x 0y 0-1,∴S △PMN -S △PAB =12|AN |·(|OM |-|OB |) =12|AN |·|BM | =12⎝ ⎛⎭⎪⎫-2-x 0y 0-1⎝ ⎛⎭⎪⎫-1-2y 0x 0-2 =12·x 20+4y 20+4x 0y 0-4x 0-8y 0+4x 0y 0-x 0-2y 0+2=12·4x 0y 0-4x 0-8y 0+8x 0y 0-x 0-2y 0+2=2. 3.(2017·山西省实验中学模拟)已知椭圆E :x 2a 2+y 2b 2=1 (a >b >0)过点(0,-2),F 1,F 2分别为其左、右焦点,O 为坐标原点,点P 为椭圆上一点,PF 1⊥x 轴,且△OPF 1的面积为 2.(1)求椭圆E 的离心率和方程;(2)设A ,B 是椭圆上两动点,若直线AB 的斜率为-14,求△OAB 面积的最大值. 解 (1)因为椭圆E :x 2a 2+y 2b 2=1(a >b >0)过点(0,-2),所以b =2,由PF 1⊥x 轴,且△OPF 1的面积为2, 得12×c ×b 2a =2, 所以c a =22,即离心率e =22. 因为a 2=b 2+c 2,所以a 2-c 2=4,由⎩⎪⎨⎪⎧ a 2-c 2=4,c a =22,解得⎩⎨⎧ a =22,c =2(舍负),故椭圆E 的方程为x 28+y 24=1. (2)设直线AB 的方程为y =-14x +t , 与x 2+2y 2=8联立,消去y ,整理得98x 2-tx +2t 2-8=0, 由Δ=(-t )2-4×98(2t 2-8)=-8t 2+36>0,得-322<t <322, x 1+x 2=8t 9,x 1x 2=89(2t 2-8), 故|AB |=1+k 2|x 1-x 2|= 1+116× 64t 281-329(2t 2-8) =174×1699-2t 2 =41799-2t 2, 易知点O 到直线AB 的距离为d =4|t |17, 则△OAB 的面积S =12×4|t |17×41799-2t 2 =8922t 2(9-2t 2) ≤892×2t 2+9-2t 22=22, 当且仅当2t 2=9-2t 2,即t =±32时取“=”,经检验,满足要求,故△OAB 面积的最大值为2 2. 4.(2017·湖南省长沙市长郡中学临考冲刺训练)在平面直角坐标系xOy 中,点F 1(-3,0),圆F 2:x 2+y 2-23x -13=0,以动点P 为圆心的圆经过点F 1,且圆P 与圆F 2内切.(1)求动点P 的轨迹E 的方程;(2)若直线l 过点(1,0),且与曲线E 交于A ,B 两点,则在x 轴上是否存在一点D (t,0)(t ≠0),使得x 轴平分∠ADB ?若存在,求出t 的值;若不存在,请说明理由.解 (1)圆F 2的方程可化为(x -3)2+y 2=16,故圆心F 2(3,0),半径r =4,而|F 1F 2|=23<4,所以点F 1在圆F 2内.又由已知得圆P 的半径R =|PF 1|,由圆P 与圆F 2内切,可得圆P 内切于圆F 2,即|PF 2|=4-|PF 1|,所以|PF 1|+|PF 2|=4>|F 1F 2|,故点P 的轨迹即曲线E 是以F 1,F 2为焦点,长轴长为4的椭圆.显然c =3,a =2,所以b 2=a 2-c 2=1,故曲线E 的方程为x 24+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),当直线AB 的斜率不为0且存在时,设直线l :x =ny +1,代入x 2+4y 2-4=0,得(n 2+4)y 2+2ny -3=0,Δ=16(n 2+3)>0恒成立.由根与系数的关系,可得y 1+y 2=-2nn 2+4,y 1y 2=-3n 2+4,设直线DA ,DB 的斜率分别为k 1,k 2,则由∠ODA =∠ODB ,得k 1+k 2=y 1x 1-t +y 2x 2-t=y 1(x 2-t )+y 2(x 1-t )(x 1-t )(x 2-t )=y 1(ny 2+1-t )+y 2(ny 1+1-t )(x 1-t )(x 2-t )=2ny 1y 2+(1-t )(y 1+y 2)(x 1-t )(x 2-t )=0.所以2ny 1y 2+(1-t )(y 1+y 2)=0,将y 1+y 2=-2n n 2+4,y 1y 2=-3n 2+4代入得-6n -2n +2nt =0,因此n (t -4)=0,故存在t =4满足题意.当直线AB 的斜率为0时,直线为x 轴,取A (-2,0),B (2,0),满足∠ODA =∠ODB , 当直线AB 的斜率不存在时,取A ⎝ ⎛⎭⎪⎫1,32,B ⎝ ⎛⎭⎪⎫1,-32,满足∠ODA =∠ODB .综上,在x 轴上存在一点D (4,0),使得x 轴平分∠ADB .。

2018届高考数学(理)二轮专题复习:第一部分 专题四 数列 1-4-2 含答案

2018届高考数学(理)二轮专题复习:第一部分 专题四 数列 1-4-2 含答案

限时规范训练十一 数列求和及综合应用限时45分钟,实际用时分值81分,实际得分一、选择题(本题共6小题,每小题5分,共30分)1.数列{a n }中,a 1=1,对所有n ∈N *都有a 1·a 2·…·a n =n 2,则a 3+a 5=( ) A.6116 B.259 C.2516D.3115解析:选A.当n ≥1时,a 1·a 2·a 3·…·a n =n 2;当n ≥2时,a 1·a 2·a 3·…·a n -1=(n -1)2.两式相除,得a n =⎝⎛⎭⎪⎫n n -12.∴a 3=94,a 5=2516,∴a 3+a 5=6116,故选A.2.已知S n 表示数列{a n }的前n 项和,若对任意n ∈N *满足a n +1=a n +a 2,且a 3=2,则S 2 019=( ) A .1 008×2 020 B .1 008×2 019 C .1 009×2 019D .1 009×2 020解析:选C.在a n +1=a n +a 2中,令n =1,得a 2=a 1+a 2,a 1=0;令n =2,得a 3=2=2a 2,a 2=1,于是a n +1-a n =1,故数列{a n }是首项为0,公差为1的等差数列,S 2 019=2 019×2 0182=1009×2 019.3.已知数列{a n }是等差数列,其前n 项和为S n ,若a 1a 2a 3=15,且3S 1S 3+15S 3S 5+5S 5S 1=35,则a 2等于( )A .2 B.12 C .3D.13解析:选C.∵S 1=a 1,S 3=3a 2,S 5=5a 3, ∴35=1a 1a 2+1a 2a 3+1a 1a 3, ∵a 1a 2a 3=15.∴35=a 315+a 115+a 215=a 25,即a 2=3. 4.数列{a n }的通项公式是a n =1n +n +1,若前n 项和为10,则项数n 为( ) A .120 B .99 C .11 D .121解析:选A.a n =1n +n +1=n +1-nn +1+n n +1-n=n +1-n ,所以a 1+a 2+…+a n =(2-1)+(3-2)+…+(n +1-n ) =n +1-1=10.即n +1=11,所以n +1=121,n =120. 5.122-1+132-1+142-1+…+1n +12-1的值为( )A.n +12n +2B.34-n +12n +2C.34-12⎝ ⎛⎭⎪⎫1n +1+1n +2D.32-1n +1+1n +2解析:选C.∵1n +12-1=1n 2+2n =1nn +2=12⎝ ⎛⎭⎪⎫1n -1n +2. ∴122-1+132-1+142-1+…+1n +12-1=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫12-14+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫1n -1n +2 =12⎝ ⎛⎭⎪⎫32-1n +1-1n +2=34-12⎝ ⎛⎭⎪⎫1n +1+1n +2.6.定义np 1+p 2+…+p n为n 个正数p 1,p 2,…,p n 的“均倒数”.若已知正项数列{a n }的前n项的“均倒数”为12n +1,又b n =a n +14,则1b 1b 2+1b 2b 3+…+1b 10b 11=( )A.111 B.112 C.1011D.1112解析:选C.设数列{a n }的前n 项和为S n ,由na 1+a 2+…+a n =12n +1得S n =n (2n +1),∴当n ≥2时,a n =S n -S n -1=4n -1,∴b n =4n -1+14=n ,则1b 1b 2+1b 2b 3+…+1b 10b 11=11×2+12×3+…+110×11=⎝⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝⎛⎭⎪⎫110-111=1-111=1011.故选C.二、填空题(本题共3小题,每小题5分,共15分)7.在数列{a n }中,已知a 1=1,a n +1+(-1)na n =cos(n +1)π,记S n 为数列{a n }的前n 项和,则S 2 019=________.解析:∵a n +1+(-1)n a n =cos(n +1)π=(-1)n +1,∴当n =2k 时,a 2k +1+a 2k =-1,k ∈N *,∴S 2 019=a 1+(a 2+a 3)+…+(a 2 018+a 2 019)=1+(-1)×1 009=- 1008.答案:-1 0088.若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式a n =________.解析:当n =1时,由已知S n =23a n +13,得a 1=23a 1+13,即a 1=1;当n ≥2时,由已知得到S n-1=23a n -1+13,所以a n =S n -S n -1=⎝ ⎛⎭⎪⎫23a n +13-⎝ ⎛⎭⎪⎫23a n -1+13=23a n -23a n -1,所以a n =-2a n -1,所以数列{a n }为以1为首项,-2为公比的等比数列,所以a n =(-2)n -1.答案:(-2)n -19.在等比数列{a n }中,0<a 1<a 4=1,则能使不等式⎝⎛⎭⎪⎫a 1-1a 1+⎝⎛⎭⎪⎫a 2-1a 2+…+⎝⎛⎭⎪⎫a n -1an≤0成立的最大正整数n 是________.解析:设等比数列的公比为q ,由已知得a 1q 3=1,且q >1,⎝ ⎛⎭⎪⎫a 1-1a 1+⎝ ⎛⎭⎪⎫a 2-1a 2+…+⎝ ⎛⎭⎪⎫a n -1a n =(a 1+a 2+…+a n )-⎝ ⎛⎭⎪⎫1a 1+1a 2+…+1a n =a 11-q n 1-q -1a 1⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫1q n 1-1q≤0,化简得q -3≤q4-n,则-3≤4-n ,n ≤7. 答案:7三、解答题(本题共3小题,每小题12分,共36分) 10.等差数列{a n }中,a 2=4,a 4+a 7=15. (1)求数列{a n }的通项公式;(2)设b n =2a n -2+n ,求b 1+b 2+b 3+…+b 10的值. 解:(1)设等差数列{a n }的公差为d .由已知得⎩⎪⎨⎪⎧a 1+d =4,a 1+3d +a 1+6d =15,解得⎩⎪⎨⎪⎧a 1=3,d =1.所以a n =a 1+(n -1)d =n +2. (2)由(1)可得b n =2n+n . 所以b 1+b 2+b 3+…+b 10=(2+1)+(22+2)+(23+3)+…+(210+10) =(2+22+23+…+210)+(1+2+3+ (10)=21-2101-2+1+10×102=(211-2)+55 =211+53=2 101.11.已知正项数列{a n }的前n 项和S n 满足:4S n =(a n -1)(a n +3)(n ∈N *). (1)求a n ;(2)若b n =2n·a n ,求数列{b n }的前n 项和T n . 解:(1)∵4S n =(a n -1)(a n +3)=a 2n +2a n -3, ∴当n ≥2时,4S n -1=a 2n -1+2a n -1-3, 两式相减得,4a n =a 2n -a 2n -1+2a n -2a n -1,化简得,(a n +a n -1)(a n -a n -1-2)=0, ∵{a n }是正项数列,∴a n +a n -1≠0,∴a n -a n -1-2=0,对任意n ≥2,n ∈N *都有a n -a n -1=2, 又由4S 1=a 21+2a 1-3得,a 21-2a 1-3=0, 解得a 1=3或a 1=-1(舍去),∴{a n }是首项为3,公差为2的等差数列, ∴a n =3+2(n -1)=2n +1. (2)由已知及(1)知,b n =(2n +1)·2n ,T n =3·21+5·22+7·23+…+(2n -1)·2n -1+(2n +1)·2n ,①2T n =3·22+5·23+7·24+…+(2n -1)·2n +(2n +1)·2n +1,②②-①得,T n =-3×21-2(22+23+24+…+2n )+(2n +1)·2n +1=-6-2×41-2n -11-2+(2n +1)·2n +1=2+(2n -1)·2n +1.12.若数列{a n }的前n 项和为S n ,点(a n ,S n )在y =16-13x 的图象上(n ∈N *).(1)求数列{a n }的通项公式;(2)若c 1=0,且对任意正整数n 都有c n +1-c n =log 12a n .求证:对任意正整数n ≥2,总有13≤1c 2+1c 3+1c 4+…+1c n <34.解:(1)∵S n =16-13a n ,∴当n ≥2时,a n =S n -S n -1=13a n -1-13a n ,∴a n =14a n -1.又∵S 1=16-13a 1,∴a 1=18,∴a n =18⎝ ⎛⎭⎪⎫14n -1=⎝ ⎛⎭⎪⎫122n +1.(2)证明:由c n +1-c n =log 12a n =2n +1,得当n ≥2时,c n =c 1+(c 2-c 1)+(c 3-c 2)+…+(c n -c n -1)=0+3+5+…+(2n -1)=n 2-1=(n +1)(n -1).∴1c 2+1c 3+1c 4+…+1c n =122-1+132-1+142-1+…+1n 2-1 =12×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫12-14+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫1n -1-1n +1 =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+12-⎝ ⎛⎭⎪⎫1n +1n +1=34-12⎝ ⎛⎭⎪⎫1n +1n +1<34. 又∵1c 2+1c 3+1c 4+…+1c n ≥1c 2=13,∴原式得证.。

2018年高考数学(理)二轮专题复习突破精练二:专题对点练15 4-1~4-2组合练(含解析)

2018年高考数学(理)二轮专题复习突破精练二:专题对点练15 4-1~4-2组合练(含解析)

专题对点练154.1~4.2组合练(限时90分钟,满分100分)专题对点练第21页一、选择题(共9小题,满分45分)1.设S n是等差数列{a n}的前n项和,若a1+a3+a5=3,则S5=()A.5B.7C.9D.11答案A解析由a1+a3+a5=3,得3a3=3,解得a3=1.故S5==5a3=5.2.(2017全国Ⅱ,理3)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏答案B解析设塔的顶层共有x盏灯,则各层的灯数构成一个公比为2的等比数列,由=381,可得x=3,故选B.3.已知等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=()A.n(n+1)B.n(n-1)C.D.答案A解析∵a2,a4,a8成等比数列,∴=a2·a8,即(a1+6)2=(a1+2)(a1+14),解得a1=2.∴S n=na1+d=2n+n2-n=n2+n=n(n+1).故选A.4.(2017宁夏银川一中二模,理8)公差不为零的等差数列{a n}的前n项和为S n.若a4是a3与a7的等比中项,S8=16,则S10等于()A.18B.24C.30D.60答案C解析设等差数列{a n}的公差为d≠0.由题意,得(a1+3d)2=(a1+2d)(a1+6d),即2a1+3d=0.①∵S8=16,∴8a1+×d=16,②联立①②解得a1=-,d=1.则S10=10××1=30.5.等比数列{a n}的前n项和为S n.已知S3=a2+10a1,a5=9,则a1=()A.B.-C.D.-答案C解析设数列{a n}的公比为q,若q=1,则由a5=9,得a1=9,此时S3=27,而a2+10a1=99,不满足题意,因此q≠1.∵当q≠1时,S3==a1·q+10a1,∴=q+10,整理得q2=9.∵a5=a1·q4=9,即81a1=9,∴a1=.6.已知{a n}为等比数列,a4+a7=2,a5a6=-8,则a1+a10=()A.7B.5C.-5D.-7答案D解析∵{a n}为等比数列,∴a5a6=a4a7=-8.联立可解得时,q3=-,故a1+a10=+a7q3=-7;当时,q3=-2,同理,有a1+a10=-7.故选D.7.设等差数列{a n}的前n项和为S n,若S m-1=-2,S m=0,S m+1=3,则m=()A.3B.4C.5D.6答案C解析∵S m-1=-2,S m=0,S m+1=3,∴a m=S m-S m-1=0-(-2)=2,a m+1=S m+1-S m=3-0=3.∴d=a m+1-a m=3-2=1.∵S m=ma1+×1=0,∴a1=-.又=a1+m×1=3,∴-+m=3.∴m=5.故选C.8.(2017江西新余一中模拟,理8)设等差数列{a n}满足3a8=5a15,且a1>0,S n为其前n项和,则数列{S n}的最大项为()A.S23B.S24C.S25D.S26答案C解析设等差数列{a n}的公差为d,∵3a8=5a15,∴3(a1+7d)=5(a1+14d),即2a1+49d=0.∵a1>0,∴d<0,∴等差数列{a n}单调递减.∵S n=na1+d=n d=(n-25)2- d.∴当n=25时,数列{S n}取得最大值,故选C.9.(2017辽宁沈阳三模,理11)已知数列{a n}的前n项和为S n,a1=1,a n+a n+1=3×2n-1,则S2 017=()A.22 018-1B.22 018+1C.22 017-1D.22 017+1答案C解析由a1=1和a n+1=3×2n-1-a n,可知数列{a n}唯一确定,且a2=2,a3=4,a4=8, 猜测a n=2n-1,经验证a n=2n-1是满足题意的唯一解.∴S2 017==22 017-1.二、填空题(共3小题,满分15分)10.(2017辽宁鞍山一模,理15)已知等差数列{a n},a1=tan 225°,a5=13a1,设S n为数列{(-1)n a n}的前n项和,则S2 017= .答案-3 025解析设{a n}的公差为d,由题意,得a1=tan 225°=tan 45°=1,a5=13a1=13,a5-a1=4d=12,∴d=3,∴a n=1+3(n-1)=3n-2,∴S2 017=-1+(-3)×=-3 025,故答案为-3 025.11.(2017江苏无锡一模,9)设等比数列{a n}的前n项和为S n,若S3,S9,S6成等差数列,且a2+a5=4,则a8的值为.答案2解析∵等比数列{a n}的前n项和为S n,S3,S9,S6成等差数列,且a2+a5=4,∴解得a1q=8,q3=-,∴a8=a1q7=(a1q)(q3)2=8×=2.12.已知等差数列{a n},a3=9,a5=17,记数列的前n项和为S n.若S2n+1-S n≤(m∈Z)对任意的n∈N*成立,则整数m的最小值为.答案4解析设公差为d,由a3=9,a5=17,得解得∴a n=4n-3,∴S n=1++…+,令b n=S2n+1-S n=+…+,则b n+1-b n=+…+<0,∴{b n}是递减数列, ∴b1最大,为,∴根据题意,S2n+1-S n≤,∴,m≥,∴整数m的最小值为4.三、解答题(共3个题,分别满分为13分,13分,14分)13.已知数列{a n}的前n项和为S n,且对任意正整数n,都有3a n=2S n+3成立.(1)求数列{a n}的通项公式;(2)设b n=log3a n,求数列{b n}的前n项和T n.解(1)在3a n=2S n+3中,令n=1,得a1=3.当n≥2时,3a n=2S n+3,①3a n-1=2S n-1+3,②①-②得a n=3a n-1,∴数列{a n}是以3为首项,3为公比的等比数列,∴a n=3n.(2)由(1)得b n=log3a n=n,数列{b n}的前n项和T n=1+2+3+…+n=.14.(2017江苏南京一模,19)已知数列{a n}的前n项和为S n,且满足S n+n=2a n(n∈N*). (1)证明:数列{a n+1}为等比数列,并求数列{a n}的通项公式;(2)若b n=(2n+1)a n+2n+1,数列{b n}的前n项和为T n,求满足不等式>2 010的n的最小值.(1)证明当n=1时,2a1=a1+1,∴a1=1.∵2a n=S n+n,n∈N*,∴2a n-1=S n-1+n-1,n≥2,两式相减,得a n=2a n-1+1,n≥2,即a n+1=2(a n-1+1),n≥2,∴数列{a n+1}为以2为首项,2为公比的等比数列,∴a n+1=2n,∴a n=2n-1,n∈N*.(2)解b n=(2n+1)a n+2n+1=(2n+1)·2n,∴T n=3×2+5×22+…+(2n+1)·2n,∴2T n=3×22+5×23+…+(2n+1)·2n+1,两式相减可得-T n=3×2+2×22+2×23+…+2·2n-(2n+1)·2n+1,∴T n=(2n-1)·2n+1+2,∴>2 010可化为2n+1>2 010.∵210=1 024,211=2 048,∴满足不等式>2 010的n的最小值为10.15.(2017河南新乡二模,理17)在数列{a n}和{b n}中,a1=,{a n}的前n项和为S n,满足S n+1+=S n+(n∈N*),b n=(2n+1)a n,{b n}的前n项和为T n.(1)求数列{b n}的通项公式b n以及T n;(2)若T1+T3,mT2,3(T2+T3)成等差数列,求实数m的值.解(1)∵S n+1+=S n+(n∈N*),∴a n+1=S n+1-S n=.∴当n≥2时,a n=.又a1=,因此当n=1时也成立.∴a n=,∴b n=(2n+1)a n=(2n+1)·.∴T n=+…+,T n=+…+,∴T n=+2+2×,∴T n=5-.(2)由(1)可得T1=,T2=,T3=.∵T1+T3,mT2,3(T2+T3)成等差数列,∴+3×=2×m×,解得m=.。

2018年高考理科数学通用版三维二轮复习训练2解析及答案

2018年高考理科数学通用版三维二轮复习训练2解析及答案

寒假作业(二) 函数的图象与性质(注意速度和准度)一、“12+4”提速练1.已知函数y =2x +1,x ∈{x ∈Z|0≤x <3},则该函数的值域为( ) A .{y |1≤y <7} B .{y |1≤y ≤7} C .{1,3,5,7}D .{1,3,5}解析:选D 由题意可知,函数的定义域为{0,1,2},把x =0,1,2代入函数解析式可得y =1,3,5,所以该函数的值域为{1,3,5}.2.函数f (x )=ln ⎝ ⎛⎭⎪⎫1+1x +1-x 2的定义域为( )A .(-1,1]B .(0,1]C .[0,1]D .[1,+∞)解析:选B由条件知⎩⎪⎨⎪⎧1+1x>0,x ≠0,1-x 2≥0.即⎩⎪⎨⎪⎧x <-1或x >0,x ≠0,-1≤x ≤1.则x ∈(0,1].∴原函数的定义域为(0,1].3.(2017·成都第一次诊断性检测)已知定义在R 上的奇函数f (x )满足f (x +3)=f (x ),且当x ∈⎣⎢⎡⎭⎪⎫0,32时,f (x )=-x 3,则f ⎝ ⎛⎭⎪⎫112=( )A .-18 B.18C .-1258 D.1258解析:选B 由f (x +3)=f (x )知,函数f (x )的周期为3,又函数f (x )为奇函数,所以f ⎝ ⎛⎭⎪⎫112=f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12=⎝ ⎛⎭⎪⎫12 3=18. 4.(2018届高三·长沙四校联考)函数y =ln|x |-x 2的图象大致为( )解析:选A 令f (x )=ln|x |-x 2,定义域为(-∞,0)∪(0,+∞)且f (-x )=ln|x |-x 2=f (x ),故函数y =ln|x |-x 2为偶函数,其图象关于y 轴对称,排除B 、D ;当x >0时,y =ln x -x 2,则y ′=1x-2x ,当x ∈⎝⎛⎭⎪⎪⎫0,22时,y ′=1x-2x >0,y =ln x -x 2单调递增,排除C.故A 符合.5.已知函数f (x )=⎩⎪⎨⎪⎧2x -2,x ≤0,-log 3x ,x >0,且f (a )=-2,则f (7-a )=( )A .-log 37B .-34C .-54D .-74解析:选D 当a ≤0时,2a -2=-2无解;当a >0时,由-log 3a =-2,解得a =9,所以f (7-a )=f (-2)=2-2-2=-74. 6.(2017·全国卷Ⅰ)函数f (x )在(-∞,+∞)单调递减,且为奇函数.若f (1)=-1,则满足-1≤f (x -2)≤1的x 的取值范围是( )A .[-2,2]B .[-1,1]C .[0,4]D .[1,3]解析:选D ∵f (x )为奇函数,∴f (-x )=-f (x ). ∵f (1)=-1,∴f (-1)=-f (1)=1.故由-1≤f (x -2)≤1,得f (1)≤f (x -2)≤f (-1). 又f (x )在(-∞,+∞)单调递减,∴-1≤x -2≤1, ∴1≤x ≤3.7.(2017·衡阳四中月考)函数y =f (x )在区间[0,2]上单调递增,且函数f (x +2)是偶函数,则下列结论成立的是( )A .f (1)<f ⎝ ⎛⎭⎪⎫52<f ⎝ ⎛⎭⎪⎫72B .f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52C .f ⎝ ⎛⎭⎪⎫72<f ⎝ ⎛⎭⎪⎫52<f (1)D .f ⎝ ⎛⎭⎪⎫52<f (1)<f ⎝ ⎛⎭⎪⎫72解析:选B 因为函数f (x +2)是偶函数,所以f (x +2)=f (-x +2),即函数f (x )的图象关于x =2对称,又因为函数y =f (x )在区间[0,2]上单调递增,所以函数y =f (x )在区间[2,4]上单调递减.因为f (1)=f (3),72>3>52,所以f ⎝ ⎛⎭⎪⎫72<f (3)<f ⎝ ⎛⎭⎪⎫52,即f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52.8.设函数f (x )=x 3(a x +m ·a -x )(x ∈R ,a >0且a ≠1)是偶函数,则实数m 的值为( ) A .-1 B .1 C .2D .-2解析:选A 法一:因为函数f (x )=x 3(a x +m ·a -x )(x ∈R ,a >0且a ≠1)是偶函数,所以f (-x )=f (x )对任意的x ∈R 恒成立,所以-x 3(a -x +m ·a x )=x 3(a x +m ·a -x ),即x 3(1+m )(a x+a -x )=0对任意的x ∈R 恒成立,所以1+m =0,即m =-1.法二:因为f (x )=x 3(a x +m ·a -x )是偶函数,所以g (x )=a x +m ·a -x 是奇函数,且g (x )在x =0处有意义,所以g (0)=0,即1+m =0,所以m =-1.9.若函数f (x )=x 2-2ax +a 在区间(-∞,1)上有最小值,则函数g (x )=f x x在区间(1,+∞)上一定( )A .有最小值B .有最大值C .是减函数D .是增函数解析:选D ∵函数f (x )=x 2-2ax +a 在区间(-∞,1)上有最小值,图象开口向上,对称轴为x =a ,∴a <1.∴g (x )=f x x=x +a x-2a .若a ≤0,则g (x )=x +a x-2a 在(-∞,0),(0,+∞)上单调递增.若0<a <1,则g (x )=x +a x-2a 在(a ,+∞)上单调递增,故g (x )在(1,+∞)上单调递增.综上可得g (x )=x +a x-2a 在(1,+∞)一定是增函数.10.已知f (x )=⎩⎪⎨⎪⎧-ln x -x ,x >0,-ln -x +x ,x <0,则关于m 的不等式f ⎝ ⎛⎭⎪⎫1m <ln 12-2的解集为( )A.⎝ ⎛⎭⎪⎫0,12 B .(0,2)C.⎝ ⎛⎭⎪⎫-12,0∪⎝ ⎛⎭⎪⎫0,12 D .(-2,0)∪(0,2)解析:选C 因为函数f (x )的定义域(-∞,0)∪(0,+∞)关于原点对称,又当x >0时,-x <0,f (-x )=-ln x -x =f (x ),同理,当x <0时,也有f (-x )=f (x ),所以f (x )为偶函数.因为f (x )在(0,+∞)上为减函数,且f (2)=-ln 2-2=ln 12-2,所以由偶函数的性质知f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪1m <f (2),且m ≠0,所以⎪⎪⎪⎪⎪⎪1m >2,且m ≠0,解得0<m <12或-12<m <0.11.若函数f (x )=x 2+ln(x +a )与g (x )=x 2+e x -12(x <0)的图象上存在关于y 轴对称的点,则实数a 的取值范围是( )A .(-∞,e)B .(e ,+∞)C .(0,e) D .(0,e ]解析:选C 若函数f (x )与g (x )的图象上存在关于y 轴对称的点,则f (x )与g (-x )=x 2+e -x -12(x >0)的图象有交点,也就是方程ln(x +a )=e -x -12有正数解,即函数y =e -x -12与函数y =ln(x +a )的图象在(0,+∞)上有交点,结合图象可知,只需ln a <e 0-12,∴ln a <12,∴0<a <e.12.已知函数f (x )的定义域为D ,若对任意x 1,x 2∈D ,当x 1<x 2时,都有f (x 1)≤f (x 2),则称函数f (x )在D 上为非减函数.设函数f (x )在[0,1]上为非减函数,且满足以下三个条件:①f (0)=0;②f ⎝ ⎛⎭⎪⎫x 3=12f (x );③f (1-x )=2-f (x ),则f ⎝ ⎛⎭⎪⎫13+f ⎝ ⎛⎭⎪⎫18=( )A.32 B .1C .2 D.52解析:选A 令x =1,可得f (1)=2,那么f ⎝ ⎛⎭⎪⎫13=12f (1)=1,令x =12,可得f ⎝ ⎛⎭⎪⎫12=1,f ⎝ ⎛⎭⎪⎫16=12f ⎝ ⎛⎭⎪⎫12=12,令x =13,可得f ⎝ ⎛⎭⎪⎫19=12f ⎝ ⎛⎭⎪⎫13=12,因为函数是非减函数,所以12=f ⎝ ⎛⎭⎪⎫19≤f ⎝ ⎛⎭⎪⎫18≤f ⎝ ⎛⎭⎪⎫17≤f ⎝ ⎛⎭⎪⎫16=12,所以f ⎝ ⎛⎭⎪⎫18=f ⎝ ⎛⎭⎪⎫17=12,所以f ⎝ ⎛⎭⎪⎫13+f ⎝ ⎛⎭⎪⎫18=1+12=32.13.设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝ ⎛⎭⎪⎫-52=________.解析:因为f (x )是奇函数,且当0≤x ≤1时,f (x )=2x (1-x ),所以当-1≤x <0时,0<-x ≤1,f (-x )=-2x (1+x )=-f (x ),即f (x )=2x (1+x )(-1≤x <0).又f (x )的周期为2,所以f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫-2-12=f ⎝ ⎛⎭⎪⎫-12=2×⎝ ⎛⎭⎪⎫-12×12=-12.答案:-1214.已知函数f (x )=4+x 2ln1+x1-x 在区间⎣⎢⎡⎦⎥⎤-12,12上的最大值与最小值分别为M 和m ,则M +m =________.解析:令g (x )=x 2ln1+x 1-x, 则g (-x )=(-x )2ln1-x 1+x =-x 2ln 1+x1-x=-g (x ),所以函数g (x )为奇函数,其图象关于原点对称,则函数g (x )=f (x )-4的最大值M -4和最小值m -4之和为0,即M -4+m -4=0,∴M +m =8.答案:815.(2018届高三·江西师大附中月考)已知函数f (x )=⎪⎪⎪⎪⎪⎪2x -a 2x 在[0,1]上单调递增,则a 的取值范围为________.解析:令2x =t ,t ∈[1,2],则y =⎪⎪⎪⎪⎪⎪t -a t 在[1,2]上单调递增.当a =0时,y =|t |=t 在[1,2]上单调递增显然成立;当a >0时,函数y =⎪⎪⎪⎪⎪⎪t -a t ,t ∈(0,+∞)的单调递增区间是[a ,+∞),此时a ≤1,即0<a ≤1时成立;当a <0时,函数y =⎪⎪⎪⎪⎪⎪t -a t =t -at ,t ∈(0,+∞)的单调递增区间是[-a ,+∞),此时-a ≤1,即-1≤a <0时成立.综上可得a 的取值范围是[-1,1].答案:[-1,1]16.已知函数f (x )的定义域为A ,若x 1,x 2∈A 且f (x 1)=f (x 2)时总有x 1=x 2,则称f (x )为单函数.例如:函数f (x )=2x +1(x ∈R)是单函数.给出下列命题:①函数f (x )=x 2(x ∈R)是单函数; ②指数函数f (x )=2x (x ∈R)是单函数;③若f (x )为单函数,x 1,x 2∈A 且x 1≠x 2,则f (x 1)≠f (x 2); ④在定义域上具有单调性的函数一定是单函数. 其中真命题的序号是________.解析:对于①,当x 1=2,x 2=-2时,f (x 1)=4=f (x 2),故①错;对于②,f (x )=2x 为单调递增函数,故②正确;而③④显然正确.答案:②③④二、能力拔高练1.当a >0时,函数f (x )=(x 2+2ax )e x 的图象大致是( )解析:选B 由f (x )=0,得x 2+2ax =0,解得x =0或x =-2a ,∵a >0,∴x =-2a <0,故排除A 、C ;当x 趋近于-∞时,e x 趋近于0,故f (x )趋近于0,排除D.2.设曲线y =f (x )与曲线y =x 2+a (x >0)关于直线y =-x 对称,且f (-2)=2f (-1),则a =( )A .0 B.13 C.23D .1解析:选C 依题意得,曲线y =f (x ),即为-x =(-y )2+a (y <0),化简后得y =--x -a ,即f (x )=--x -a ,于是有-2-a =-21-a ,解得a =23.3.已知定义在D =[-4,4]上的函数f (x )=⎩⎪⎨⎪⎧|x 2+5x +4|,-4≤x ≤0,2|x -2|,0<x ≤4,对任意x ∈D ,存在x 1,x 2∈D ,使得f (x 1)≤f (x )≤f (x 2),则|x 1-x 2|的最大值与最小值之和为( )A .7B .8C .9D .10解析:选C 作出函数f (x )的图象如图所示,由任意x ∈D ,f (x 1)≤f (x )≤f (x 2)知,f (x 1),f (x 2)分别为f (x )的最小值和最大值,由图可知|x 1-x 2|max =8,|x 1-x 2|min =1,所以|x 1-x 2|的最大值与最小值之和为9,故选C.4.已知定义在R 上的偶函数f (x )在[0,+∞)上单调递减,若不等式f (x 3-x 2+a )+f (-x 3+x 2-a )≥2f (1)对x ∈[0,1]恒成立,则实数a 的取值范围为( )A.⎣⎢⎡⎦⎥⎤2327,1 B.⎣⎢⎡⎦⎥⎤-2327,1 C .[1,3]D .(-∞,1]解析:选B ∵函数f (x )是定义域在R 上的偶函数,且-x 3+x 2-a =-(x 3-x 2+a ),∴f (x 3-x 2+a )+f (-x 3+x 2-a )≥2f (1)对x ∈[0,1]恒成立等价于2f (x 3-x 2+a )≥2f (1)对x ∈[0,1]恒成立,又∵f (x )在[0,+∞)上单调递减,∴-1≤x 3-x 2+a ≤1对x ∈[0,1]恒成立.设g (x )=x 3-x 2,则g ′(x )=x (3x -2),则g (x )在⎣⎢⎡⎭⎪⎫0,23上单调递减,在⎝ ⎛⎦⎥⎤23,1上单调递增,又g (0)=g (1)=0,g ⎝ ⎛⎭⎪⎫23=-427,∴g (x )∈⎣⎢⎡⎦⎥⎤-427,0. ∴⎩⎪⎨⎪⎧a ≤1,a -427≥-1,∴a ∈⎣⎢⎡⎦⎥⎤-2327,1.5.已知函数f (x )=⎩⎪⎨⎪⎧x 2,x >0,x +1,x ≤0,g (x )=log 2x ,若f (a )+f (g (2))=0,则实数a 的值为________.解析:因为函数f (x )=⎩⎪⎨⎪⎧x 2,x >0,x +1,x ≤0,g (x )=log 2x ,所以g (2)=log 22=1,f (g (2))=f (1)=1, 由f (a )+f (g (2))=0,得f (a )=-1.当a >0时,因为f (a )=a 2>0,所以此时不符合题意; 当a ≤0时,f (a )=a +1=-1,解得a =-2. 答案:-26.如图放置的边长为1的正方形PABC 沿x 轴滚动,点B 恰好经过原点,设顶点P (x ,y )的轨迹方程是y =f (x ),则对函数y =f (x )有下列判断:①函数y =f (x )是偶函数;②对任意的x ∈R ,都有f (x +2)=f (x -2);③函数y =f (x )在区间[2,3]上单调递减;④函数y =f (x )在区间[4,6]上是减函数.其中判断正确的序号是________.解析:如图,从函数y =f (x )的图象可以判断出,图象关于y 轴对称,每4个单位图象重复出现一次,在区间[2,3]上,随x 增大,图象是往上的,在区间[4,6)上图象是往下的,所以①②④正确,③错误.答案:①②④。

2018年高考数学(理)二轮专题复习突破精练:专题对点练2 函数与方程思想、数形结合思想 Word版含解析

2018年高考数学(理)二轮专题复习突破精练:专题对点练2 函数与方程思想、数形结合思想 Word版含解析

专题对点练2函数与方程思想、数形结合思想一、选择题1、设a>1,若对于任意的x∈[a,2a],都有y∈[a,a2]满足方程log a x+log a y=3,这时a的取值的集合为( )A、{a|1<a≤2}B、{a|a≥2}C、{a|2≤a≤3}D、{2,3}答案 B解析依题意得y=,当x∈[a,2a]时,y=、由题意可知⊆[a,a2],即有a2≥a,又a>1,所以a≥2、故选B、2、椭圆+y2=1的两个焦点为F1,F2,过F1作垂直于x轴的直线与椭圆相交,其一交点为P,则|PF2|=( )A、B、C、D、4答案 C解析如图,令|F1P|=r1,|F2P|=r2,则故r2=、3、若关于x的方程2sin=m在上有两个不等实根,则m的取值范围是( )A、(1,)B、[0,2]C、[1,2)D、[1,]答案 C解析方程2sin=m可化为sin,当x∈时,2x+,画出函数y=f(x)=sin在x∈上的图象如图所示:由题意,得<1,则m的取值范围是[1,2),故选C、4、函数f(x)是定义在区间(0,+∞)上的可导函数,其导函数为f'(x),且满足xf'(x)+2f(x)>0,则不等式的解集为( )A、{x|x>-2 011}B、{x|x<-2 011}C、{x|-2 016<x<-2 011}D、{x|-2 011<x<0}答案 C解析由xf'(x)+2f(x)>0,则当x∈(0,+∞)时,x2f'(x)+2xf(x)>0,即[x2f(x)]'=x2f'(x)+2xf(x),所以函数x2f(x)为单调递增函数,由,即(x+2 016)2f(x+2 016)<52f(5),所以0<x+2 016<5,所以不等式的解集为{x|-2 016<x<-2 011},故选C、5、对任意a∈[-1,1],函数f(x)=x2+(a-4)x+4-2a的值总大于零,则x的取值范围是( )A、{x|1<x<3}B、{x|x<1或x>3}C、{x|1<x<2}D、{x|x<1或x>2}答案 B解析由f(x)=x2+(a-4)x+4-2a>0,得a(x-2)+x2-4x+4>0、令g(a)=a(x-2)+x2-4x+4,由a∈[-1,1]时,不等式f(x)>0恒成立,即g(a)>0在[-1,1]上恒成立、则解得x<1或x>3、6、抛物线y2=2px(p>0)的焦点为圆x2+y2-6x=0的圆心,过圆心且斜率为2的直线l与抛物线相交于M,N两点,则|MN|= ( ) A、30 B、25 C、20 D、15答案 D解析圆x2+y2-6x=0的圆心(3,0),焦点F(3,0),抛物线y2=12x,设M(x1,y1),N(x2,y2)、直线l的方程为y=2x-6,联立即x2-9x+9=0,∴x1+x2=9,∴|MN|=x1+x2+p=9+6=15,故选D、7、若0<x1<x2<1,则( )A、>ln x 2-ln x1B、<ln x2-ln x1C、x 2>x1D、x2<x1答案 C解析设f(x)=e x-ln x(0<x<1),则f'(x)=e x-、令f'(x)=0,得xe x-1=0、根据函数y=e x与y=的图象(图略)可知两函数图象交点x0∈(0,1),因此函数f(x)在(0,1)内不是单调函数,故A选项不正确;同理可知B选项也不正确;设g(x)=(0<x<1),则g'(x)=、又0<x<1,∴g'(x)<0、∴函数g(x)在(0,1)上是减函数、又0<x1<x2<1,∴g(x1)>g(x2)、∴x2>x1、故C选项正确,D项不正确、8、已知在正四棱锥S-ABCD中,SA=2,则当该棱锥的体积最大时,它的高为( )A、1B、C、2D、3答案 C解析设正四棱锥S-ABCD的底面边长为a(a>0),则高h=,所以体积V=a2h=、设y=12a4-a6(a>0),则y'=48a3-3a5、令y'>0,得0<a<4;令y'<0,得a>4、故函数y在(0,4]上单调递增,在[4,+∞)内单调递减、可知当a=4时,y取得最大值,即体积V取得最大值,此时h==2,故选C、9、(2017河南郑州一中质检一,理12)已知函数f(x)=x+xln x,若k∈Z,且k(x-1)<f(x)对任意的x>1恒成立,则k的最大值为( )A、2B、3C、4D、5答案 B解析由k(x-1)<f(x)对任意的x>1恒成立,得k<(x>1),令h(x)=(x>1),则h'(x)=,令g(x)=x-ln x-2=0,得x-2=ln x,画出函数y=x-2,y=ln x的图象如图,g(x)存在唯一的零点,又g(3)=1-ln 3<0,g(4)=2-ln 4=2(1-ln 2)>0,∴零点属于(3,4),∴h(x)在(1,x0)内单调递减,在(x0,+∞)内单调递增,而3<h(3)=<4,<h(4)=<4,∴h(x0)<4,k∈Z,∴k的最大值是3、二、填空题10、使log2(-x)<x+1成立的x的取值范围是、答案 (-1,0)解析在同一坐标系中,分别作出y=log2(-x),y=x+1的图象,由图可知,x的取值范围是(-1,0)、11、若函数f(x)=(a>0,且a≠1)的值域是[4,+∞),则实数a的取值范围是、答案 (1,2]解析由题意f(x)的图象如图,则∴1<a≤2、12、已知奇函数f(x)的定义域是{x|x≠0,x∈R},且在(0,+∞)内单调递增,若f(1)=0,则满足x·f(x)<0的x的取值范围是、答案 (-1,0)∪(0,1)解析作出符合条件的一个函数图象草图如图所示,由图可知x·f(x)<0的x的取值范围是(-1,0)∪(0,1)、13、已知圆M与y轴相切,圆心在直线y=x上,并且在x轴上截得的弦长为2,则圆M的标准方程为、答案 (x-2)2+(y-1)2=4或(x+2)2+(y+1)2=4解析设圆M的标准方程为(x-a)2+(y-b)2=r2,由题意可得解得∴圆M的标准方程为(x-2)2+(y-1)2=4或(x+2)2+(y+1)2=4、14、已知P是直线l:3x+4y+8=0上的动点,PA,PB是圆x2+y2-2x-2y+1=0的两条切线,A,B 是切点,C是圆心,则四边形PACB面积的最小值为、答案 2解析如图,S Rt△PAC=|PA|·|AC|=|PA|,当CP⊥l时,|PC|==3,∴此时|PA|min==2、∴(S四边形PACB)min=2(S△PAC)min=2、15、我们把函数y1=x2-3x+2(x>0)沿y轴翻折得到函数y2,函数y1与函数y2的图象合起来组成函数y3的图象,若直线y=kx+2与函数y3的图象刚好有两个交点,则满足条件的k的值为、答案 (-3,3)解析依题意,作出函数y3的图象,如下图:∵函数y1=x2-3x+2(x>0)沿y轴翻折得到函数y2,∴y2=x2+3x+2(x<0)、若要直线y=kx+2与函数y3的图象刚好有两个交点,则需直线y=kx+2与y1,y2均有交点、将直线y=kx+2分别代入y1,y2中得x2-(3+k)x=0,x2+(3-k)x=0、解得x1=3+k,x2=k-3,x3=0(舍去),∵y1=x2-3x+2(x>0),∴x1=3+k>0;∵y2=x2+3x+2(x<0),∴x2=k-3<0、联立得解得-3<k<3、三、解答题16、已知数列{a n}是等差数列,a1=1,a2+a3+…+a10=144、(1)求数列{a n}的通项a n;(2)设数列{b n}的通项b n=,记S n是数列{b n}的前n项和,若n≥3时,有S n≥m恒成立,求m的最大值、解 (1)∵{a n}是等差数列,a1=1,a2+a3+…+a10=144,∴S10=145,∴S10=、∴a10=28,∴公差d=3、∴a n=3n-2、(2)由(1)知b n=,∴S n=b1+b2+…+b n=,∴S n=、∵S n+1-S n==>0,∴数列{S n}是递增数列、当n≥3时,(S n)min=S3=,依题意,得m≤,∴m的最大值为、。

2018届高考数学二轮复习阶段提升突破练二理新人教A版20180314261

2018届高考数学二轮复习阶段提升突破练二理新人教A版20180314261

阶段提升突破练(二)(数列)(60分钟100分)一、选择题(每小题5分,共40分)1.已知等比数列{a n}满足a1=3,a2a3a4=54,则a3a4a8=()A.162B.±162C.108D.±108【解析】选C.设等比数列{a n}的公比为q,因为a1=3,a2a3a4=54,所以33q6=54,可得q6=2.则a3a4a8=54q6=108.2.已知等比数列{a n}中,a1+a6=33,a2a5=32,且公比q>1,则a2+a7=()A.129B.128C.66D.36【解析】选C.由a1+a6=33,,a2a5=32=a1a6,得a1=1,a6=32,则a2+a7=66.3.已知等比数列{a n}中,a3=2,a4a6=16,则=()A.2B.4C.8D.16【解题导引】设等比数列{a n}的公比为q,由于a3=2,a4a6=16,可得a1q2=2,q8=16,解得q2.可得=q4.【解析】选B.设等比数列{a n}的公比为q,因为a3=2,a4a6=16,所以a1q2=2,q8=16,解得q2=2.则= =q4=4.4.(2017·新余二模)《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等,问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为()A. 钱B. 钱C. 钱D. 钱【解析】选B.依题意设甲、乙、丙、丁、戊所得分别为a-2d,a-d,a,a+d,a+2d,则由题意可知,a-2d+a-d=a+a+d+a+2d,即a=-6d,又a-2d+a-d+a+a+d+a+2d=5a=5,所以a=1,则a-2d=a-2×= a= .5.已知数列{a n}的前n项和为S n,且a1=2,a n+1=S n+1(n∈N*),则S5=()A.31B.42C.37D.47【解题导引】a n+1=S n+1(n∈N*),可得S n+1-S n=S n+1(n∈N*),变形为:S n+1+1=2(S n+1)(n∈N*),利用等比数列的通项公式即可得出.【解析】选D.因为a n+1=S n+1(n∈N*),所以S n+1-S n=S n+1(n∈N*),变形为:S n+1+1=2(S n+1)(n∈N*),所以数列{S n+1}为等比数列,首项为3,公比为2.则S5+1=3×24,解得S5=47.6.若数列{a n}满足a1=1,且对于任意的n∈N*都有a n+1=a n+n+1,则+ +…++等于()A. B. C. D.【解析】选C.由a n+1=a n+n+1得,a n+1-a n=n+1,则a2-a1=1+1,a3-a2=2+1,a4-a3=3+1,…,a n-a n-1=(n-1)+1,以上等式相加,得a n-a1=1+2+3+…+(n-1)+n-1,把a1=1代入上式得,a n=1+2+3+…+(n-1)+n= ,= =2 ,则+ +…++ =2[ + +…++]=2 = .7.已知数列{a n}前n项和满足S n-S n-1= + (n≥2),a1=1,则a n=()A.nB.2n-1C.n2D.2n2-1【解题导引】利用平方差公式对已知数列的递推式化简整理,求得- =1,根据等差数列的定义判断出数列{ }是一个首项为1,公差为1的等差数列.求得数列{ }的通项公式,再由a n=S n-S n-1求得a n.【解析】选B.由S n-S n-1= + ,得( + )( - ) = + ,所以- =1,所以数列{ }是一个首项为1,公差为1的等差数列.所以=1+(n-1)×1=n,所以S n=n2.当n≥2,a n=S n-S n-1=n2-(n -1)2=2n-1.a1=1适合上式,∴a n=2n-1.8.已知T n为数列的前n项和,若n>T10+1013恒成立,则整数n的最小值为()A.1026B.1025C.1024D.1023【解题导引】利用等比数列的求和公式可得T n,即可求解.【解析】选C.因为=1+ ,所以T n=n+1- ,所以T10+1013=11- +1013=1024-,又n>T10+1013恒成立,所以整数n的最小值为1024.【加固训练】1.已知数列{a n}中,前n项和为S n,且S n= a n,则的最大值为()A.-3B.-1C.3D.1【解题导引】利用递推关系可得= =1+ ,再利用数列的单调性即可得出. 【解析】选C.因为S n= a n,所以n≥2时,a n=S n-S n-1= a n- a n-1,化为:= =1+ ,由数列单调递减,可得:n=2时,取得最大值2.所以的最大值为3.2.已知a>0,b>0,且为3a与3b的等比中项,则的最大值为()A. B. C. D.【解题导引】由等比中项推导出a+b=1,从而= == ,由此利用基本不等式能求出的最大值.【解析】选B.因为a>0,b>0,且为3a与3b的等比中项,所以3a·3b=3a+b=( )2=3,所以a+b=1,所以= == ≤= .当且仅当= 时,取等号,所以的最大值为.二、填空题(每小题5分,共20分)9.已知等比数列{a n}的各项均为正数,且满足:a1a7=4,则数列{log2a n}的前7项之和为__________.【解题导引】由等比数列的性质可得:a1a7=a2a6=a3a5=4,再利用指数与对数的运算性质即可求解.【解析】由等比数列的性质可得:a1a7=a2a6=a3a5=4,所以数列{log2a n}的前7项和为log2a1+log2a2+…+log2a7=log2(a1a2…a7)=log227=7.答案:7【加固训练】若数列{a n}满足a1=2,a n=1- ,则a2017=__________.【解题导引】数列{a n}满足a1=2,a n=1- ,可得a n+3=a n,利用周期性即可得出.【解析】数列{a n}满足a1=2,a n=1- ,可得a2=1- = ,a3=1-2=-1,a4=1-(-1)=2,a5=1-= ,…,所以a n+3=a n,数列的周期为3.所以a2017=a672×3+1=a1=2.答案:210.设T n为数列{a n}的前n项之积,即T n=a1a2a3…a n-1a n,若a1=2,- =1,当T n=11时,n的值为______.【解题导引】由题意可得数列是以=1为首项,以1为公差的等差数列,求其通项公式,可得数列{a n}的通项公式,再由累积法求得T n,则n值可求.【解析】由a1=2,- =1,可得数列是以=1为首项,以1为公差的等差数列,则=1+(n-1)×1=n,所以a n=1+ = ,则T n=a1a2a3…a n-1a n= ·…=n+1,由T n=n+1=11,得n=10.答案:1011.若数列{a n}满足a1= ,a n+1=220 ,则a1a2…a n的最小值为__________________.【解析】依题易知:a n>0,log2a n+1=20+2log2a n⇒(log2a n+1+20)=2(log2a n+20),则{log2a n+20} 是首项为1,公比为2的等比数列,log2a n+20=2n-1⇒a n= ,a1a2…a n=…= ,令b n=2n-1-20n,b n+1-b n=2n-20≥0⇒n ≥5,{b n}递增,b5=-69最小,a1a2…a n的最小值为2-69.答案:2-69【加固训练】正项数列{a n}满足:a1=1,a2=2,2 = + (n∈N*,n≥2),则a7=__________.【解题导引】由2 = + (n∈N*,n≥2),可得数列{ }是等差数列,通过求出数列{ }的通项公式,求得a n,再求a7.【解析】由2 = + (n∈N*,n≥2),可得数列{ }是等差数列,公差d= -=3,首项=1,所以=1+3×(n-1)=3n-2,a n= ,所以a7= .答案:12.高斯是德国著名的数学家,享有“数学王子”之称,以他的名字“高斯”命名的成果达110 个,设x∈R,用[x]表示不超过x的最大整数,并用{x}=x-[x]表示x的非负纯小数,则y=[x]称为高斯函数,已知数列{a n}满足:a1= ,a n+1=[a n]+ (n∈N*),则a2017=__________.【解题导引】由于:a1= ,a n+1=[a n]+ (n∈N*),经过计算可得:数列{a2k-1}成等差数列,首项为,公差为3.即可得出.【解析】满足:a1= ,a n+1=[a n]+ (n∈N*),所以a2=1+ =2+ ,a3=2+ =3+ =4+( -1),a4=4+ =5+ ,a5=5+ =6+ =7+( -1),a6=7+ =8+ ,a7=8+ =9+ =10+( -1),…,可得:数列{a2k-1}成等差数列,首项为,公差为3.则a2017= +3×(1009-1)=3024+ .答案:3024+【加固训练】已知数列{a n}满足:2a1+22a2+23a3+… +2n a n=n(n∈N*),数列的前n项和为S n,则S1·S2·S3…S10=__________.【解题导引】根据2a1+22a2+23a3+…+2n a n=n,求出a n= ,再利用对数的运算性质和裂项法即可得到= - ,裂项求和得到S n,代值计算即可.【解析】因为2a1+22a2+23a3+…+2n a n=n,所以2a1+22a2+23a3+…+2n-1a n-1=n-1,所以2n a n=1,所以a n= ,所以== = - ,所以S n=1- + - +…+-=1- = ,所以S1·S2·S3…S10= ×××…××= .答案:三、解答题(每小题10分,共40分)13.(2017·全国卷Ⅲ)设数列满足a1+3a2+…+(2n-1)a n=2n.(1)求的通项公式.(2)求数列的前n项和.【解析】(1)由已知可得:a1+3a2+…+(2n-1)a n=2n,所以当n>1时有a1+3a2+…+(2n-3)a n-1=2(n-1),所以两式作差可得:(2n-1)a n=2,即a n= (n>1,且n∈N*),又因为n=1时,a1=2符合,所以a n= (n∈N*).(2)设b n= ,则b n= = - ,所以数列的前n项和为S n=b1+b2+…+b n=1- + - +…+-=1- = .14.已知数列{a n}的前n项和为S n,S n= (n∈N+).(1)求数列{a n}的通项公式.(2)若数列{b n}满足a n·b n=log3a4n+1,记T n=b1+b2+b3+…+b n,求证:T n< (n∈N+).【解题导引】(1)利用递推关系:当n=1时,a1=S1,当n≥2时,a n=S n-S n-1,利用等比数列的通项公式即可得出.(2)求出b n= =(4n+1) ,利用“错位相减法”与等比数列的前n项和公式即可得出.【解析】(1)由S n= (n∈N+)可知,当n=1时,a1=S1,2S1+3=3a1,得a1=3.n=2时,2S2+3=3a2,即2(a1+a2)+3=3a2,解得a2=9.当n≥2时,a n=S n-S n-1,因为2S n+3=3a n(n∈N+),2S n-1+3=3a n-1,两式相减可得2a n= 3a n-3a n-1,所以a n=3a n-1,所以a n=3n.对n=1也成立.故数列{a n}的通项公式为a n=3n.(2)由a n·b n=log3a4n+1=log334n+1=4n+1,得b n= =(4n+1) ,所以T n=b1+b2+b3+…+b n=5·+9·+…+(4n+1)·,T n=5·+9·+…+(4n+1)·,两式相减得,T n= +4×[+ +…+]-(4n+1)·= +4×-(4n+1)·,化简可得T n= - (4n+7)·< .15.在数1和100之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2个数的乘积记作T n,再令a n=lgT n,n≥1.(1)求数列{a n}的通项公式.(2)设b n=(a n-2)·2n-1,求数列{b n}的前n项和S n.【解析】(1)t1,t2,…t n+2构成递增的等比数列,其中t1=1,t n+2=100,则T n=t1·t2…t n+2=t n+2·t n+1…t1,又,t n+2·t1=t n+ 1·t2=…=t1·t n+2=102,得=102(n+2),a n=lgT n=lg10n+2=n+2,n≥1.(2)b n=n·2n-1,故S n=1×20+2×21+3×22+…+(n-1)×2n-2+n×2n-1,2S n=1×21+2×22+3×23+…+(n-1)×2n-1+n×2n,上述两式相减,得-S n=1×20+1×21+1×22+…+1×2n-1-n×2n,整理,得S n=n·2n-2n+1.16.若数列{a n}满足+ +…+= - .(1)求通项公式a n.(2)求数列{a n}的前n项和.【解析】(1)因为+ +…+= - ,所以当n≥2时,+ +…+= - ,11两式相减得:= - = ,所以a n=(2n-1)·(n≥2),又因为= - =- 不满足上式,所以a n=(2)当n≥2时,S n=- +3×+5×+7×+…+(2n-1)×,S n=- +3×+5×+…+(2n-3)·+(2n-1)·,两式相减得S n=- + +2[ + +…+]-(2n-1)·= +2·-(2n-1)·= + -10·-(2n-1)·= -(2n+9)·,所以S n= -(10n+45)·(n≥2).12当n=1时,也符合上式,所以S n=-(10n+45)·.13。

2018届高三理科数学二轮复习跟踪强化训练全集及答案(共33份)

跟踪强化训练(一)一、选择题1.(2017·银川模拟)已知非零向量m ,n 满足4|m |=3|n |,cos 〈m ,n 〉=13,若n ⊥(t m +n ),则实数t 的值为( ) A .4 B .-4 C.94 D .-94[解析] ∵n ⊥(t m +n ),∴n ·(t m +n )=0, 即t m ·n +|n |2=0,∴t |m ||n |cos 〈m ,n 〉+|n |2=0. 又4|m |=3|n |,∴t ×34|n |2×13+|n |2=0,解得t =-4.故选B. [答案] B2.(2017·沈阳模拟)等差数列{a n }的前n 项和为S n ,已知a 1=13,S 3=S 11,当S n 最大时,n 的值是( )A .5B .6C .7D .8[解析] 解法一:由S 3=S 11,得a 4+a 5+…+a 11=0,根据等差数列的性质,可得a 7+a 8=0,根据首项a 1=13可推知数列{a n }递减,从而得到a 7>0,a 8<0,故n =7时,S n 最大.故选C.解法二:设{a n }的公差为d ,由S 3=S 11,可得3a 1+3d =11a 1+55d ,把a 1=13代入,得d =-2,故S n =13n -n (n -1)=-n 2+14n ,根据二次函数的性质,知当n =7时,S n 最大.故选C.解法三:根据a 1=13,S 3=S 11,知这个数列的公差不等于零,且这个数列的和先是单调递增然后单调递减,根据公差不为零的等差数列的前n 项和是关于n的二次函数,以及二次函数图象的对称性,得只有当n=3+112=7时,S n取得最大值.故选C.[答案] C3.(2017·武汉市武昌区高三调研考试)已知函数f(x)=2ax-a+3,若∃x0∈(-1,1),使得f(x0)=0,则实数a的取值范围是( ) A.(-∞,-3)∪(1,+∞) B.(-∞,-3)C.(-3,1) D.(1,+∞)[解析] 依题意可得f(-1)·f(1)<0,即(-2a-a+3)(2a-a+3)<0,解得a<-3或a>1,故选A.[答案] A4.(2017·济南一模)方程m+1-x=x有解,则m的最大值为( ) A.1 B.0 C.-1 D.-2[解析] 由原式得m=x-1-x,设1-x=t(t≥0),则m=1-t2-t=54-⎝⎛⎭⎪⎫t+122,∵m=54-⎝⎛⎭⎪⎫t+122在[0,+∞)上是减函数.∴t=0时,m的最大值为1,故选A.[答案] A5.(2017·辽宁省沈阳市高三教学质量监测)已知定义域为{x|x≠0}的偶函数f(x),其导函数为f′(x),对任意正实数x满足xf′(x)>-2f(x),若g(x)=x2f(x),则不等式g(x)<g(1)的解集是( )A.(-∞,1) B.(-∞,0)∪(0,1)C.(-1,1) D.(-1,0)∪(0,1)[解析] 因为g(x)=x2f(x),所以g′(x)=x2f′(x)+2xf(x)=x[xf′(x)+2f (x )],由题意知,当x >0时,xf ′(x )+2f (x )>0,所以g ′(x )>0,所以g (x )在(0,+∞)上单调递增,又f (x )为偶函数,则g (x )也是偶函数,所以g (x )=g (|x |),由g (x )<g (1)得g (|x |)<g (1),所以⎩⎪⎨⎪⎧|x |<1,x ≠0,则x ∈(-1,0)∪(0,1).故选D.[答案] D6.(2017·杭州质检)设O 为坐标原点,P 是以F 为焦点的抛物线y 2=2px (p >0)上任意一点,M 是线段PF 上的点,且|PM |=2|MF |,则直线OM 的斜率的最大值为( )A.33B.23C.22D .1 [解析] 如图所示,设P (x 0,y 0)(y 0>0),则y 20=2px 0,即x 0=y 22p.设M (x ′,y ′),由PM →=2MF →,得⎩⎪⎨⎪⎧x ′-x 0=2⎝ ⎛⎭⎪⎫p 2-x ′,y ′-y 0=-y ,化简可得⎩⎪⎨⎪⎧x ′=p +x 03,y ′=y3.∴直线OM 的斜率为k =y 03p +x 03=y 0p +y 202p =2p 2p 2y 0+y 0≤2p 22p2=22(当且仅当y 0=2p 时取等号).[答案] C 二、填空题7.(2017·厦门一中月考)设曲线y =x +1x -1在点(3,2)处的切线与直线ax +y +3=0垂直,则a 等于________.[解析] y ′=x --x +x -2=-2x -2,将x =3代入,得曲线y=x +1x -1在点(3,2)处的切线斜率k =-12,故与切线垂直的直线的斜率为2,即-a =2,得a =-2.[答案] -28.(2017·南昌模拟)已知双曲线E :x 2a 2-y 2b2=1(a >0,b >0),矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是________.[解析] 利用双曲线的性质建立关于a ,b ,c 的等式求解.如图,由题意知|AB |=2b 2a,|BC |=2c .又2|AB |=3|BC |,∴2×2b 2a=3×2c ,即2b 2=3ac ,∴2(c 2-a 2)=3ac ,两边同除以a 2并整理,得2e 2-3e -2=0,解得e =2(负值舍去).[答案] 29.(2017·衡水中学检测)已知正四棱锥的体积为323,则正四棱锥的侧棱长的最小值为________.[解析] 如图所示,设正四棱锥的底面边长为a ,高为h .则该正四棱锥的体积V =13a 2h =323,故a 2h =32,即a 2=32h .则其侧棱长为l =⎝ ⎛⎭⎪⎪⎫2a 22+h 2=16h+h 2.令f (h )=16h+h 2,则f ′(h )=-16h 2+2h =2h 3-16h2, 令f ′(h )=0,解得h =2.显然当h ∈(0,2)时,f ′(h )<0,f (h )单调递减; 当h ∈(2,+∞)时,f ′(h )>0,f (h )单调递增. 所以当h =2时,f (h )取得最小值f (2)=162+22=12, 故其侧棱长的最小值l =12=2 3. [答案] 2 3 三、解答题10.(2017·湖南湘中联考)设锐角三角形ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a =2b sin A .(1)求B 的大小;(2)求cos A +sin C 的取值范围. [解] (1)∵a =2b sin A ,根据正弦定理得sin A =2sin B sin A ,∵sin A ≠0, ∴sin B =12,又△ABC 为锐角三角形,∴B =π6.(2)∵B =π6,∴cos A +sin C =cos A +sin ⎝ ⎛⎭⎪⎫π-π6-A=cos A +sin ⎝ ⎛⎭⎪⎫π6+A=cos A +12cos A +32sin A =3sin ⎝⎛⎭⎪⎫A +π3.由△ABC 为锐角三角形知,A +B >π2,∴π3<A <π2,∴2π3<A +π3<5π6, ∴12<sin ⎝ ⎛⎭⎪⎫A +π3<32,∴32<3sin ⎝⎛⎭⎪⎫A +π3<32,∴cos A +sin C 的取值范围为⎝ ⎛⎭⎪⎪⎫32,32. 11.(2017·合肥模拟)设等差数列{a n }的前n 项和为S n ,已知a 1=9,a 2为整数,且S n ≤S 5.(1)求{a n }的通项公式;(2)设数列⎩⎨⎧⎭⎬⎫1a n a n +1的前n 项和为T n ,求证:T n ≤49. [解] (1)由a 1=9,a 2为整数可知,等差数列{a n }的公差d 为整数. 又S n ≤S 5,∴a 5≥0,a 6≤0, 于是9+4d ≥0,9+5d ≤0, 解得-94≤d ≤-95.∵d 为整数,∴d =-2. 故{a n }的通项公式为a n =11-2n . (2)证明:由(1),得1a n a n +1=1-2n-2n=12⎝⎛⎭⎪⎫19-2n -111-2n ,∴T n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫17-19+⎝ ⎛⎭⎪⎫15-17+…+⎝⎛⎭⎪⎫19-2n -111-2n =12⎝⎛⎭⎪⎫19-2n -19. 令b n =19-2n ,由函数f (x )=19-2x 的图象关于点(4.5,0)对称及其单调性,知0<b 1<b 2<b 3<b 4,b 5<b 6<b 7<…<0,∴b n ≤b 4=1.∴T n ≤12×⎝⎛⎭⎪⎫1-19=49.12.(2017·长沙模拟)已知椭圆E 的中心在原点,焦点F 1,F 2在y 轴上,离心率等于223,P 是椭圆E 上的点.以线段PF 1为直径的圆经过F 2,且9PF 1→·PF 2→=1.(1)求椭圆E 的方程;(2)作直线l 与椭圆E 交于两个不同的点M ,N .如果线段MN 被直线2x +1=0平分,求直线l 的倾斜角的取值范围.[解] (1)依题意,设椭圆E 的方程为y 2a 2+x 2b2=1(a >b >0),半焦距为c .∵椭圆E 的离心率等于223,∴c =223a ,b 2=a 2-c 2=a 29.∵以线段PF 1为直径的圆经过F 2, ∴PF 2⊥F 1F 2.∴|PF 2|=b 2a.∵9PF 1→·PF 2→=1,∴9|PF 2→|2=9b4a2=1.由⎩⎪⎨⎪⎧b 2=a 29,9b 4a 2=1得⎩⎪⎨⎪⎧a 2=9,b 2=1,∴椭圆E 的方程为y 29+x 2=1. (2)∵直线2x +1=0与x 轴垂直,且由已知得直线l 与直线x =-12相交,∴直线l 不可能与x 轴垂直,∴设直线l 的方程为y =kx +m .由⎩⎪⎨⎪⎧y =kx +m ,9x 2+y 2=9,得(k 2+9)x 2+2kmx +(m 2-9)=0.∵直线l 与椭圆E 交于两个不同的点M ,N , ∴Δ=4k 2m 2-4(k 2+9)(m 2-9)>0,即m 2-k 2-9<0. 设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-2km k 2+9.∵线段MN 被直线2x +1=0平分, ∴2×x 1+x 22+1=0,即-2kmk 2+9+1=0. 即⎩⎪⎨⎪⎧m 2-k 2-9<0,-2kmk 2+9+1=0,得⎝⎛⎭⎪⎫k 2+92k 2-(k 2+9)<0. ∵k 2+9>0,∴k 2+94k2-1<0,∴k 2>3,解得k >3或k <- 3.∴直线l 的倾斜角的取值范围为⎝ ⎛⎭⎪⎫π3,π2∪⎝ ⎛⎭⎪⎫π2,2π3.跟踪强化训练(二)一、选择题1.(2017·沈阳质检)方程sinπx =x4的解的个数是( )A .5B .6C .7D .8[解析] 在同一平面直角坐标系中画出y 1=sinπx 和y 2=x4的图象,如右图:观察图象可知y 1=sinπx 和y 2=x4的图象在第一象限有3个交点,根据对称性可知,在第三象限也有3个交点,再加上原点,共7个交点,所以方程sinπx =x4有7个解,故选C.[答案] C2.(2017·郑州模拟)若实数x ,y 满足等式x 2+y 2=1,那么yx -2的最大值为( )A.12B.33C.32D. 3[解析] 设k =yx -2,如图所示,k PB =tan ∠OPB =122-12=33,k PA =-tan ∠OPA =-33,且k PA ≤k ≤k PB ,∴k max =33,故选B.[答案] B3.(2017·宝鸡质检)若方程x +k =1-x 2有且只有一个解,则k 的取值范围是( )A .[-1,1)B .k =± 2C .[-1,1]D .k =2或k ∈[-1,1)[解析] 令y 1=x +k ,y 2=1-x 2,则x 2+y 2=1(y ≥0).作出图象如图:而y 1=x +k 中,k 是直线的纵截距,由图知:方程有一个解⇔直线与上述半圆只有一个公共点⇔k =2或-1≤k <1,故选D.[答案] D4.(2016·广州检测)已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根,则实数k 的取值范围是( )A.⎝⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫12,1 C .(1,2) D .(2,+∞)[解析] 先作出函数f (x )=|x -2|+1的图象,如图所示,当直线g (x )=kx 与直线AB 平行时斜率为1,当直线g (x )=kx 过A 点时斜率为12,故f (x )=g (x )有两个不相等的实根时,k 的范围为⎝ ⎛⎭⎪⎫12,1,故选B.[答案] B5.(2017·西安二模)若方程x 2+(1+a )x +1+a +b =0的两根分别为椭圆、双曲线的离心率,则ba的取值范围是( )A .(-2,-1)B .(-∞,-2)∪(-1,+∞)C.⎝⎛⎭⎪⎫-2,-12D .(-∞,-2)∪⎝ ⎛⎭⎪⎫-12,+∞[解析] 由题意可知,方程的一个根位于(0,1)之间,另一个根大于1.设f (x )=x 2+(1+a )x +1+a +b ,则⎩⎪⎨⎪⎧f,f,即⎩⎪⎨⎪⎧1+a +b >0,2a +b +3<0.作出可行域如图中阴影部分所示.ba可以看作可行域内的点(a ,b )与原点O (0,0)连线的斜率,由⎩⎪⎨⎪⎧2a +b +3=0,a +b +1=0可解得A (-2,1),过点A 、O 作l 1,过点O 作平行于直线2a +b +3=0的直线l 2,易知kl 2<b a <kl 1,又kl 1=-12,kl 2=-2,∴-2<b a<-12.故选C. [答案] C6.(2017·南宁一模)在平面直角坐标系中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足|CD →|=1,则|OA →+OB →+OD →|的取值范围是( )A .[4,6]B .[19-1,19+1]C .[23,27]D .[7-1,7+1][解析] 设D (x ,y ),则由|CD →|=1,C (3,0),得(x -3)2+y 2=1. 又∵OA →+OB →+OD →=(x -1,y +3), ∴|OA →+OB →+OD →| =x -2+y +32.∴|OA →+OB →+OD →|的几何意义是点P (1,-3)与圆(x -3)2+y 2=1上点之间的距离(如图),由|PC |=7知,|OA →+OB →+OD →|的最大值是1+7,最小值是7-1,故选D.[答案] D 二、填空题7.(2017·青岛二模)已知奇函数f (x )的定义域是{x |x ≠0,x ∈R },且在(0,+∞)上单调递增,若f (1)=0,则满足x ·f (x )<0的x 的取值范围是________.[解析] 作出符合条件的一个函数图象草图即可,由图可知x ·f (x )<0的x 的取值范围是(-1,0)∪(0,1).[答案] (-1,0)∪(0,1)8.(2017·合肥质检)已知函数f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x +34,x ≥2,log 2x ,0<x <2.若函数g (x )=f (x )-k 有两个不同的零点,则实数k 的取值范围是________.[解析] 画出函数f (x )的图象如图.要使函数g (x )=f (x )-k 有两个不同零点,只需y =f (x )与y =k 的图象有两个不同的交点,由图象易知k ∈⎝ ⎛⎭⎪⎫34,1.[答案] ⎝ ⎛⎭⎪⎫34,19.(2017·山西四校模拟)设等差数列{a n }的前n 项和为S n ,若S 4≥10,S 5≤15,则a 4的最大值为________.[解析]由题意可得⎩⎪⎨⎪⎧4a 1+4×32d ≥10,5a 1+5×42d ≤15,即⎩⎪⎨⎪⎧2a 1+3d ≥5,a 1+2d ≤3.又a 4=a 1+3d ,故此题可转化为线性规划问题.画出可行域如图所示.作出直线a 1+3d =0,经平移可知当直线a 4=a 1+3d 过可行域内点A (1,1)时,截距最大,此时a 4取最大值4.[答案] 4 三、解答题10.(2017·海口模拟)设关于θ的方程3cos θ+sin θ+a =0在区间(0,2π)内有相异的两个实数α、β.(1)求实数a 的取值范围; (2)求α+β的值.[解] (1)原方程可化为sin ⎝ ⎛⎭⎪⎫θ+π3=-a2,作出函数y =sin ⎝⎛⎭⎪⎫x +π3(x ∈(0,2π))的图象.由图知,方程在(0,2π)内有相异实根α,β的充要条件是⎩⎪⎨⎪⎧-1<-a2<1,-a 2≠32,即-2<a <-3或-3<a <2.(2)由图知:当-3<a <2,即-a 2∈⎝⎛⎭⎪⎪⎫-1,32时,直线y =-a 2与三角函数y =sin ⎝ ⎛⎭⎪⎫x +π3的图象交于C 、D 两点,它们中点的横坐标为7π6,所以α+β2=7π6, 所以α+β=7π3.当-2<a <-3,即-a 2∈⎝ ⎛⎭⎪⎪⎫32,1时,直线y =-a 2与三角函数y =sin ⎝ ⎛⎭⎪⎫x +π3的图象有两交点A 、B ,由对称性知,α+β2=π6,所以α+β=π3, 综上所述,α+β=π3或7π3.11.(2017·福州质检)已知圆C 的方程为(x -2)2+y 2=4,圆M 的方程为(x -2-5cos θ)2+(y -5sin θ)2=1(θ∈R ).过圆M 上任意一点P 作圆C 的两条切线PE 、PF ,切点分别为E 、F ,求PE →·PF →的最小值.[解] 由题意,可知圆心M 的坐标为(2+5cos θ,5sin θ),由此可知圆心M 的轨迹方程为(x -2)2+y 2=25,如图,经分析可知,只有当P 在线段MC 上时,才能够使PE →·PF →最小,此时PC =4,又Rt △PEC 中,EC =2,则PE =23,∠EPC =30°,∴PF =PE =23,∠EPF =2∠EPC =2×30°=60°,故(PE →·PF →)min =(23)2×cos60°=6.12.右面的图形无限向内延续,最外面的正方形的边长是2,从外到内,第n 个正方形与其内切圆之间的深色图形面积记为S n (n ∈N *).(1)证明:S n =2S n +1(n ∈N *); (2)证明:S 1+S 2+…+S n <8-2π.[证明] (1)设第n (n ∈N *)个正方形的边长为a n ,则其内切圆半径为a n2,第n +1个正方形的边长为22a n ,其内切圆半径为24a n ,所以S n =a 2n -π⎝ ⎛⎭⎪⎫a n 22=a 2n ⎝⎛⎭⎪⎫1-π4(n ∈N *),S n +1=⎝ ⎛⎭⎪⎪⎫22a n 2-π⎝ ⎛⎭⎪⎪⎫24a n 2=a 2n ⎝ ⎛⎭⎪⎫12-π8=12S n(n ∈N *).所以S n =2S n +1(n ∈N *).(2)由(1)可知,S 1=22×⎝ ⎛⎭⎪⎫1-π4=4-π,S 2=2-π2,…,S n =(4-π)⎝ ⎛⎭⎪⎫12n -1,所以T n =S 1+S 2+…+S n =(4-π)×⎝ ⎛⎭⎪⎫1+12+122+…+12n -1=(4-π)×1-⎝ ⎛⎭⎪⎫12n1-12=(8-2π)⎝⎛⎭⎪⎫1-12n<8-2π.跟踪强化训练(三)一、选择题1.(2017·武汉二模)设函数f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是( )A .(-∞,-3)B .(1,+∞)C .(-3,1)D .(-∞,-3)∪(1,+∞)[解析] 解法一:当a <0时,不等式f (a )<1为⎝ ⎛⎭⎪⎫12a -7<1,即⎝ ⎛⎭⎪⎫12a <8,即⎝ ⎛⎭⎪⎫12a<⎝ ⎛⎭⎪⎫12-3,因为0<12<1,所以a >-3,此时-3<a <0;当a ≥0时,不等式f (a )<1为a <1,所以0≤a <1.故a 的取值范围是(-3,1),故选C.解法二:取a =0, f (0)=0<1,符合题意,排除A ,B ,D. [答案] C2.(2017·大同二模)已知函数f (x )=mx 2+mx +1的定义域是实数集R ,则实数m 的取值范围是( )A .(0,4)B .[0,4]C .(0,4]D .[0,4)[解析] 因为函数f (x )=mx 2+mx +1的定义域是实数集R ,所以m ≥0,当m =0时,函数f (x )=1,其定义域是实数集R ;当m >0时,则Δ=m 2-4m ≤0,解得0<m ≤4.综上所述,实数m 的取值范围是0≤m ≤4.[答案] B3.(2017·太原模拟)4名大学生到三家企业应聘,每名大学生至多被一家企业录用,则每家企业至少录用1名大学生的情况有( )A .24种B .36种C .48种D .60种[解析] 每家企业至少录用一名大学生的情况有两类:一类是每家企业都录用一名,有C 34A 33=24(种);一类是其中一家企业录用了2名,有C 24A 33=36(种),所以一共有24+36=60(种),故选D.[答案] D4.以坐标原点为对称中心,两坐标轴为对称轴的双曲线的一条渐近线的倾斜角为π3,则该双曲线的离心率为( )A .2或 3B .2或233C.233D .2[解析] 当双曲线的焦点在x 轴上时,双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0),渐近线方程为y =±b a x ,所以b a =tan π3=3,故双曲线的离心率e =ca=1+b 2a2=1+3=2;当双曲线的焦点在y 轴上时,双曲线的标准方程为y 2a 2-x 2b 2=1(a >0,b >0),渐近线方程为y =±a b x ,所以a b =tan π3=3,则b a =33,所以双曲线的离心率e =ca= 1+b 2a2= 1+⎝ ⎛⎭⎪⎪⎫332=233.故选B. [答案] B5.(2016·浙江卷)已知a ,b >0且a ≠1,b ≠1,若log a b >1,则( ) A .(a -1)(b -1)<0 B .(a -1)(a -b )>0 C .(b -1)(b -a )<0D .(b -1)(b -a )>0[解析] ∵a ,b >0且a ≠1,b ≠1,∴当a >1,即a -1>0时,不等式log a b >1可化为a log a b >a 1,即b >a >1,∴(a -1)(a -b )<0,(b -1)(a -1)>0,(b -1)(b -a )>0.当0<a <1,即a -1<0时,不等式log a b >1可化为a log a b <a 1,即0<b <a <1, ∴(a -1)(a -b )<0,(b -1)(a -1)>0,(b -1)(b -a )>0. 综上可知,选D. [答案] D6.如图,过正方体ABCD -A 1B 1C 1D 1任意两条棱的中点作直线,其中与平面CB 1D 1平行的直线有( )A .18条B .20条C.21条D.22条[解析] 设各边的中点如图所示,其中与直线D1B1平行的有F1G1,E1H1,FG,EH,NL,共5条;与直线CD1平行的有G1M,GN,LE1,KE,H1F,共5条;与直线CB1平行的有F1M,FL,HK,NH1,GE1,共5条.分别取CB1,B1D1,CD1的中点如图,连接CO,D1P,B1T,与直线CO平行的有GH1,FE1,共2条;与直线D1P 平行的有H1L,NF,共2条;与直线B1T平行的有E1N,GL,共2条.故与平面CB1D1平行的直线共有5+5+5+2+2+2=21条.[答案] C二、填空题7.(2017·郑州模拟)过点P(3,4)与圆x2-2x+y2-3=0相切的直线方程为______________.[解析] 圆的标准方程为(x-1)2+y2=4.当直线的斜率不存在时,直线x=3适合;当直线的斜率存在时,不妨设直线的方程为y-4=k(x-3),即kx-y+4-3k=0.由|k-0+4-3k|k2+1=2,得k=34.此时直线方程为y-4=34(x-3),即3x-4y+7=0.综上所述,所求切线的方程为x =3或3x -4y +7=0. [答案] x =3或3x -4y +7=08.正三棱柱的侧面展开图是边长分别为6和4的矩形,则它的体积为________.[解析] 当矩形长、宽分别为6和4时,体积V =2×3×12×4=43;当长、宽分别为4和6时,体积V =43×233×12×6=833.综上所述,所求体积为43或833.[答案] 43或8339.(2017·深圳模拟)若函数f (x )=mx 2-x +ln x 存在单调递减区间,则实数m 的取值范围是________.[解析] f ′(x )=2mx -1+1x =2mx 2-x +1x,即2mx 2-x +1<0在(0,+∞)上有解. 当m ≤0时显然成立;当m >0时,由于函数y =2mx 2-x +1的图象的对称轴x =14m>0,故需且只需Δ>0,即1-8m >0,故0<m <18.综上所述,m <18,故实数m 的取值范围为⎝ ⎛⎭⎪⎫-∞,18.[答案] ⎝⎛⎭⎪⎫-∞,18三、解答题10.已知等差数列{a n }满足:a 1=2,且a 1,a 2,a 5成等比数列.(1)求数列{a n}的通项公式;(2)记S n为数列{a n}的前n项和,是否存在正整数n,使得S n>60n+800?若存在,求n的最小值;若不存在,说明理由.[解] (1)设数列{a n}的公差为d,依题意,2,2+d,2+4d成等比数列,故有(2+d)2=2(2+4d),化简得d2-4d=0,解得d=0或d=4.当d=0时,a n=2;当d=4时,a n=2+(n-1)·4=4n-2,从而得数列{a n}的通项公式为a n=2或a n=4n-2.(2)当a n=2时,S n=2n.显然2n<60n+800,此时不存在正整数n,使得S n>60n+800成立.当a n=4n-2时,S n=n[2+n-2=2n2.令2n2>60n+800,即n2-30n-400>0,解得n>40或n<-10(舍去),此时存在正整数n,使得S n>60n+800成立,n的最小值为41.综上,当a n=2时,不存在满足题意的n;当a n=4n-2时,存在满足题意的n,其最小值为41.11.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知b+c=2a cos B.(1)证明:A=2B;(2)若△ABC的面积S=a24,求角A的大小.[解] (1)证明:由正弦定理得sin B+sin C=2sin A cos B,故2sin A cos B =sin B +sin(A +B )=sin B +sin A cos B +cos A sin B ,于是sin B =sin(A -B ).又A ,B ∈(0,π),故-π<A -B <π,所以,B =π-(A -B )或B =A -B ,因此A =π(舍去)或A =2B , 所以A =2B .(2)由S =a 24得12ab sin C =a 24,故有sin B sin C =12sin2B =sin B cos B ,因为sin B ≠0,所以sin C =cos B . 又B ,C ∈(0,π),所以C =π2±B .当B +C =π2时,A =π2;当C -B =π2时,A =π4.综上,A =π2或A =π4.12.(2017·唐山模拟)已知函数f (x )=ax+ln x -2,a ∈R .(1)若曲线y =f (x )在点P (2,m )处的切线平行于直线y =-32x +1,求函数f (x )的单调区间;(2)是否存在实数a ,使函数f (x )在(0,e 2]上有最小值2?若存在,求出a 的值,若不存在,请说明理由.[解] (1)∵f (x )=a x+ln x -2(x >0),∴f ′(x )=-a x 2+1x(x >0),又曲线y =f (x )在点P (2,m )处的切线平行于直线 y =-32x +1,∴f ′(2)=-14a +12=-32⇒a =8.∴f ′(x )=-8x 2+1x =x -8x2(x >0),令f ′(x )>0,得x >8,f (x )在(8,+∞)上单调递增; 令f ′(x )<0,得0<x <8, f (x )在(0,8)上单调递减.∴f (x )的单调递增区间为(8,+∞),单调递减区间为(0,8). (2)由(1)知f ′(x )=-a x 2+1x =x -a x2(x >0).(ⅰ)当a ≤0时, f ′(x )>0恒成立,即f (x )在(0,e 2]上单调递增,无最小值,不满足题意.(ⅱ)当a >0时,令f ′(x )=0,得x =a ,所以当f ′(x )>0时,x >a ,当f ′(x )<0时,0<x <a ,此时函数f (x )在(a ,+∞)上单调递增,在(0,a )上单调递减. 若a >e 2,则函数f (x )在(0,e 2]上的最小值f (x )min =f (e 2)=ae2+lne 2-2=a e 2,由ae2=2,得a =2e 2,满足a >e 2,符合题意; 若a ≤e 2,则函数f (x )在(0,e 2]上的最小值f (x )min =f (a )=aa+ln a -2=ln a -1,由ln a -1=2,得a =e 3,不满足a ≤e 2,不符合题意,舍去.综上可知,存在实数a =2e 2,使函数f (x )在(0,e 2]上有最小值2.跟踪强化训练(四)一、选择题1.函数y =cos 2x -2sin x 的最大值与最小值分别为( ) A .3,-1 B .3,-2 C .2,-1D .2,-2[解析] y =cos 2x -2sin x =1-sin 2x -2sin x =-sin 2x -2sin x +1,令t =sin x ,则t ∈[-1,1],y =-t 2-2t +1=-(t +1)2+2,所以最大值为2,最小值为-2.[答案] D2.(2017·沈阳质监)在△ABC 中,三边长a ,b ,c 满足a +c =3b ,则tanA2tan C2的值为( ) A.15 B.14 C.12 D.23[解析] 令a =4,c =5,b =3,则符合题意. 则由∠C =90°,得tan C2=1,由tan A =43,得tan A 2=12.∴tan A 2·tan C 2=12·1=12,选C.[答案] C3.(2017·山西四校联考)P 为双曲线x 29-y 216=1的右支上一点,M 、N 分别是圆(x +5)2+y 2=4和圆(x -5)2+y 2=1上的点,则|PM |-|PN |的最大值为( )A .6B .7C .8D .9[解析] 设双曲线的左、右焦点分别为F 1、F 2,则其分别为已知两圆的圆心,由已知|PF1|-|PF2|=2×3=6.要使|PM|-|PN|最大,需PM,PN分别过F1、F2点即可.∴(|PM|-|PN|)max=(|PF1|+2)-(|PF2|-1)=|PF1|-|PF2|+3=9.故选D.[答案] D4.(2017·保定模拟)函数f′(x)是奇函数f(x)(x∈R)的导函数,f(1)=0,当x<0时,xf′(x)+f(x)>0,则使得f(x)<0成立的x的取值范围是( ) A.(-∞,-1)∪(0,1) B.(-1,0)∪(1,+∞)C.(-∞,-1)∪(1,+∞) D.(-1,0)∪(0,1)[解析] 设g(x)=xf(x),则g′(x)=xf′(x)+f(x).∵当x<0时,xf′(x)+f(x)>0,∴当x<0时,g′(x)>0,∴函数g(x)=xf(x)在(-∞,0)上为增函数,∵函数f(x)是奇函数,∴g(-x)=(-x)f(-x)=(-x)·[-f(x)]=xf(x)=g(x)(x∈R),∴函数g(x)在R上为偶函数,由f(1)=0,得g(1)=0,函数g(x)的图象大致如图所示,∵f(x)<0,∴x≠0,g xx<0,∴⎩⎪⎨⎪⎧x <0,g x 或⎩⎪⎨⎪⎧x >0,g x ,由函数图象知,-1<x <0或x >1.∴使得f (x )<0成立的x 的取值范围为(-1,0)∪(1,+∞).故选B. [答案] B5.(2017·南昌调研)某重点中学在一次高三诊断考试中要安排8位老师监考某一考场的语文、数学、理综、英语考试,要求每堂安排两位老师且每位老师仅监考一堂,则其中甲、乙老师不监考同一堂的概率是( )A.314B.67C.37D.17[解析] 利用间接法,安排8位老师监考某一考场的方法共有C 28C 26C 24C 22种,而安排甲、乙两位老师监考同一堂的方法有C 14C 26C 24C 22,所以甲、乙两位老师不监考同一堂的概率为1-C 14C 26C 24C 22C 28C 26C 24C 22=1-17=67,故选B.[答案] B6.(2017·江南十校联考)若α、β∈⎣⎢⎡⎦⎥⎤-π2,π2,且αsin α-βsin β>0,则下面结论正确的是( )A .α>βB .α+β>0C .α<βD .α2>β2[解析] 令f (x )=x sin x ,则f ′(x )=sin x +x ·cos x .∵x ∈⎣⎢⎡⎦⎥⎤-π2,π2,f (x )为偶函数,且当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f ′(x )≥0,∴f (x )在⎣⎢⎡⎦⎥⎤0,π2上为增函数,在⎣⎢⎡⎦⎥⎤-π2,0上为减函数.∴αsin α-βsin β>0⇔f (|α|)>f (|β|)⇒|α|>|β|⇒α2>β2,故选D.[答案] D二、填空题7.(2017·安徽省合肥市高三二检)已知集合A =[1,+∞),B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈R ⎪⎪⎪12a ≤x ≤2a -1,若A ∩B ≠∅,则实数a 的取值范围是________. [解析]因为A ∩B ≠∅,所以⎩⎪⎨⎪⎧2a -1≥1,2a -1≥12a ,解得a ≥1.[答案] [1,+∞)8.如图,已知在△ABC 中,∠BAC =120°,且|AB →|=2,|AC →|=3,若AP →=λAB →+AC →,且AP →⊥BC →,则实数λ的值为________.[解析] 因为AP →·BC →=(λAB →+AC →)·(AC →-AB →)=(λ-1)×AB →·AC →-4λ+9=0,AB →·AC →=2×3×⎝ ⎛⎭⎪⎫-12=-3,所以-3(λ-1)-4λ+9=0,得λ=127.[答案]1279.(2017·赣中南五校联考)如图,在直三棱柱ABC -A 1B 1C 1中,底面为直角三角形,∠ACB =90°,AC =6,BC =CC 1=2,P 是BC 1上一动点,则CP +PA 1的最小值为________.[解析] 连接A 1B ,沿BC 1将△CBC 1展开,使与△A 1BC 1在同一个平面内,如图所示,连接A 1C .则A 1C 的长度就是所求的最小值.易知∠A 1C 1B =90°,∠BC 1C =45°,所以∠A 1C 1C =135°,在△A 1C 1C 中,由余弦定理可得A 1C =5 2.故CP +PA 1的最小值为5 2. [答案] 5 2 三、解答题10.(2017·广西南宁月考)已知函数f (x )=ax 2+bx +c (a >0,b ,c ∈R ). (1)若函数f (x )的最小值是f (-1)=0,且c =1,F (x )=⎩⎪⎨⎪⎧f x ,x >0,-fx ,x <0,求F (2)+F (-2)的值;(2)若a =1,c =0,且|f (x )|≤1的区间(0,1]上恒成立,试求b 的取值范围.[解] (1)由已知c =1,a -b +c =0,且-b2a=-1,解得a =1,b =2,∴f (x )=(x +1)2.∴F (x )=⎩⎪⎨⎪⎧x +2,x >0,-x +2,x <0.∴F (2)+F (-2)=(2+1)2+[-(-2+1)2]=8. (2)由a =1,c =0,得f (x )=x 2+bx ,从而|f (x )|≤1在区间(0,1]上恒成立等价于-1≤x 2+bx ≤1在区间(0,1]上恒成立,即b ≤1x -x 且b ≥-1x-x 在(0,1]上恒成立.又1x -x 的最小值为0,-1x-x 的最大值为-2.∴-2≤b ≤0.故b 的取值范围是[-2,0].11.已知直线l :4x +3y +10=0,半径为2的圆C 与l 相切,圆心C 在x 轴上且在直线l 的右上方.(1)求圆C 的方程;(2)如图,过点M (1,0)的直线与圆C 交于A ,B 两点(A 在x 轴上方),问在x 轴正半轴上是否存在定点N ,使得x 轴平分∠ANB ?若存在,请求出点N 的坐标;若不存在,请说明理由.[解] (1)设圆心C (a,0)⎝ ⎛⎭⎪⎫a >-52,则|4a +10|5=2⇒a =0或a =-5(舍去).所以圆C 的方程为x 2+y 2=4.(2)当直线AB ⊥x 轴时,x 轴平分∠ANB .当直线AB 的斜率存在时,设直线AB 的方程为y =k (x -1),N (t,0),A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x 2+y 2=4,y =k x -,得(k 2+1)x 2-2k 2x +k 2-4=0,所以x 1+x 2=2k 2k 2+1,x 1x 2=k 2-4k 2+1.若x 轴平分∠ANB ,则k AN =-k BN ⇒y 1x 1-t +y 2x 2-t =0⇒k x 1-x 1-t +k x 2-x 2-t=0⇒2x 1x 2-(t +1)(x 1+x 2)+2t =0⇒k 2-k 2+1-2k 2t +k 2+1+2t =0⇒t =4,所以当点N 为(4,0)时,能使得∠ANM =∠BNM 总成立.12.已知函数f (x )=ln x -(x +1). (1)求函数f (x )的极大值;(2)求证:1+12+13+…+1n >ln(n +1)(n ∈N *).[解] (1)∵f (x )=ln x -(x +1), ∴f ′(x )=1x-1(x >0).令f ′(x )>0,解得0<x <1; 令f ′(x )<0,解得x >1.∴函数f (x )在(0,1)上单调递增,在(1,+∞)上单调递减, ∴f (x )极大值=f (1)=-2.(2)证明:由(1)知x =1是函数f (x )的极大值点,也是最大值点, ∴f (x )≤f (1)=-2,即ln x -(x +1)≤-2⇒ln x ≤x -1(当且仅当x =1时等号成立),令t =x -1,得t ≥ln(t +1)(t >-1),取t =1n(n ∈N *)时,则1n>ln ⎝⎛⎭⎪⎫1+1n =ln ⎝⎛⎭⎪⎫n +1n , ∴1>ln2,12>ln 32,13>ln 43,…,1n >ln ⎝⎛⎭⎪⎫n +1n , 叠加得1+12+13+…+1n>ln ⎝ ⎛⎭⎪⎫2·32·43·…·n +1n =ln(n +1). 即1+12+13+…+1n>ln(n +1).跟踪强化训练(五)1.[直接法](2017·济南二模)某班有6位学生与班主任老师毕业前夕留影,要求班主任站在正中间且女生甲、乙不相邻,则排法的种数为( )A .96B .432C .480D .528[解析] 当甲、乙在班主任两侧时,甲、乙两人有3×3×2种排法,共有3×3×2×24种排法;当甲乙在班主任同侧时,有4×24种排法,因此共有排法3×3×2×24+4×24=528(种).[答案] D2.[直接法](原创题)数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.这条直线被后人称为三角形的“欧拉线”.在△ABC 中,AB =AC =5,点B (-1,3),C (3,-1),且其“欧拉线”与圆x 2+(y -2)2=r 2相切,则该圆的面积为( )A .π B.2π C.4π D.5π[解析] 依题意,△ABC 的外心、重心、垂心均在边BC 的垂直平分线上,BC 的中点为M (1,1),直线BC 的斜率为-1,因此△ABC 的“欧拉线”方程是y-1=x -1,即x -y =0.圆心(0,2)到直线x -y =0的距离d =r =22=2,则该圆的面积为πr 2=2π.[答案] B3.[特例法]计算tan ⎝ ⎛⎭⎪⎫π4+αcos2α2cos 2⎝ ⎛⎭⎪⎫π4-α=( )A .-2B .2C .-1D .1[解析] 取α=π12,则原式=tan ⎝ ⎛⎭⎪⎫π4+π12cosπ62cos2⎝ ⎛⎭⎪⎫π4-π12=3×322×34=1.故选D.[答案] D4.[特例法]已知O 是锐角△ABC 的外接圆圆心,∠A =60°,cos B sin C ·AB →+cos C sin B·AC →=2m ·AO →,则m 的值为( ) A.32 B. 2 C .1 D.12[解析] 如图,当△ABC 为正三角形时,A =B =C =60°,取D 为BC 的中点,AO →=23AD →,则有13AB →+13AC →=2m ·AO →,∴13(AB →+AC →)=2m ×23AD →,∴13·2AD →=43mAD →,∴m =32.故选A. [答案] A5.[排除法](2017·重庆一诊)若过点P (1-a,1+a )和Q (3,2a )的直线的倾斜角为钝角,则实数a 的取值范围是( )A .(-2,1)B .(-1,2)C .(-∞,0)D .(-∞,-2)∪(1,+∞)[解析] 当a =0时,P (1,1),Q (3,0),因为k PQ =0-13-1=-12<0,此时过点P (1,1),Q (3,0)的直线的倾斜角为钝角,排除C ,D ;当a =1时,P (0,2),Q (3,2),因为k PQ =0,不符合题意,排除B ,选A.[答案] A6.[排除法](2017·武汉汉中二检)函数f (x )=sin2x +e ln|x |图象的大致形状是( )[解析] 因为f (x )=sin2x +e ln|x |,所以f (-x )=-sin2x +e ln|x |. 显然f (-x )≠f (x )且f (-x )≠-f (x ),所以函数f (x )为非奇非偶函数,可排除A ,C.由f ⎝ ⎛⎭⎪⎫-π4=-1+π4<0,可排除D.选B.[答案] B7.[图解法]已知非零向量a ,b ,c 满足a +b +c =0,向量a ,b 的夹角为120°,且|b |=2|a |,则向量a 与c 的夹角为( )A .60°B .90°C .120°D .150°[解析] 如图,因为〈a ,b 〉=120°,|b |=2|a |,a +b +c =0,所以在△OBC 中,BC 与CO 的夹角为90°,即a 与c 的夹角为90°.[答案] B8.[图解法](2017·东北三校联考)函数f (x )=⎝ ⎛⎭⎪⎫12|x -1|+2cosπx (-2≤x ≤4)的所有零点之和等于( )A .2B .4C .6D .8[解析] 由f (x )=⎝ ⎛⎭⎪⎫12|x -1|+2cosπx =0,得⎝ ⎛⎭⎪⎫12|x -1|=-2cosπx ,令g (x )=⎝ ⎛⎭⎪⎫12|x -1|(-2≤x ≤4),h (x )=-2cosπx (-2≤x ≤4),又因为g (x )=⎝ ⎛⎭⎪⎫12|x -1|=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x -1,1≤x ≤4,2x -1,-2≤x <1.在同一坐标系中分别作出函数g (x )=⎝ ⎛⎭⎪⎫12|x -1|(-2≤x ≤4)和h (x )=-2cosπx (-2≤x ≤4)的图象(如图),由图象可知,函数g (x )=⎝ ⎛⎭⎪⎫12|x -1|关于x =1对称,又x =1也是函数h (x )=-2cosπx (-2≤x ≤4)的对称轴,所以函数g (x )=⎝ ⎛⎭⎪⎫12|x -1|(-2≤x ≤4)和h (x )=-2cosπx (-2≤x ≤4)的交点也关于x =1对称,且两函数共有6个交点,所以所有零点之和为6.[答案] C9.[估算法]图中阴影部分的面积S 是h 的函数(0≤h ≤H ),则该函数的大致图象是( )[解析] 由题图知,随着h 的增大,阴影部分的面积S 逐渐减小,且减小得越来越慢,结合选项可知选B.[答案] B10.[估算法]已知三棱锥S -ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积是( )A.36B.26C.23D.22 [解析] 容易得到△ABC 的面积为34,而三棱锥的高一定小于球的直径2,所以V <13×34×2=36,立即排除A 、C 、D ,答案选B.[答案] B11.[概念辨析法](2017·南昌一模)已知α,β均为第一象限角,那么“α>β”是“sin α>sin β”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件[解析] 若α=2π+π6,β=π6,α>β,但sin α=sin β,若α=π3,β=2π+π6,sin α>sin β,但此时α>β不成立,因而“α>β”是“sin α>sin β”的既不充分也不必要条件.[答案] D12.[概念辨析法](2017·襄阳调研)非空集合A 中的元素个数用(A )表示,定义(A -B )=⎩⎪⎨⎪⎧A -B ,A B ,B -A ,AB若A ={-1,0},B ={x ||x 2-2x -3|=a },且(A -B )≤1,则实数a 的所有可能取值为( )A .{a |a ≥4}B .{a |a >4或a =0}C .{a |0≤a ≤4}D .{a |a ≥4或a =0}[解析] 因为A ={-1,0},所以集合A 中有2个元素,即(A )=2.因为B ={x ||x 2-2x -3|=a },所以(B )就是函数f (x )=|x 2-2x -3|的图象与直线y =a 的交点个数,作出函数f (x )的图象如图所示.由图可知,(B )=0或(B )=2或(B )=3或(B )=4.①当(A )≥(B )时,又(A -B )≤1,则(B )≥(A )-1,所以(B )≥1,又(A )≥(B ),所以1≤(B )≤2,所以(B )=2,由图可知,a =0或a >4;②当(A )<(B )时,又(A -B )≤1,则(B )≤(A )+1,即(B )≤3,又(A )<(B ),所以2<(B )≤3,所以(B )=3,由图可知,a =4.综上所述,a =0或a ≥4,故选D. [答案] D跟踪强化训练(六)1.[直接法]对于锐角α,若sin ⎝ ⎛⎭⎪⎫α-π12=35,则cos ⎝⎛⎭⎪⎫2α+π3=________.[解析] 由α为锐角,且sin ⎝ ⎛⎭⎪⎫α-π12=35,可得cos ⎝⎛⎭⎪⎫α-π12=45,则cos ⎝ ⎛⎭⎪⎫α+π6=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α-π12+π4=cos ⎝ ⎛⎭⎪⎫α-π12cos π4-sin ⎝ ⎛⎭⎪⎫α-π12sin π4=45×22-35×22=210,于是cos ⎝ ⎛⎭⎪⎫2α+π3=2cos 2⎝ ⎛⎭⎪⎫α+π6-1=2×⎝ ⎛⎭⎪⎪⎫2102-1=-2425. [答案] -24252.[直接法]已知(1-2x )5(1+ax )4的展开式中x 的系数为2,则实数a 的值为________.[解析] 因为(1-2x )5的展开式中的常数项为1,x 的系数为C 15×(-2)=-10;(1+ax )4的展开式中的常数项为1,x 的系数为C 14a =4a ,所以(1-2x )5(1+ax )4的展开式中x 的系数为1×4a +1×(-10)=2,所以a =3.[答案] 33.[特例法]已知等差数列{a n }的公差d ≠0,且a 1,a 3,a 9成等比数列,则a 1+a 3+a 9a 2+a 4+a 10的值是________.[解析] 令a n=n,则a1+a3+a9a2+a4+a10=1+3+92+4+10=1316.[答案] 13 164.[特例法]如图,在三棱锥O-ABC中,三条棱OA,OB,OC两两垂直,且OA>OB>OC,分别经过三条棱OA,OB,OC作一个截面平分三棱锥的体积,截面面积依次为S1,S2,S3,则S1,S2,S3的大小关系为________.[解析] 要满足各个截面使分得的两个三棱锥体积相等,则需满足与截面对应的交点E,F,G分别为中点即可.故可以将三条棱长分别取为OA=6,OB =4,OC=2,如图,则可计算S1=35,S2=210,S3=13,故S3<S2<S1.[答案] S3<S2<S15.[图解法]设方程1x+1=|lg x|的两个根为x1,x2,则x1·x2的取值范围________.[解析] 分别作出函数y=1x+1和y=|lg x|的图象如图,不妨设0<x 1<1<x 2,则|lg x 1|>|lg x 2|, ∴-lg x 1>lg x 2,即lg x 1+lg x 2<0,∴0<x 1x 2<1. [答案] (0,1)6.[图解法]不等式4-x 2-kx +1≤0的解集非空,则k 的取值范围为________.[解析] 由4-x 2-kx +1≤0,得4-x 2≤kx -1,设f (x )=4-x 2,g (x )=kx -1,其中-2≤x ≤2.如图,作出函数f (x ),g (x )的图象,不等式的解集非空,即直线l 和半圆有公共点.由图可知k AC =0---2-0=-12,k BC =0--2-0=12. 所以k 的取值范围为⎝ ⎛⎦⎥⎤-∞,-12∪⎣⎢⎡⎭⎪⎫12,+∞.[答案] ⎝ ⎛⎦⎥⎤-∞,-12∪⎣⎢⎡⎭⎪⎫12,+∞7.[构造法]如图,已知球O 的球面上有四点A ,B ,C ,D ,DA ⊥平面ABC ,AB ⊥BC ,DA =AB =BC =2,则球O 的体积等于________.[解析] 如图,以DA ,AB ,BC 为棱长构造正方体,设正方体的外接球球O 的半径为R ,则正方体的体对角线长即为球O 的直径,所以CD =22+22+22=2R ,所以R =62,故球O 的体积V =4πR 33=6π.[答案]6π8.[构造法]已知数列{a n }满足a 1=1,a n +1=3a n +1,则{a n }的通项公式为________.[解析] 由a n +1=3a n +1,得a n +1+12=3⎝ ⎛⎭⎪⎫a n +12,所以数列⎩⎨⎧⎭⎬⎫a n +12是以32为首项,3为公比的等比数列,所以a n +12=32·3n -1,故a n =3n-12.[答案] a n =3n -129.[归纳推理法](2017·辽宁丹东联考)已知“整数对”按如下规律排列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第70个“整数对”为________.[解析] 因为1+2+…+11=66,所以第67个“整数对”是(1,12),第68个“整数对”是(2,11),第69个“整数对”是(3,10),第70个“整数对”是(4,9).[答案] (4,9)10.[归纳推理法]若直角三角形的两直角边为a 、b ,斜边c 上的高为h ,则1h 2=1a 2+1b2.类比以上结论,如图,在正方体的一角上截取三棱锥P -ABC ,PO为该棱锥的高,记M =1PO 2,N =1PA 2+1PB 2+1PC 2,那么M ,N 的大小关系是M ________N .(填>,<或=)[解析] 由题意得⎩⎪⎨⎪⎧S 2△ABC =S 2△ABP +S 2△PBC +S 2△APC ,S △ABC ·PO =12·PA ·PB ·PC ,所以M =1PO 2=S 2△ABCS 2△ABCPO 2=S 2△ABP +S 2△PBC +S 2△APC14PA 2·PB 2·PC 2=1PA 2+1PB 2+1PC 2=N .即M =N .[答案] =11.[正反互推法]给出以下命题:①双曲线y 22-x 2=1的渐近线方程为y =±2x ;②命题p :“∀x ∈R +,sin x +1sin x≥2”是真命题;③已知线性回归方程为y ^=3+2x ,当变量x 增加2个单位,其预报值平均增加4个单位;④设随机变量ξ服从正态分布N (0,1),若P (ξ>1)=0.2,则p (-1<ξ<0)=0.6.则正确命题的序号为________(写出所有正确命题的序号).[解析] ①由y 22-x 2=0可以解得双曲线的渐近线方程为y =±2x ,正确.②命题不能保证sin x ,1sin x 为正,故错误;③根据线性回归方程的含义正确; ④P (ξ>1)=0.2, 可得P (ξ<-1)=0.2,所以P (-1<ξ<0)=12P (-1<ξ<1)=0.3,故错误.。

2018高三数学(理)二轮阶段提升突破练全集(人教版6份有答案)

2018高三数学(理)二轮阶段提升突破练全集(人教版6份有答案)本资料为woRD文档,请点击下载地址下载全文下载地址阶段提升突破练一、选择题.已知等比数列{an}满足a1=3,a2a3a4=54,则a3a4a8=A.162B.±162c.108D.±108【解析】选c.设等比数列{an}的公比为q,因为a1=3,a2a3a4=54,所以33q6=54,可得q6=2.则a3a4a8=54q6=108.2.已知等比数列{an}中,a1+a6=33,a2a5=32,且公比q&gt;1,则a2+a7=A.129B.128c.66D.36【解析】选c.由a1+a6=33,,a2a5=32=a1a6,得a1=1,a6=32,则a2+a7=66.3.已知等比数列{an}中,a3=2,a4a6=16,则=A.2B.4c.8D.16【解题导引】设等比数列{an}的公比为q,由于a3=2,a4a6=16,可得a1q2=2,q8=16,解得q2.可得=q4.【解析】选B.设等比数列{an}的公比为q,因为a3=2,a4a6=16,所以a1q2=2,q8=16,解得q2=2.则==q4=4.4.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等,问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”.这个问题中,甲所得为A.钱B.钱c.钱D.钱【解析】选B.依题意设甲、乙、丙、丁、戊所得分别为a-2d,a-d,a,a+d,a+2d,则由题意可知,a-2d+a-d=a+a+d+a+2d,即a=-6d,又a-2d+a-d+a+a+d+a+2d=5a=5,所以a=1,则a-2d=a-2×=a=.5.已知数列{an}的前n项和为Sn,且a1=2,an+1=Sn+1,则S5=A.31B.42c.37D.47【解题导引】an+1=Sn+1,可得Sn+1-Sn=Sn+1,变形为:Sn+1+1=2,利用等比数列的通项公式即可得出.【解析】选D.因为an+1=Sn+1,所以Sn+1-Sn=Sn+1,变形为:Sn+1+1=2,所以数列{Sn+1}为等比数列,首项为3,公比为2.则S5+1=3×24,解得S5=47.6.若数列{an}满足a1=1,且对于任意的n∈N*都有an+1=an+n+1,则++…++等于A.B.c.D.【解析】选c.由an+1=an+n+1得,an+1-an=n+1,则a2-a1=1+1,a3-a2=2+1,a4-a3=3+1,…,an-an-1=+1,以上等式相加,得an-a1=1+2+3+…++n-1,把a1=1代入上式得,an=1+2+3+…++n=,==2,则++…++=2[++…++]=2=.7.已知数列{an}前n项和满足Sn-Sn-1=+,a1=1,则an=A.nB.2n-1c.n2D.2n2-1【解题导引】利用平方差公式对已知数列的递推式化简整理,求得-=1,根据等差数列的定义判断出数列{}是一个首项为1,公差为1的等差数列.求得数列{}的通项公式,再由an=Sn-Sn-1求得an.【解析】选B.由Sn-Sn-1=+,得=+,所以-=1,所以数列{}是一个首项为1,公差为1的等差数列.所以=1+×1=n,所以Sn=n2.当n≥2,an=Sn-Sn-1=n2-2=2n-1.a1=1适合上式,∴an=2n-1.8.已知Tn为数列的前n项和,若n&gt;T10+1013恒成立,则整数n的最小值为世纪金榜导学号92494195A.1026B.1025c.1024D.1023【解题导引】利用等比数列的求和公式可得Tn,即可求解.【解析】选 c.因为=1+,所以Tn=n+1-,所以T10+1013=11-+1013=1024-,又n&gt;T10+1013恒成立,所以整数n的最小值为1024.【加固训练】1.已知数列{an}中,前n项和为Sn,且Sn=an,则的最大值为A.-3B.-1c.3D.1【解题导引】利用递推关系可得==1+,再利用数列的单调性即可得出.【解析】选 c.因为Sn=an,所以n≥2时,an=Sn-Sn-1=an-an-1,化为:==1+,由数列单调递减,可得:n=2时,取得最大值2.所以的最大值为3.2.已知a&gt;0,b&gt;0,且为3a与3b的等比中项,则的最大值为A.B.c.D.【解题导引】由等比中项推导出a+b=1,从而===,由此利用基本不等式能求出的最大值.【解析】选B.因为a&gt;0,b&gt;0,且为3a与3b的等比中项,所以3a&#8226;3b=3a+b=2=3,所以a+b=1,所以===≤=.当且仅当=时,取等号,所以的最大值为.二、填空题9.已知等比数列{an}的各项均为正数,且满足:a1a7=4,则数列{log2an}的前7项之和为__________.【解题导引】由等比数列的性质可得:a1a7=a2a6=a3a5=4,再利用指数与对数的运算性质即可求解.【解析】由等比数列的性质可得:a1a7=a2a6=a3a5=4,所以数列{log2an}的前7项和为log2a1+log2a2+…+log2a7=log2=log227=7.答案:7【加固训练】若数列{an}满足a1=2,an=1-,则aXX=__________.【解题导引】数列{an}满足a1=2,an=1-,可得an+3=an,利用周期性即可得出.【解析】数列{an}满足a1=2,an=1-,可得a2=1-=,a3=1-2=-1,a4=1-=2,a5=1-=,…,所以an+3=an,数列的周期为3.所以aXX=a672×3+1=a1=2.答案:20.设Tn为数列{an}的前n项之积,即Tn=a1a2a3…an-1an,若a1=2,-=1,当Tn=11时,n的值为______.世纪金榜导学号92494196【解题导引】由题意可得数列是以=1为首项,以1为公差的等差数列,求其通项公式,可得数列{an}的通项公式,再由累积法求得Tn,则n值可求.【解析】由a1=2,-=1,可得数列是以=1为首项,以1为公差的等差数列,则=1+×1=n,所以an=1+=,则Tn=a1a2a3…an-1an=&#8226;…=n+1,由Tn=n+1=11,得n=10.答案:101.若数列{an}满足a1=,an+1=220,则a1a2…an的最小值为__________________.世纪金榜导学号92494197【解析】依题易知:an&gt;0,log2an+1=20+2log2an&#8658;=2,则{log2an+20}是首项为1,公比为2的等比数列,log2an+20=2n-1&#8658;an=,a1a2…an=…=,令bn=2n-1-20n,bn+1-bn=2n-20≥0&#8658;n≥5,{bn}递增,b5=-69最小,a1a2…an的最小值为2-69.答案:2-69【加固训练】正项数列{an}满足:a1=1,a2=2,2=+,则a7=__________.【解题导引】由2=+,可得数列{}是等差数列,通过求出数列{}的通项公式,求得an,再求a7.【解析】由2=+,可得数列{}是等差数列,公差d=-=3,首项=1,所以=1+3×=3n-2,an=,所以a7=.答案:2.高斯是德国著名的数学家,享有“数学王子”之称,以他的名字“高斯”命名的成果达110个,设x∈R,用[x]表示不超过x的最大整数,并用{x}=x-[x]表示x的非负纯小数,则y=[x]称为高斯函数,已知数列{an}满足:a1=,an+1=[an]+,则aXX=__________.世纪金榜导学号92494198【解题导引】由于:a1=,an+1=[an]+,经过计算可得:数列{a2k-1}成等差数列,首项为,公差为3.即可得出.【解析】满足:a1=,an+1=[an]+,所以a2=1+=2+,a3=2+=3+=4+,a4=4+=5+,a5=5+=6+=7+,a6=7+=8+,a7=8+=9+=10+,…,可得:数列{a2k-1}成等差数列,首项为,公差为3.则aXX=+3×=3024+.答案:3024+【加固训练】已知数列{an}满足:2a1+22a2+23a3+…+2nan=n,数列的前n项和为Sn,则S1&#8226;S2&#8226;S3…S10=__________.【解题导引】根据2a1+22a2+23a3+…+2nan=n,求出an=,再利用对数的运算性质和裂项法即可得到=-,裂项求和得到Sn,代值计算即可.【解析】因为2a1+22a2+23a3+…+2nan=n,所以2a1+22a2+23a3+…+2n-1an-1=n-1,所以2nan=1,所以an=,所以===-,所以Sn=1-+-+…+-=1-=,所以S1&#8226;S2&#8226;S3…S10=×××…××=. 答案:三、解答题3.设数列满足a1+3a2+…+an=2n.求的通项公式.求数列的前n项和.【解析】由已知可得:a1+3a2+…+an=2n,所以当n&gt;1时有a1+3a2+…+an-1=2,所以两式作差可得:an=2,即an=,又因为n=1时,a1=2符合,所以an=.设bn=,则bn==-,所以数列的前n项和为Sn=b1+b2+…+bn=1-+-+…+-=1-=.4.已知数列{an}的前n项和为Sn,Sn=.世纪金榜导学号92494199求数列{an}的通项公式.若数列{bn}满足an&#8226;bn=log3a4n+1,记Tn=b1+b2+b3+…+bn,求证:Tn&lt;.【解题导引】利用递推关系:当n=1时,a1=S1,当n ≥2时,an=Sn-Sn-1,利用等比数列的通项公式即可得出.求出bn==,利用“错位相减法”与等比数列的前n项和公式即可得出.【解析】由Sn=可知,当n=1时,a1=S1,2S1+3=3a1,得a1=3.n=2时,2S2+3=3a2,即2+3=3a2,解得a2=9.当n≥2时,an=Sn-Sn-1,因为2Sn+3=3an,2Sn-1+3=3an-1,两式相减可得2an=3an-3an-1,所以an=3an-1,所以an=3n.对n=1也成立.故数列{an}的通项公式为an=3n.由an&#8226;bn=log3a4n+1=log334n+1=4n+1,得bn==,所以Tn=b1+b2+b3+…+bn=5&#8226;+9&#8226;+…+&#8226;,Tn=5&#8226;+9&#8226;+…+&#8226;,两式相减得,Tn=+4×[++…+]-&#8226;=+4×-&#8226;,化简可得Tn=-&#8226;&lt;.5.在数1和100之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2个数的乘积记作Tn,再令an=lgTn,n≥1. 世纪金榜导学号92494200求数列{an}的通项公式.设bn=&#8226;2n-1,求数列{bn}的前n项和Sn.【解析】t1,t2,…tn+2构成递增的等比数列,其中t1=1,tn+2=100,则Tn=t1&#8226;t2…tn+2=tn+2&#8226;tn+1…t1,又,tn+2&#8226;t1=tn+1&#8226;t2=…=t1&#8226;tn+2=102,得=102,an=lgTn=lg10n+2=n+2,n≥1.bn=n&#8226;2n-1,故Sn=1×20+2×21+3×22+…+×2n-2+n×2n-1,2Sn=1×21+2×22+3×23+…+×2n-1+n×2n,上述两式相减,得-Sn=1×20+1×21+1×22+ (1)2n-1-n×2n,整理,得Sn=n&#8226;2n-2n+1.6.若数列{an}满足++…+=-.求通项公式an.求数列{an}的前n项和.【解析】因为++…+=-,所以当n≥2时,++…+=-,两式相减得:=-=,所以an=&#8226;,又因为=-=-不满足上式,所以an=当n≥2时,Sn=-+3×+5×+7×+…+×,Sn=-+3×+5×+…+&#8226;+&#8226;,两式相减得Sn=-++2[++…+]-&#8226;=+2&#8226;-&#8226;=+-10&#8226;-&#8226;=-&#8226;,所以Sn=-&#8226;.当n=1时,也符合上式,所以Sn=-&#8226;.。

2018届高考数学二轮复习 点专题突破解析几何的综合问题

热点专题突破 解析几何的综合问题1C 1:x 2a 2+y 2b 2=1(a>b>0)过点A 1,22,其焦距为2,已知F 1,F 2分别是椭圆的左、右焦点,P 为直线x=2上一点.直线PF 1,PF 2与圆x 2+y 2=1的另外一个交点分别为M ,N. (1)求椭圆C 1的方程; (2)求证:直线MN 恒过一定点.【解析】(1)由题意知,c=1,F 1(-1,0),F 2(1,0), ∴2a=|AF 1|+|AF 2|= (1+1)2+222+222=2 2, ∴a= 2,b= a 2-c 2=1,∴椭圆C 1的方程为x 22+y 2=1. (2)设P (2,t ),直线PF 1:y=t3(x+1),由y =t3(x +1),x 2+y 2=1得(t 2+9)x 2+2t 2x+t 2-9=0,∴-1·x M =t 2-9t +9,∴x M =9-t 2t +9,∴M 9-t 2t +9,6tt +9 . 同理可得N t 2-1t +1,-2tt +1 ,∴k MN =4t3-t , 直线MN 的方程为y--2tt +1=4t3-t x -t 2-1t +1 , 即y-4t3-t x+2t3-t =0, ∴y-4t3-t x -12 =0,∴直线MN 恒过定点T 12,0 .2.如图,O 为坐标原点,椭圆C 1:x 2a 2+y 2b 2=1(a>b>0)的左、右焦点分别为F 1,F 2,离心率为e 1;双曲线C 2:x 2a 2−y 2b 2=1的左、右焦点分别为F 3,F 4,离心率为e 2.已知e 1e 2= 32,且|F 2F 4|= 3-1.(1)求C1,C2的方程;(2)过F1作C1的不垂直于y轴的弦AB,M为AB的中点.当直线OM与C2交于P,Q两点时,求四边形APBQ面积的最小值.【解析】(1)因为e1e2=32,所以a2-b2a·a2+b2a=32,即a4-b4=34a4,因此a2=2b2,从而F2(b,0),F4(,0),于是3b-b=|F2F4|=3-1,所以b=1,a2=2,故C1,C2的方程分别为x 22+y2=1,x22-y2=1.(2)因AB不垂直于y轴,且过点F1(-1,0),故可设直线AB的方程为x=my-1.由x=my-1,x22+y2=1得(m2+2)y2-2my-1=0.易知此方程的判别式大于0,设A(x1,y1),B(x2,y2),则y1,y2是上述方程的两个实根,所以y1+y2=2mm+2,y1y2=-1m+2.因此x1+x2=m(y1+y2)-2=-4m+2,于是AB的中点为M-2m+2,mm+2,故直线PQ的斜率为-m2,PQ的方程为y=-m2x.即mx+2y=0.由y=-m2x,x22-y2=1得(2-m2)x2=4,所以2-m2>0,且x2=42-m,y2=m22-m,从而|PQ|=2 x2+y2=2m2+42-m2.设点A到直线PQ的距离为d,则点B到直线PQ的距离也为d,所以2d=1122m2+4.因为点A,B在直线mx+2y=0的异侧,所以(mx1+2y1)(mx2+2y2)<0,于是|mx1+2y1|+|mx2+2y2|=|mx1+2y1-mx2-2y2|.从而2d=2122.又因为|y1-y2|=(y1+y2)2-4y1y2=22·2m2+2,所以2d=2·1+m2m2+4.故四边形APBQ的面积S=12|PQ|·2d=2·1+m22-m2=22·-1+32-m2.而0<2-m2≤2,故当m=0时,S取得最小值2,综上所述,四边形APBQ面积的最小值为2.3C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B两点,交C的准线于P,Q两点.(1)若F在线段AB上,R是PQ的中点,证明AR∥FQ;(2)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.【解析】由题设F12,0.设l1:y=a,l2:y=b,则ab≠0,且A a 22,a ,B b22,b ,P-12,a ,Q-12,b ,R-12,a+b2.记过A,B两点的直线为l,则l的方程为2x-(a+b)y+ab=0.(1)由于F在线段AB上,故1+ab=0.记AR的斜率为k1,FQ的斜率为k2,则k1=a-b1+a2=a-ba2-ab=1a=-aba=-b=k2.所以AR∥FQ.(2)设l与x轴的交点为D(x1,0),则S△ABF=12|b-a||FD|=12|b-a| x1-12,S△PQF=|a-b|2.由题意可得|b-a| x1-12=|a-b|2,所以x1=0(舍去)或x1=1.设满足条件的AB的中点为E(x,y).当AB 与x 轴不垂直时,由k AB =k DE 可得2a +b =y x -1(x ≠1).而a +b 2=y ,所以y 2=x-1(x ≠1).当AB 与x 轴垂直时,E 与D 重合. 所以所求轨迹方程为y 2=x-1.4.如图,在平面直角坐标系xOy 中,离心率为 22的椭圆C :x 2a +y 2b =1(a>b>0)的左顶点为A ,过原点O 的直线(与坐标轴不重合)与椭圆C 交于P ,Q 两点,直线PA ,QA 分别与y 轴交于M ,N 两点.若直线PQ 斜率为 22时,PQ=2 3. (1)求椭圆C 的标准方程;(2)试问以MN 为直径的圆是否经过定点(与直线PQ 的斜率无关)?请证明你的结论.【解析】(1)∵直线PQ 斜率为 22时,PQ=2 3,此时可设点P 的坐标为 x 0,22x 0,∴x 02+22x 0 2=3,解得x 02=2.∴2a 2+1b 2=1, ∵e=ca =a 2-b 2a=22,∴a 2=4,b 2=2. ∴椭圆C 的标准方程为x 24+y 22=1.(2)以MN 为直径的圆过定点F (± 2,0). 设P (x 0,y 0),则Q (-x 0,-y 0),且x 024+y 022=1,即x 02+2y 02=4, ∵A (-2,0),∴直线PA 方程为y=y 0x 0+2(x+2),∴M 0,2y 0x 0+2,同理,直线QA 方程为y=y 0x-2(x+2),∴N 0,2y 0x 0-2,以MN 为直径的圆为(x-0)(x-0)+ y -2y 0x+2y -2y 0x 0-2=0,即x2+y2-4x0y0x02-4y+4y02x02-4=0,∵x02-4=-2y02,∴x2+y2+2x0y0y-2=0,令y=0,解得x=±2,∴以MN为直径的圆过定点(±2,0).5.已知抛物线y2=2px(p>0)上任意一点到直线y=x+2的距离的最小值为22.(1)求抛物线的方程.(2)若过(3,0)且斜率为1的直线交抛物线于D,H两点,将线段DH向左平移3个单位长度至D1H1,则在抛物线上是否存在点E,使得S△EDH-S△ED1H1最大?若存在,求出最大值及点E的坐标;若不存在,请说明理由.【解析】(1)设抛物线y2=2px(p>0)上任意一点的坐标为y 22p,y ,其到直线y=x+2的距离为y2-y+22=222p=2222p.显然,当y=p时,抛物线上任意一点到直线y=x+2的距离最小,且最小值为222p.由222p=22,得|p-4|=2,解得p=2或p=6.当p=6时,直线y=x+2与y2=12x有公共点,与题意不符,舍去.故所求抛物线的方程为y2=4x.(2)由题意得DH的方程为y=x-3,由y=x-3,y2=4x得x=1,y=-2或x=9,y=6.不妨设D(1,-2),H(9,6),得|DH|=82.当线段DH向左平移3个单位长度至D1H1时,两线段间的距离为322.要使S△EDH-S△ED1H1最大,应有S△EDH>S△ED1H1,此时点E应该位于直线DH左侧的抛物线上,设点E到直线DH的距离为h,则点E到直线D1H1的距离为322-h,S△EDH-S△ED1H1=12×82×h-12×82×322-ℎ =82h-12,显然h达到最大时,S△EDH-S△ED1H1取得最大值,此时点E为与DH平行的直线与抛物线相切的切点.设切线方程为y=x+b,由y=x+b,y2=4x得x2+(2b-4)x+b2=0,由(2b-4)2-4b2=0得b=1,此时解得x=1,y=2,即点E的坐标为(1,2),从而可得h=2=22,所以S△EDH-S△ED1H1的最大值为20.6M(x,y)与两定点A(-0),B(0)的连线的斜率之积为-13,记动点M的轨迹为C.(1)求动点M的轨迹C的方程.(2)定点F(-2,0),T为直线x=-3上任意一点,过F作TF的垂线交曲线C于点P,Q.①证明:OT平分线段PQ(其中O为坐标原点);②当|TF||PQ|最小时,求点T的坐标.【解析】(1)由已知可知k MA·k MB=x+6·x-6=-13,所以动点M的轨迹C的方程是x 26+y22=1(y≠0).(2)①设T点的坐标为(-3,m),则直线TF的斜率k TF=m-0-3-(-2)=-m.当m≠0时,直线PQ的斜率k PQ=1m,直线PQ的方程是x=my-2,当m=0时,PQ的方程是x=-2,也符合上述方程.设P(x1,y1),Q(x2,y2),将直线PQ的方程x=my-2与椭圆C的方程联立得x2 6+y22=1,x=my-2,消去x,得(m2+3)y2-4my-2=0,其判别式Δ=16m2+8(m2+3)>0,所以y1+y2=4mm2+3,y1y2=-2m2+3,x1+x2=m(y1+y2)-4=-12m2+3,所以PQ的中点N的坐标为-6m+3,2mm+3,所以直线ON的斜率k ON=-m3.又直线OT的斜率k OT=-m3,所以点N在线段OT上,因此OT平分线段PQ.②由①可得|TF|= m2+1,|PQ|=(x1-x2)2+(y1-y2)2=(m2+1)[(y1+y2)2-4y1y2]=(m2+1)4mm+32-4·-2m+3=24(m 2+1)m+3,所以|TF||PQ|=124·(m2+3)m2+1=124· m2+1+4m2+1+4≥124·(4+4)=33,当且仅当m2+1=4m+1,即m=±1时,等号成立.所以当|TF||PQ|最小时,T点的坐标是(-3,1)或(-3,-1).7C:x 2a +y2b=1(a>b>0)的左焦点为F,A1,22为椭圆上一点,AF交y轴于点M,且M为AF的中点.(1)求椭圆C的方程.(2)直线l与椭圆C有且只有一个公共点A,平行于OA的直线交l于点P,交椭圆C于不同的两点D,E,问是否存在常数λ,使得|PA|2=λ|PD|·|PE|?若存在,求出λ的值;若不存在,请说明理由.【解析】(1)设椭圆的右焦点是F1,在△AFF1中,OM∥AF1,∴c=1,即a2-b2=c2=1,∴A1,22在椭圆上,∴b2a=22,∴a=2,b=1,∴椭圆C的方程为x 22+y2=1.(2)设直线DE的方程为y=22x+t,由y=22x+t,x22+y2=1消去y,得x2+2tx+t2-1=0,设D(x1,y1),E(x2,y2),则x1+x2=-t,x1x2=t2-1,其中Δ=4-2t2>0.∴|PD|·|PE|=1+2222|x P-x1|·|x P-x2|=32|x P2-x P(x1+x2)+x1x2|,又直线l与椭圆C有且只有一个公共点A1,22,则l与椭圆C相切,∴直线l的方程为x2+2y2=1,联立直线l与直线DE的方程,求得点P的坐标为2-2t2,2+t2.∴|PD|·|PE|=34t2,|AP|2=2-2t2-12+2+t2-222=34t2.∴存在常数λ=1使得|PA|2=λ|PE|·|PD|.。

2018年高考数学(理)二轮专题复习突破精练一专题对点练4 从审题中寻找解题思路带答案

专题对点练4从审题中寻找解题思路一、选择题1.已知方程错误!未找到引用源。

=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是()A.(-1,3)B.(-1,错误!未找到引用源。

)C.(0,3)D.(0,错误!未找到引用源。

)答案A解析因为双曲线的焦距为4,所以c=2,即m2+n+3m2-n=4,解得m2=1.又由方程表示双曲线得(1+n)(3-n)>0,解得-1<n<3,故选A.2.已知f(x)是R上最小正周期为2的周期函数,且当0≤x<2时,f(x)=x3-x,则函数y=f(x)的图象在区间[0,6]上与x轴的交点的个数为()A.6B.7C.8D.9答案B解析当0≤x<2时,令f(x)=x3-x=0,得x=0或x=1,根据周期函数的性质,由f(x)的最小正周期为2,可知y=f(x)在[0,6)上有6个零点,又f(6)=f(3×2)=f(0)=0,所以f(x)在[0,6]上与x轴的交点个数为7.3.已知F1,F2是双曲线C:错误!未找到引用源。

=1(a>0,b>0)的两个焦点,P是C上一点,若|PF1|+|PF2|=6a,且△PF1F2最小的内角为30°,则双曲线C的渐近线方程是()A.错误!未找到引用源。

x±y=0B.x±错误!未找到引用源。

y=0C.x±2y=0D.2x±y=0答案A解析由题意,不妨设|PF1|>|PF2|,则根据双曲线的定义得,|PF1|-|PF2|=2a,又|PF1|+|PF2|=6a, 解得|PF1|=4a,|PF2|=2a.在△PF1F2中,|F1F2|=2c,而c>a,所以有|PF2|<|F1F2|,所以∠PF1F2=30°,所以(2a)2=(2c)2+(4a)2-2·2c·4a cos 30°,得c=错误!未找到引用源。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档