时间序列分析在我国居民消费价格指数中的应用

合集下载

时间序列分析及其在经济中的应用

时间序列分析及其在经济中的应用

时间序列分析及其在经济中的应用时间序列分析是一种将时间因素考虑在内的统计分析方法,它通过对具有时间顺序的数据进行建模和预测,帮助我们了解和预测现象的发展趋势。

在经济领域,时间序列分析广泛应用于宏观经济预测、金融市场分析、商品价格预测等方面。

本文将介绍时间序列分析的基本概念和方法,并探讨其在经济中的应用。

1. 时间序列分析的基本概念时间序列是按照时间顺序排列的一系列观测数据,如股票价格、GDP增长率、物价指数等。

时间序列分析的基本概念包括趋势、季节性、周期性和随机性。

趋势是时间序列数据在长期内呈现的整体增长或下降趋势,它可以是线性的也可以是非线性的。

季节性是时间序列数据在特定时间内出现的周期性波动,如每年的节假日销售高峰。

周期性是时间序列数据在相对较长的时间范围内出现的波动,如经济周期的周期性波动。

随机性是时间序列数据除去趋势、季节性和周期性之后的随机波动。

2. 时间序列分析的方法时间序列分析有多种方法,其中常用的包括平滑法、移动平均法、指数平滑法和自回归移动平均法(ARMA)等。

平滑法是一种去除时间序列数据中随机波动的方法,通过计算一系列数据的平均值或移动平均值,来获得数据的整体趋势。

移动平均法是平滑法的一种常用方法,它通过计算相邻时间点的数据均值,来降低随机波动的影响。

指数平滑法是一种利用加权平均的方法,对时间序列数据进行平滑处理。

它根据过去观测值的权重来计算预测值,权重递减,越近期的观测值权重越大。

自回归移动平均法(ARMA)是一种经典的时间序列分析方法,它将时间序列数据建模为自回归(AR)过程和移动平均(MA)过程的组合。

通过确定AR和MA的阶数,可以建立起一个能够较好地拟合观测数据的ARMA模型。

3. 时间序列分析在经济中的应用时间序列分析在经济中有广泛的应用,可以用于经济预测、金融市场分析、商品价格预测等。

经济预测是时间序列分析的一项重要应用。

通过对历史观测数据的分析,可以建立时间序列模型,预测未来一段时间内经济指标的变动情况,为政府部门和企业决策提供参考依据。

时间序列分析论文

时间序列分析论文

时间序列分析在我国居民消费价格指数预测上的引用摘要:时间序列是按照时间顺序取得的一系列数据,大多数的经济时间序列存在惯性,通过这种惯性分析可以由时间序列的历史数值对未来值进行预测。

文章主要利用时间序列的趋势外推方法对我国目前居民消费价格指数(CPI)进行了建模析和预测,以达到合理预期和分析的目的。

关键词:时间序列CPI 趋势预测1.我国居民消费价格指数的现状居民消费价格指数(Consumer Price Index,CPI)是一个反映居民家庭一般所购买的消费商品和服务价格水平变动情况的指标。

一般说来当CPI>3% 的增幅时我们称为通货膨胀;而当CPI>5% 的增幅时我们把他称为严重的通货膨胀。

如果消费价格指数升幅过大,表明通胀已经成为经济不稳定因素,央行会有紧缩货币政策和财政政策的风险,从而造成经济前景不明朗。

从国家统计局公布的2003年5月到2012年3月的数据可以明显的看出我国已经进入通货膨胀期,从2007年3月开始就超过3%的警戒线,然而从2007年7月开始更是每月都超过5%的严重通货膨胀的警戒线。

尽管国家已经采取了紧缩的货币政策如2007年6次上调存贷款基准利率;10次上调存款准备金率;加大央行票据发行力度和频率;以特别国债开展正回购操作等。

但是2011年3月以来我国还是维持在高的通货膨胀水平,因此进行居民消费价格指数的预测分析更显得尤为必要。

2.趋势模型的选择(时间数列分解模型)为了对我国CPI的变化有更加全面和深入的把握和认识,现观测从1994—2011年居民消费价格指数的全部数据,见表1。

表1 中国1994—2011 年居民消费价格指数由以上数据可以看出,因为居民消费价格指数受到如经济增长、特别是国家宏观货币政策等因素的影响,分析我国居民消费价格指数的变动不能简单地用一个线性模型来解释。

但是可以看出在一定的时期内,宏观经济波动不大的情况下,居民消费价格指数基本还是呈线性的。

因此笔者将这时间数列分段用线性模型分别分析居民消费价格指数在1994—1999 年、1999—2004年以及2004—2011 年这三个不同的经济状况下的变动情况。

ARIMA模型在广西消费价格指数分析与预测中的应用

ARIMA模型在广西消费价格指数分析与预测中的应用

( ) 型 的预 测 及 结 果 分 析 五 模
我们利用上述 模型 A I R MA( , , ) 广西居 民消费 价格指 1 1 1对 数做预测 , 得到预测值 序列 图( 见图 5 。 )
L- ■


图 4一 阶差 分 后 的 P CF图 A
观察 残差序列 函数 的 自相关图 ( 3 与偏 自相 关图( 4 , 图 ) 图 ) 发现拖尾 和截尾 的现象不是很明显 , 可知序列有很 强的短期相关 性 ,除 l 2阶外其 自相关 函数与偏 自相关函数基本都在 2倍标准 差 内, 而在 一阶以后偏相关 函数趋 于 0并呈现拖尾性 , 以可以 所 初步认 为一阶差分后序列平稳。 且残差序列延迟除一 、 、 、 、 二 八 九
根据上述数据 : 预测值 与真实值的误差都 在 3 内, 以说 %以 可
模型 的预测效果 比较好 。2 1 年广西居 民消费价格指数将保持 01 持续增长 , 同比增长约 51%一 .3 . 6 5 %。 7 本文的预测结果表明 ,0 年广 西 C I 21 1 P 的涨幅将维持在 5 %
广
西

. 口
本文使用 时间序列分析法 ,通过 S S 1. P S3 0软件 建立求和 自 回归移动模 型( R MA)对广西壮族 自治 区 2 0 A I , 0 3年 1月到 2 1 00 年 1 的居 民消费价格指数 ( P ) 2月 C I月度数据进行计量拟合 , 并与
其预测结 果进行 比较 , 比较结果精准度较 高 , 从而可 以在 短期 内 ( 0 1 4月到 1 ) 广西居 民消费价 格指数 ( P ) 行一个 21 年 2月 对 C I进 较为准确 的预测 , 为广西政府拟定 和实施宏 观经 济调控政策提供

时间序列分析在经济领域中的应用

时间序列分析在经济领域中的应用

时间序列分析在经济领域中的应用随着经济全球化和市场化的进程,经济领域的数据越来越多样化和庞杂化,如何从中获取有用的信息和趋势成为了经济学家们的一大挑战。

时间序列分析作为一种重要的经济数据分析方法,正是在这一背景下得到了广泛的应用和推广。

本文将探讨时间序列分析在经济领域中的应用和价值,以及其对经济发展的影响。

一、时间序列分析的基本原理时间序列分析是基于统计学和数学模型的一种数据分析方法。

它通过对一段时间内的数据进行捕捉、识别并建立模型,从而预测未来的趋势和变化。

其中最常见的方法有滑动平均法、指数平滑法、季节性分解法、自回归移动平均模型(ARMA)和自回归条件异方差模型(ARCH)等。

其中,滑动平均法和指数平滑法是时间序列分析中最为简单和常用的两种方法。

滑动平均法主要是通过对数据进行加权平均,来去除季节性和不规则性的影响,以此达到平滑数据的目的。

而指数平滑法则是与滑动平均法类似,只不过对数据的加权系数进行了指数级别上的调整,以便更好地反映数据的趋势和变化。

二、时间序列分析在经济领域中的应用1. 经济指数预测时间序列分析可以通过建立趋势、季节性和周期性的多种模型,对经济指数进行预测。

例如,可以利用ARMA模型来预测某种经济指数在未来几个月或几年内的趋势和变化,以此来判断当前经济形势的发展和方向,以及制定合理的政策和措施。

2. 市场趋势预测时间序列分析还可以帮助经济学家们对市场趋势进行预测。

例如,可以通过对历史数据进行ARMA或ARCH模型的建立和分析,来判断未来市场的波动性和风险,从而制定有效的投资策略和风险控制措施。

3. 经济循环研究时间序列分析可以衡量经济循环,如繁荣期、衰退期和复苏期等,以及它们之间的时序性和关联性。

这对于经济学家们来说在分析宏观经济的时候是非常重要的。

4. 预测商品价格商品价格是经济领域中一个非常敏感的指标,涉及到生产、销售、价格和利润等多个方面。

时间序列分析可以通过对历史价格的变动进行分析,来预测未来的价格走势和波动性。

时间序列分析的介绍和应用

时间序列分析的介绍和应用

时间序列分析时间序列通常是对某一统计指标,按照相等时间间隔测量的一系列数据点,它反映的是某变量在时间上的一系列变化。

大量社会经济统计指标都依年、季、月或日统计其指标值,随着时间的推移,形成了统计指标的时间序列。

例如, 过去每年国内生产总值数据、过去十年内年度增值税收入数据、过去五年内季度关税数据等等。

时间序列分析就是估算和研究某一时间序列在长期变动过程中所存在的统计规律,具体是指,我们只知道需要预测的那个变量(简称预测变量)在历史上的一系列观察值,通过分析这些观察值所显示出来的规律,如长期变动趋势、季节性变动规律、周期变动规律,然后把这个规律外推到预测期,从而获得该预测变量的值或分布,并进一步预测今后的发展和变化。

一、时间序列的变动因素一般认为,一个时间序列中包含四种变动因素:长期趋势变动、季节性变动、周期性变动和不规则变动。

换言之,时间序列通常是上述四种变动因素综合作用的结果。

1、长期变动趋势(T:Secular Trend)长期变动趋势是指变量值在一个长时期内的增或减的一般趋势。

长期变动趋势可能呈现为直线型变动趋势,也可能呈现曲线型变动趋势,依变量不同而异。

2、季节性变动(S:SeasonaI Variation)季节性变动是指变量的时间序列值因受季节变化而产生的变动。

季节变动是一种年年重复出现的一年内的季节性周期变动,即每年随季节替换,时间序列值呈周期变化。

3、周期性变动(C:CyclicaI Variation)周期性变动又称循环变动,它是指变量的时间序列值相隔数年后所呈现的周期变动。

在一个时间序列中,循环变动的周期可以长短不一,变动的幅度也可大可小。

4、不规则变动(I:lrregular Variation)不规则变动是指变量的时间序列值受突发事件,偶然因素或不明原因所引起的非趋势性、非季节性、非周期性的随机变动,因此,不规则变动是一种无法预测的波动。

图1显示的是我国1997年1月至2007年12月的月度消费者价格(CPI )指数(同比)。

我国居民消费价格指数时间序列研究

我国居民消费价格指数时间序列研究
了 加 息 手 段 。 然 而 , 胀 的势 头 并 没 有 得 到 扭 转 。 通
t St ts i P o . — a itc r b
A u m e t d Dik y Fu l r t s t ts i 一 9 3 9 6 0 0 0 g ne ce - l e t s a itc e . 5 7 1 . 00 Te tc ii a a u s 1 1 v l s r t 1v l e : c e e 5 lv l e e 1 lv l 0 e e 一 2 5 5 8 .857 一 1 9 3 8 .468 一 1 6 4 5 . 1 80
摘 要 :0 1 以来, 国的居 民消 费价格 指数 不断创新 高 , 内通 胀压 力很 大 , 21 年 我 国 这主要 是 因 为 2 0 0 8年底 以来执 行 的
投 资拉 动 经 济 的 方 针 , 得 信 贷 投 放 大 量 增 加 , 动 性 过 剩 导 致 。 对 居 民 消 费 价 格 月 环 比 指 数 ( 月 一 i 0 时 间 序 列 进 行 使 流 上 0) 研 究 , 用 AR( ) 型进 行 实证 分 析 。结 果 说 明 了本 期 居 民 消 费 价 格 月环 比指 数 受 前 4期 居 民 消 费 价 格 月 环 比 指 数 的 影 使 P模 响 , 且 受 上 一 期 的 影 响 最 大 。这 反 映 出 通 胀 预 期 对 居 民 消 费 价 格 的 推 动 作 用 , 控 制 居 民 消 费 价 格 , 定 要 改 变居 民 的 并 要 一
2 消 费价格 指 数 时 间序 列 的特 征 分析
本 文 研 究 居 民 消 费 价 格 指 数 的 时 间 序 列 特 征 , 实 证 从 的 角 度 研 究 居 民 消 费 价 格 指 数 , 期 得 到 居 民 消 费 价 格 指 以 数 序 列 的 内在 关 系 。 本 文 采 用 自 2 0 0 1年 1月 至 2 1 0 1年 5 月 的居 民 消 费 价 格 月 环 比指 数 进 行 实 证 研 究 。 本 文 采 用 居 民 消 费 价 格 月 环 比 指 数 。 之 所 以采 用 居 民 消 费 价 格 月 环 比 指 数 , 为 这 更 具 有 实 际 意 义 。 如 果 使 用 因 同 比增 长 数 据 , 么 两 个 数 据 之 间 相 差 1 那 2个 月 , 样 的 比 这 较 不 具 有 实 时 意 义 。 目前 居 民 消 费 价 格 变 化 很 快 , 民 也 居 更 看 重 价 格 的 近 期 涨 幅 , 不 会 关 注 现 在 的 消 费 价 格 与 上 而

时间序列分析论文

关于居民消费价格指数的时间序列分析摘要本文以我国1997年4月至2014年4月间每月的烟酒及用品类居民消费价格指数为原始数据,利用EVIEWS软件判断该序列为平稳序列且为非白噪声序列,通过对数据一系列的处理,建立AR(1)模型拟合时间序列,由于时间序列之间的相关关系和历史数据对未来的发展有一定的影响,对我国的烟酒及用品类居民消费价格指数进行了短期预测,阐述该价格指数所表现的变化规律。

关键字:烟酒及用品类居民消费价格指数,时间序列,AR模型,预测引言一、理论准备时间序列分析是按照时间顺序的一组数字序列。

时间序列分析就是利用这组数列,应用数理统计方法加以处理,以预测未来事物的发展。

时间序列分析是定量预测方法之一。

基本原理:1.承认事物发展的延续性。

应用过去数据,就能推测事物的发展趋势。

2.考虑到事物发展的随机性。

任何事物发展都可能受偶然因素影响,为此要利用统计分析中加权平均法对历史数据进行处理。

该方法简单易行,便于掌握,但准确性差,一般只适用于短期预测。

时间序列分析是根据系统观测得到的时间序列数据,通过曲线拟合和参数估计来建立数学模型的理论和方法。

二、基本思想1. 拿到一个观测值序列之后,首先判断它的平稳性,通过平稳性检验,判断序列是平稳序列还是非平稳序列。

2.若为非平稳序列,则利用差分变换成平稳序列。

3.对平稳序列,计算相关系数和偏相关系数,确定模型。

4.估计模型参数,并检验其显著性及模型本身的合理性。

5.检验模型拟合的准确性。

6.根据过去行为对将来的发展做出预测。

三、背景知识CPI(居民消费价格指数),是反映与居民生活有关的商品及劳务价格统计出来的物价变动指标,通常作为观察通货膨胀水平的重要指标。

居民消费价格指数,是对一个固定的消费品篮子价格的衡量,主要反映消费者支付商品和劳务的价格变化情况,也是一种通货膨胀水平的工具。

一般来说,当CPI>3%的增幅时我们称为通货膨胀。

国外许多发达国家非常重视消费价格统计,美国、加拿大等国家都计算和公布每月经过季节调整的消费价格指数,以满足不同信息使用者的要求。

stata操作介绍之时间序列分析

时间单位,或者定义时间周期(即timevar两个观测值之间 的周期数)。Options的相关描述如表1所示。
时间单位
格式说明
Clocktime
daily weekly monthly quarterly harfyearly yearly generic format(%fmt) 时间周期
timevar的格式为%tc, 0=1jan1960 00:00:00.000,1=1jan1960 00:00:00.001 即0代表1960年1月1日的第一秒,1为1960年1月1日的第二秒,依次后推。 timevar的格式为%td,0=1jan1960,1=2jan1960;即0为1960年第一天,1 为1960年第二天,依次后推。 timevar的格式为%tw,0=1960w1,1=1960w2;即0为1960年第一周,1 为1960年第二周,依次后推。 timevar的格式为%tm,0=1,1=;即0为1960年第一月,1为1960年第二 月,依次后推。 timevar的格式为%tq,0=1960q1,1=1960q2;即0为1960年第一季,1为 1960年第二季,依次后推。 timevar的格式为%th,0=1960h1,1=1960h2;即0为从1960起的第一个半 年,1为从1960年起第二个半年,依次后推。 timevar的格式为%ty,1960=1960,1961=1960 timevar的格式为%tg
数据=修匀部分+粗糙部分,运用Stata进行修匀使用 tssmooth命令,其基本命令格式如下所示:
tssmooth smoother[type] newvar = exp [if] [in] [, ...]
其中平s滑mo的o种t类her[type]有一系sm列oo目ther录[ty,pe]如下表3所示:

1994—2012年江苏省居民消费价格指数的时间序列分析

1994-2012年江苏省居民消费价格指数的时间序列分析班级:统计1班姓名:陈晶晶学号:09704122摘要居民消费价格指数(CPI)是宏观经济分析和决策,价格总水平监测和调控以及国民经济核算的重要指标。

本文利用1994-2012年江苏省居民消费价格指数的月度数据,运用Eviews 软件建立一个乘积季节模型,并用这个模型对江苏省未来的居民消费价格指数进行合理的预测。

关键词居民消费价格指数时间序列分析乘积季节模型预测分析一.引言居民消费价格指数(CPI)是用来测定一定时期内居民支付所消费商品和服务价格变化程度的相对数指标。

它既是反映通货膨胀程度的重要指标,也是国民经济核算中的缩减指标。

一般说来,当CPI>3% 的增幅时,我们称为通货膨胀;而当CPI>5% 的增幅时,我们把它称为严重的通货膨胀。

这一指标影响着政府制定货币、财政、消费、价格、工资、社会保障等政策,同时,也直接影响居民的生活水平及评价。

居民消费价格指数反映的市场价格信号真实.带动价格舆论导向正确,有利于改善价格总水平调控。

首先,它有利于维护正常的经济生活和市场价格信息秩序。

其次,有利于引导消费形成合理的消费价格,促进有效需求。

再次,它有利于综合运用价格和其他经济手段,实现价格总水平调控目标。

【1】所以,对该指标的分析与预测是非常有意义的工作。

本人在阅读与之有关的参考文献时,发现很多学者采用全国的CPI数据进行时间序列分析,就某个省份或某个城市的CPI数据研究很少,而且采用的模型也各不相同,所以本人就用江苏省1994-2012年的居民消费价格指数进行了时间序列分析。

二.数据描述和模型说明1.数据描述1994年1月——2012年3月江苏省居民消费价格指数如下表:(数据来源:/data/mac/jmxf_dq.php?symbol=320000)1月2月3月4月5月6月7月8月9月10月11月12月1994年123.9 125.9 122.6 121.4 119.8 120.6 122.3 123.4 125.5 125.6 124.9 121.61995年120.8 119.6 119.1 118.1 118.4 117.4 115.4 113.1 112.5 112.1 111.6 1121996年112.6 111.9 111.8 111.5 109.9 108.9 109.3 109.2 107.6 106.9 106.6 105.51997年104.2 104.3 103.1 103 102.4 101.8 101 100.8 100.9 100.1 99.7 99.41998年99.5 99.5 100.4 99.5 99.4 99 99 99.6 99.2 99.4 99.5 99.21999年98.9 98.8 98.1 97.6 97.9 98.7 99.3 98.9 98.9 99.3 99.2 99.32000年100.4 101.4 100.4 100.1 99.7 99.6 99.7 99.4 99.5 99.4 100.3 100.72001年101.6 100.4 101 101.9 102 101.4 101.4 101.2 100.3 100 99.4 99.32002年99.2 99.9 99.3 98.6 99 99.5 99.3 99.4 99.1 99 99.1 99.42003年100 100.2 100.6 100.7 100.1 99.6 100.3 101 101.2 102.2 103.2 103.22004年103.2 102.4 103.6 104.3 105.1 105.6 105.3 105.5 105.1 104.1 102.5 102.12005年102.2 104.4 103 102 101.5 101.4 101.8 101.3 101.4 102.1 102 102.32006年102.5 101.2 100.9 101.4 101.5 101.4 101.3 101.5 101.3 101 102 103.12007年102 102 102.5 102.7 103.1 104 105.2 106 105.9 106.2 106.5 105.62008年106.1 107.7 107.7 107.6 107.1 106.9 106 104.6 104.3 103.5 101.9 101.42009年101.4 99.5 99.6 98.9 98.8 98.3 98 98.8 99.3 99.6 100.6 102.12010年101.7 102.4 102.4 103.2 103.7 103.5 104.1 103.9 104.6 105.2 106.1 1052011年105.1 105.7 105.6 105.3 105.7 106.9 106.4 106 105.4 104.8 103.5 103.62012年103.9 102.9 103.5首先,做出序列时序图和自相关图,如下:X13012512011511010510095949698000204060810可以看出该序列是不平稳的序列,做1阶12步差分dx=d(x,1,12)得到如下时序图:DX4321-1-2-3-4949698000204060810可以看出差分后的序列是平稳序列。

时间序列分解实验报告

一、实验目的本实验旨在通过时间序列分解的方法,分析某一经济指标(如某城市月度居民消费价格指数CPI)的变化规律,并对未来一段时间内的CPI进行预测。

通过本次实验,我们能够掌握时间序列分解的基本原理和步骤,以及如何运用时间序列分析方法解决实际问题。

二、实验数据实验数据为某城市1980年1月至2020年12月的月度居民消费价格指数(CPI),共计241个数据点。

数据来源于国家统计局。

三、实验步骤1. 数据预处理首先,对实验数据进行可视化,观察数据的基本特征,如趋势、季节性等。

通过观察时序图,发现CPI数据存在明显的上升趋势和季节性波动。

2. 时间序列分解采用STL(Seasonal-Trend decomposition using Loess)方法对CPI数据进行分解。

STL方法可以将时间序列分解为趋势(T)、季节性(S)和残差(R)三个部分。

(1)季节性分解首先,对CPI数据进行季节性分解,提取季节性成分。

通过观察季节性成分图,发现CPI数据存在明显的季节性波动,每年1月、7月和12月为高峰期,4月和10月为低谷期。

(2)趋势分解接下来,对CPI数据进行趋势分解,提取趋势成分。

通过观察趋势成分图,发现CPI数据呈现出明显的上升趋势。

(3)残差分解最后,对CPI数据进行残差分解,提取残差成分。

残差成分表示去除季节性和趋势后的随机波动。

3. 预测根据分解后的趋势和季节性成分,对未来一段时间内的CPI进行预测。

采用ARIMA 模型(自回归移动平均模型)进行预测,根据AIC(赤池信息量准则)选择合适的模型参数。

4. 结果分析通过对比实际值与预测值,评估预测模型的准确性。

计算均方误差(MSE)和均方根误差(RMSE)等指标,以衡量预测误差。

四、实验结果1. 时间序列分解结果(1)季节性成分图(2)趋势成分图(3)残差成分图2. 预测结果(1)预测值与实际值对比图(2)预测误差分析MSE:0.0135RMSE:0.1166五、实验结论1. 通过时间序列分解,成功提取了CPI数据的趋势、季节性和残差成分,揭示了CPI变化的内在规律。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

时间序列分析在我国居民消费价格指数中的应用
作者:吴定明
来源:《环球市场信息导报》2015年第13期
本文采用时间序列模型,对我国居民消费价格指数2007年1月至2014年6月的数据进行分析,建立了ARIMA(p,d,q)(P,D,Q)模型,并利用2014年7月至2014年12月的预测值与实际值比较,显示该模型具有较好的预测效果。

居民消费价格指数是世界各国普遍编制的一种指数,它可以用于分析市场价格的基本动态,是政府制定物价政策和工资政策的重要依据。

为准确把握居民消费价格指数的变动趋势,可以利用时间序列分析方法对我国的居民消费价格指数数据进行建模预测。

时间序列分析是经济预测领域研究的重要工具之一,它描述历史数据随时间变化的规律,并用于预测经济数据。

然而经济数据由于受到市场和国家政策等因素的影响,会常常表现出随机性,此时传统的线性时间序列分析就不能够很好地反映经济数据中存在的内在特征。

[3]近年来,非线性和非参数时间序列分析方法的出现恰恰弥补了这一缺点,因此被广泛地应用于经济领域,尤其是金融市场。

关于非线性时间序列分析的详情可以参见文献Tong(1990)和Priestley (1988)在非线性时间序列分析的最新发展上也给出了优秀的总结。

本文对我国2007年1月至2014年6月的居民消费价格指数数据建立ARIMA(p,d,q)(P,D,Q)季节模型,并利用Eviews软件进行了拟合和预测。

最后,将模拟、预测得到的结果与部分实际值进行了比较,结果表明,该模型能较好地反映我国居民消费价格指数的变化特征。

二、数据处理与模型预测
数据平稳化。

作时间序列分析时,要求数据是平稳的,这样才可以直接进行分析,但在实际操作中,特别是经济数据几乎都是有一定趋势的,不是平稳数据,这时就要首先对原始数据进行平稳化处理,剔出趋势的影响,用平稳化的数据进行时间序列分析。

本文CPI数据来自中国统计年鉴网。

由图1我们可以看出,各月财险公司原保费收入CPI序列呈现明显的波动,2007年1月至2008年2月呈上升趋势,2008年3月至2009年2月呈下降趋势,2009年6月至2011年7月呈上升趋势,2011年8月至2012年6月再次呈现下降趋势,之后变化比较平稳。

序列均值明显不为零且带有季节变化现象。

由表1可知,检验t统计量的值为-3.166,大于显著性水平为
1%临界值,表明序列非平稳。

所以不能直接建立ARIMA模型,需要对原始序列进行平稳化与零均值处理。

为检验模型预测效果,将2014年的6个观测值留出,作为评价预测精度的参照对象。

建模的样本期为2007年1月至2014年6月。

对原始序列做一阶自然对数逐期差分,得到序列折线图(图2),差分后序列命名为CPI1。

对CPI1进行了单位根检验,如表2:
由表2可知经过一阶自然对数逐期差分后得到的CPI1序列为平稳序列,观察自相关与偏相关图可以发现原始序列的趋势基本消除,但当k=12或24时,在其附近的自相关和偏相关系数显著不为零,表明季节性存在。

对CPI1序列做季节差分,得到新序列SCPI。

绘制序列SCPI的自相关与偏相关图,如图4所示。

由图4可见,序列SOPI的样本自相关与偏相关系数很快的落入随机区间,但在k=12或24附近取值仍然较大,季节性依然比较明显。

经实验,对序列进行二阶季节差分,发现序列季节性没有得到显著改善,故只做一阶季节差分即可。

对序列SCPI进行0均值检验,得到序列均值与0无显著差异,表明序列可以直接建立ARIMA模型。

模型定阶与参数估计。

经过一阶季节差分,季节性基本消除,故D=1,又k=12附近时样本自相关系数和偏相关系数都显著不为零,所以,P=Q=1。

因为经过一阶逐期差分,序列基本平稳,故d=1;观察SCPI序列的偏自相关系数图,p=3比较合适;而自相关系数图不容易确定。

可供选择的模型有AR(3)或者ARMA(3,3)。

运用Eviews7软件分别建立可能的AR (3)(1,1,1)与ARIMA(3,1,3)(1,1,1)模型进行比较,结果如表3所示:
对模型拟合效果的诸多评估指标中,AIC和SIC是最重要的两个拟合优度统计量,AIC和SIC值最小的模型通常为最佳模型,比较表3中两类模型的拟合效果,模型ARIMA(3,1,3)(1,1,1)适合。

具体参数估计如图5所示。

2.3 模型检验
参数估计后,应该对ARIMA模型的适合性进行检验,即对模型的残差序列进行白噪声检验。

若残差序列不是白噪声序列,意味着残差序列还存在着有用信息没被提取,需要进一步改进模型。

通常侧重于检验残差序列的随机性,即滞后期k≥1,残差序列的样本自相关系数接近
为0。

从Prob列得出拒绝原假设所犯第一类错误的概率比较大,这表明,残差序列为白噪声序列的可能性很大,故不能拒绝序列相互独立的原假设,检验通过。

2.4模型预测
利用得到的ARIMA(3,1,3)(1,1,1)模型,我们对2014年7月到2015年6月的居民消费价格指数进行了预测,为方便与预测值比较,将已有的实际值列入表4。

从表4中可以看出预测值与实际值的最大相对误差为3.3%。

由于建立模型后,不断有新数据进行补充,可以实现模型的动态预测,可以为消费价格指数提供一些参考。

从上文的分析可以看出,我们对CPI定基指数建立的季节时间序列模型具有较高的拟合度,且该模型具有较好的预测效果。

因此,在实际中我们可以应用次模型对CPI未来的走势进行预测。

当然,该模型也有不足的地方,即ARIMA模型应用在预测的时候,对短期预测有着比较好的预测效果,但随着时间的延长,它呈现出较差的预测效果。

(作者单位:山东科技大学)
地址:四川省西昌市胜利南路佳信阳光4栋2单元301
电话:1898925856023.。

相关文档
最新文档