随机信号分析理论的应用综述
通信原理第2章-随机信号分析

1 1 2
f ( x)dx f ( x)dx
a
2
在点 a 处取极大值: 1
2
■ a f x 左右平移
f x宽窄
a
x
37
二、正态分布函数
积分无法用闭合形式计算,要设法把这个积分式和可以在数学 手册上查出积分值的特殊函数联系起来,常引入误差函数和互 补误差函数表示正态分布函数。
38
三、误差函数和互补误差函数
39
40
四、为了方便以后分析,给出误差函数和互补误差 函数的主要性质:
41
42
2.5.4 高斯白噪声
43
这种噪声称为白噪声,是一种理想的宽带随机过程。 式子是一个常数,单位是瓦/赫兹。白噪声的自相关 函数:
说明,白噪声只有在 =0 时才相关,而在任意
两个时刻上的随机变量都是不相关的。白噪声的功 率谱和自相关函数如图。
F1 x1 ,
x1
t1
f1 x1 ,
t1
则称 f1 x1 , t1 为 (t的) 一维概率密度函数。
显然,随机过程的一维分布函数或一维概率密度函数 仅仅描述了随机过程在各个孤立时刻的统计特性,没 有说明随机过程在不同时刻取值之间的内在联系,因 此需要在足够多的时间上考虑随机过程的多维分布函 数
60
用示波器观 察一个实现 的波形,如 图所示,是 一个频率近 似为fc,包 络和相位随 机缓变的正 弦波。
Df -fc
s(t)
S( f )
O (a) 缓慢变化的包络[a(t)]
O
频率近似为 fc (b)
窄带过程的频谱和波形示意
61
Df
fc
f
t
因此,窄带随机过程ξ(t)可表示成:
《随机信号分析与处理》教学大纲

《随机信号分析与处理》教学⼤纲《随机信号分析与处理》教学⼤纲(执笔⼈:罗鹏飞教授学院:电⼦科学与⼯程学院)课程编号:070504209英⽂名称:Random Signal Analysis and Processing预修课程:概率论与数理统计、信号与系统、数字信号处理学时安排:60学时,其中讲授54学时,实践6学时学分:3⼀、课程概述(⼀)课程性质地位本课程是电⼦⼯程、通信⼯程专业的⼀门学科基础课程。
该课程系统地介绍随机信号的基本概念、随机信号的统计特性分析⽅法以及随机信号通过系统的分析⽅法;介绍信号检测、估计、滤波等信号处理理论的基本原理和信息提取⽅法。
其⽬的是使学⽣通过本课程的学习,掌握随机信号分析与处理的基本概念、基本原理和基本⽅法,培养学⽣运⽤随机信号分析与处理的理论解决⼯程实际问题的能⼒,提⾼综合素质,为后续课程的学习打下必要的理论基础。
本课程是电⼦信息技术核⼼理论基础。
电⼦信息系统中的关键技术是信息获取、信息传输、信息处理,这些技术的理论基础就是随机信号的分析、检测、估计、滤波等理论,这正是本课程的主要内容。
因此,本课程内容是电⼦信息类应⽤型⼈才知识结构中不可或缺的必备知识。
⼆、课程⽬标(⼀)知识与技能通过本课程的学习,掌握随机信号分析与处理基本概念和基本分析⽅法。
内容包括:1.理解和掌握随机过程基本概念和统计描述;2.掌握随机过程通过线性和⾮线性系统分析⽅法3.理解和掌握典型随机过程的特点及分析⽅法;4.掌握参数估计的概念、规则和性能分析⽅法;5.掌握信号检测的概念、规则和性能分析⽅法;6.掌握⾼斯⽩噪声中最佳检测器的结构和性能分析。
通过本课程的学习,要达到的能⼒⽬标是:1.具有正确地理解、阐述、解释⽣活中的随机现象的能⼒,即培养统计思维能⼒;2.运⽤概率、统计的数学⽅法和计算机⽅法分析和处理随机信号的能⼒;3.初步具备雷达、通信、导航等技术领域的信号处理系统的分析、设计、仿真的科学研究能⼒;4.培养⾃主学习能⼒;5.培养技术交流能⼒(包括论⽂写作和⼝头表达);6.培养协作学习的能⼒;(⼆)过程与⽅法依托“理论、实践、第⼆课堂”三个基本教学平台,通过课堂教学、概念测试、课堂研讨、案例研究、作业、实验、课程论⽂、⽹络教学等多种教学形式,采⽤研究型、案例式、互动研讨、基于团队学习、基于MATLAB的教学以及基于多媒体的教学等多种教学⽅法和⼿段,使学⽣加深对随机信号分析与处理的基本概念、基本原理以及应⽤的理解,并使学⽣通过⾃主学习、⼩组作业、案例研究、实验、课题论⽂等主动学习形式,培养⾃学能⼒和协同学习的能⼒,使学⽣不仅获得知识、综合素质得到提⾼。
随机信号分析与处理

一、基本概念1、随机过程随机信号是非确定性信号,不能用确定的数学关系式来描述,不能预测它未来任何瞬时的精确值,任一次观测值只代表在其变动范围内可能产生的结果之一,但其值的变动服从统计规律。
随机信号的描述必须采用概率和统计学的方法。
对随机信号按时间历程所作的各次长时间观测记录称为样本函数,记作x(t)。
在有限时间区间上的样本函数称为样本记录。
在同一试验条件下,全部样本函数的集合(总体)就是随机过程,以{x(t)}表示,即2、随机信号类型3、平稳随机过程平稳随机过程就是统计特征参数不随时间变化而改变的随机过程。
例如,对某一随机过程的全部样本函数的集合选取不同的时间t进行计算,得出的统计参数都相同,则称这样的随机过程为平稳随机过程,否则就是非平稳随机过程。
如采样记录的均值不随时间变化4、各态历经随机过程若从平稳随机过程中任取一样本函数,如果该单一样本在长时间内的平均统计参数(时间平均)和所有样本函数在某一时刻的平均统计参数(集合平均)是一致的,则称这样的平稳随机过程为各态历经随机过程。
显然,各态历经随机过程必定是平稳随机过程,但是平稳随机过程不一定是各态历经的。
各态历经随机过程是随机过程中比较重要的一种,因为根据单个样本函数的时间平均可以描述整个随机过程的统计特性,从而简化了信号的分析和处理。
但是要判断随机过程是否各态历经的随机过程是相当困难的。
一般的做法是,先假定平稳随机过程是各态历经的,然后再根据测定的特性返回到实际中分析和检验原假定是否合理。
由大量事实证明,一般工程上遇到的平稳随机过程大多数是各态历经随机过程。
虽然有的不一定是严格的各态历经过程,但在精度许可的范围内,也可以当作各态历经随机过程来处理。
事实上,一般的随机过程需要足够多的样本(理论上应为无限多)才能描述它,而要进行大量的观测来获取足够多的样本函数是非常困难或做不到的。
在测试工作中常以一个或几个有限长度的样本记录来推断整个随机过程,以其时间平均来估计集合平均。
随机信号分析实验报告

一、实验名称微弱信号的检测提取及分析方法二、实验目的1.了解随机信号分析理论如何在实践中应用2.了解随机信号自身的特性,包括均值、方差、相关函数、频谱及功率谱密度等3.掌握随机信号的检测及分析方法三、实验原理1.随机信号的分析方法在信号与系统中,我们把信号分为确知信号和随机信号。
其中随机信号无确定的变化规律,需要用统计特新进行分析。
这里我们引入随机过程的概念,所谓随机过程就是随机变量的集合,每个随机变量都是随机过程的一个取样序列。
随机过程的统计特性一般采用随机过程的分布函数和概率密度来描述,他们能够对随机过程作完整的描述。
但由于在实践中难以求得,在工程技术中,一般采用描述随机过程的主要平均统计特性的几个函数,包括均值、方差、相关函数、频谱及功率谱密度等来描述它们。
本实验中算法都是一种估算法,条件是N要足够大。
2.微弱随机信号的检测及提取方法因为噪声总会影响信号检测的结果,所以信号检测是信号处理的重要内容之一,低信噪比下的信号检测是目前检测领域的热点,而强噪声背景下的微弱信号提取又是信号检测的难点。
噪声主要来自于检测系统本身的电子电路和系统外空间高频电磁场干扰等,通常从以下两种不同途径来解决①降低系统的噪声,使被测信号功率大于噪声功率。
②采用相关接受技术,可以保证在信号功率小于噪声功率的情况下,人能检测出信号。
对微弱信号的检测与提取有很多方法,常用的方法有:自相关检测法、多重自相法、双谱估计理论及算法、时域方法、小波算法等。
对微弱信号检测与提取有很多方法,本实验采用多重自相关法。
多重自相关法是在传统自相关检测法的基础上,对信号的自相关函数再多次做自相关。
即令:式中,是和的叠加;是和的叠加。
对比两式,尽管两者信号的幅度和相位不同,但频率却没有变化。
信号经过相关运算后增加了信噪比,但其改变程度是有限的,因而限制了检测微弱信号的能力。
多重相关法将当作x(t),重复自相关函数检测方法步骤,自相关的次数越多,信噪比提高的越多,因此可检测出强噪声中的微弱信号。
随机信号分析李晓峰

随机信号分析李晓峰引言随机信号分析是一门研究信号及其性质的学科,其在现代通信、图像处理、生物医学工程等领域中具有重要的应用价值。
本文将介绍随机信号分析的基本概念、常见的分析方法以及李晓峰教授在随机信号分析领域的研究成果。
随机信号的定义随机信号是指在某个时间段内具有随机性质的信号。
其特点是信号的取值在时间和幅度上都是不确定的,只能通过概率统计的方法来描述。
一个随机信号可以用一个概率密度函数来描述其取值的分布情况。
随机信号有两种基本的分类方式:离散随机信号和连续随机信号。
离散随机信号是在离散的时间点上进行取样的信号,连续随机信号则是在连续的时间上变化的信号。
随机信号分析方法统计特性分析统计特性分析是随机信号分析的基本方法之一,它通过对信号进行统计分析,从而得到信号的数学特性。
常见的统计特性包括均值、方差、自相关函数和谱密度等。
均值是衡量随机信号集中程度的一个指标,它表示信号的中心位置。
方差则用来衡量信号的离散程度,方差越大表示信号的波动性越大。
自相关函数描述了信号在不同时间点之间的相关性,而谱密度则表示信号在不同频率上的能量分布情况。
概率密度函数分析随机信号的概率密度函数描述了信号取值的概率分布情况。
常见的概率密度函数包括高斯分布、均匀分布和指数分布等。
高斯分布是最常用的概率密度函数之一,其形状呈钟型曲线,具有对称性。
均匀分布则表示信号的取值在一个区间上是均匀分布的,而指数分布则表示信号的取值在一个时间段内的分布服从指数规律。
谱分析谱分析是通过对随机信号进行频域分析来研究其频率成分的分析方法。
常见的谱分析方法有功率谱密度分析和相关函数分析。
功率谱密度分析可以用来分析信号在不同频率上的能量分布情况,通过功率谱密度分析可以得到信号的频谱图。
相关函数分析则是通过对信号进行自相关操作,得到信号的相关函数,从而分析信号在不同频率上的相关性。
李晓峰教授的研究成果李晓峰教授是我国著名的随机信号分析专家,他在随机信号分析领域做出了许多重要的研究成果。
随机信号分析

随机信号分析随机信号是在时间或空间上具有随机性质的信号,其数学模型采用随机过程来描述。
随机信号的分析是信号与系统理论中的重要内容,其应用广泛涉及通信、控制、电力系统等领域。
本文将从随机信号的基本特性、常见的随机过程以及随机信号分析的方法等方面进行阐述。
随机信号的基本特性包括:平均性、相关性和功率谱密度。
首先,平均性是指随机信号的统计平均等于其数学期望值。
随机信号的平均性是通过计算信号在一定时间或空间范围内的平均值来描述的。
其次,相关性是指随机信号在不同时刻或不同空间位置上的取值之间存在一定程度的相关性。
相关性可以描述信号之间的相似度和相关程度,常用相关函数来表示。
最后,功率谱密度是用来描述信号在频域上的分布特性,它表示了随机信号在不同频率上所占的功率份额。
随机信号的常见模型主要有白噪声、随机行走、随机震荡等。
其中,白噪声是指功率谱密度在整个频率范围内均匀分布的信号,其在通信领域中应用广泛。
随机行走模型是一种随机过程,它描述了随机信号在不同时刻之间的步长是独立同分布的。
随机震荡模型是一种具有振荡特性的随机过程,常用于描述具有周期性或周期性变化的信号。
对于随机信号的分析方法,主要包括时间域分析和频域分析两种。
时间域分析是通过观察信号在时间上的波形和变化规律来分析随机信号的特性,常用的方法有自相关函数和互相关函数等。
频域分析是将信号转换为频率域上的功率谱密度来分析信号的频谱特性,常用的方法有傅里叶变换和功率谱估计等。
在实际应用中,随机信号的分析对于信号处理和系统设计具有重要意义。
在通信系统中,随机信号的噪声特性是衡量系统性能的关键因素之一,因此通过对随机信号的分析可以有效地优化通信系统的传输质量。
此外,在控制系统和电力系统中,随机信号的分析也能帮助我们进行系统建模和性能预测,从而实现系统的稳定性和可靠性。
综上所述,随机信号的分析是信号与系统理论中的重要内容,其对于各个领域的应用具有重要的意义。
通过对随机信号的基本特性、常见的随机过程以及分析方法的了解,可以为我们深入理解和应用随机信号提供帮助。
随机信号分析-估计理论

主讲教师:罗鹏飞教授
估计理论
举例:高斯白噪声中的DC电平估计
zi A vi
i 1,..., N
vi 是独立同分布的高斯随机变量,均值为零,方差为 v2
A ~ N ( A , )
2 A
f ( A | z)
f (z | A) f ( A)
f (z | A) f ( A)dA
z
v exp[( x a)2 / 2] exp[( x a) 2 / 2 2[Q( x a) Q( x a)]
a A0 / v
x z / v
主讲教师:罗鹏飞教授
估计理论
估计量 A0
ˆ A ml
ˆ A map
ˆ A ms
-A0 A0
z
-A0 估计图形
主讲教师:罗鹏飞教授
估计理论
1 1 2 ( zi A) exp 2 A A 2 i 1 2 A 2 A 1 1 1 1 N 2 2 2 ( zi A) exp 2 A A dA (22 ) N / 2 exp 2 2 i 1 2 A 2 A 1 1 exp 2 2 N /2 (2 ) 2
生物医学
自动控制
地震学
这些应用都有一个共同的目标:要能够确定感 兴趣的事件在什么时候发生,以及该事件中更 多的一些信息,前者是一个检测问题,或者称 为统计判决问题,后者是参数的估计问题。
主讲教师:罗鹏飞教授
估计理论
主讲教师:罗鹏飞教授
估计理论
数字源
0或1
调制器
信道
解调器
检测器
主讲教师:罗鹏飞教授
随机信号在通信系统的应用

随机信号分析与处理在通信系统抗噪声性能的应用分析学院:信息与电气工程学院专业:电子信息工程班级:电子信息工程3班姓名:田浪绪论在通信系统的分析中,随机过程是非常重要的数学工具。
因为通信系统中的信号与噪声都具有一定的随机性,需要用随机过程来描述。
发送信号必须有一定的不可预知性,或者说随机性,否则信号就失去了传输的价值。
另外,介入系统中的干扰与噪声、信道特性的起伏,也是随机变化的。
通信系统中的热噪声就是这样的一个例子,热噪声是由电阻性元器件中的电子因热扰动而产生的。
另一个例子是在进行移动通信时,电磁波的传播路径不断变化,接收信号也是随机变化的。
因此,通信中的信源、噪声以及信号传输特性都可使用随机过程来描述。
在对无线电传输的信息进行调制和解调时,可以知道发射的载波的频率很高,而传输过程的带宽却很小,正是用了这样的特性从而滤除其他的干扰因素对传输的影响,但是不可能完全的滤除掉噪声对传输信号的影响。
信号进入带通滤波器之前是正弦波,经过带通滤波器后是正弦波和窄带高斯噪声的混合波形,而这些噪声是随机性的。
另外由于传输媒质的物理性质以及传输媒质的差异对信号传输的影响,而产生的加性噪声也是不能避免的。
所以在通信系统中,对信号的调制解调抗噪声的研究就显得必不可少。
由于这个过程满足窄带随机过程的条件,可以利用窄带随机过程的特性和方法来讨论抗噪声性能。
随机信号分析与处理在通信系统抗噪声性能的应用如果一个随机过程的功率谱集中在某一中心频率附近的一个很小的频带内,且该频带又远小于其中心频率,这样的随机过程称为窄带随机过称。
而通信系统中的调制信号是典型的窄带随机过程。
信号在信道中传输会叠加上一定的信道噪声,因此调制系统的抗噪声性能分析非常重要。
在一般无线电接收系统中通常都有髙频或中频放大器,它们的通频带往往远小于中心频率,即:所以,无线电接收系统为窄带系统,研究时可当作窄带系统研究。
当系统的输入端加入白噪声或宽带噪声时,由于系统的带通特性,输出的功率谱集中在为中心的一个很小的频带内,其窄带过程表现为具有载波角频率,但相对于载波而言幅度和相位是慢变化的正弦振荡形式,可表示为:其中为中心频率,是慢变化的随机过程,因此此公式称为窄带随机过程的准正弦振荡表示形式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
随机信号分析理论的应用综述结课论文学院:系别:电子信息工程班级:姓名:学号:指导老师:目录第一章概述随机信号分析的研究背景随机信号分析的主要研究问题第二章随机信号分析的主要内容随机信号分析的主要研究内容随机信号分析的基本研究方法第三章随机信号分析的应用实例均匀分布白噪声通过低通滤波器语音盲分离系统辨识基于bartlett的周期图法估计功率谱基于MATLAB_GUI的Kalman滤波程序第四章展望参考文献第一章概述随机信号分析的研究背景在一般的通信系统中,所传输的信号都具有一定的不确定性,因此都属于随机信号,否则不可能传递任何信息,也就失去了通信的意义;随机信号是一种不能用确定的数学关系式来描述的、无法预测未来时刻精准值的信号,也无法用实验的方法重复实现;随机信号是客观上广泛存在的一类信号,它是持续时间无限长,能量无限大的功率信号,这类信号的分析与处理主要是研究它们在各种变化域中的统计规律,建立相应的数学模型,以便定性和定量的描述其特性,给出相关性能指标,并研究如何改善对象的动静态性能等;随机信号分析内容涉及线性系统与信号、时间序列分析、数字信号处理、自适应滤波理论、快速算法、谱估计等方面的知识;我们所学的是从工程应用的角度讨论随机信号的理论分析和研究方法,主要以分析随机信号与系统的相互作用为主要内容;近年来,随着现代通讯和信息理论的飞速发展,对随机信号的研究已渗透到的各个科学技术领域,随机信号的处理是现代信号处理的重要理论基础和有效方法之一;主要研究问题对随机过程信号的分析来讲,我们往往不是对一个实验结果一个实现或一个具体的函数波形感兴趣,而是关心大量实验结果的某些平均量统计特性,因而随机过程信号的描述方式以及推演方式都应以统计特性为出发点;这样,尽管从个别的实现看不出什么规律性的东西,但从统计的角度却表现出一定的规律性,即统计规律性,它是本门学科一个最根本的概念;随机信号分析重点研究一般化抽象化的系统干扰和信号,往往仅给出他们的系统函数模型和数学模型,而不是讨论具体的系统,更不会局限于一些具体的电路系统上;概率论与数理统计随机过程理论等只是处理本命学科有关问题的一种工具因而学习本门课程除了注意处理问题的方法,更重要的是对一数学推演的结果和结论的物理意义有深入的理解;随机信号通过线性、非线性系统统计特件的变化;在通信、雷达和其他电子系统中常见的一些典型随机信号,如白噪声、窄带随机过程、高斯随机过程、马尔可夫过程等;第二章随机信号分析的主要内容随机信号分析与处理时研究随机信号的特点及其处理方法的专业基础课程,是目标检测、估计、滤波等信号处理的理论基础,在学习过程中,我们需要学会三个概念,统计的概念、模型的概念和物理概念,学习时既要理论联系实际,又要学会数学模型的抽象思维方法;一随机信号分析的主要研究内容:随机过程的基本概念和基本特征,它是学习随机信号分析的基础;随机信号的平稳性,平稳随机过程的数字特征、相关函数的性质;掌握平稳随机序列的期望、自相关序列的求解等;功率谱密度以及它的性质、互谱密度及性质等;随机信号两种统计特性的描述方法,重点研究数字特征,均值、方差、相关函数、相干函数、功率谱密度;平稳随机过程:将随机过程划分为平稳和非平稳有重要的实际意义,因为过程若属于平稳的可使问题的分析变得简单;随机信号的功率谱密度:利用傅里叶变换,研究随机过程的频域分析的功率谱密度并讨论其频率结构带宽以及系统的相互作用;随机信号通过线性系统:当输入信号为随机过程时,线性,稳定,时不变系统输出的统计特性,讨论系统的冲激响应ht是实函数的情况;功率谱估值:基于傅里叶变换的经典法和基于随机信号模型的现代谱估值法,前者称为非参数谱估值法,后者称为参数谱估值法;窄带随机过程:建立窄带过程的物理模型和数学模型以及分析窄带信号和系统的重要工具希尔伯特变换,来分析窄带随机过程的统计特性及其一些重要性质;讨论窄带随机过程经包络检波器和平方律检波器后统计特性的变换;随机信号通过非线性系统:当动态非线性系统可分时,分为线性系统与无记忆的非线性系统的级联,一般用多项式和伏特拉级数的方法;马尔可夫过程:一随机过程 {Xt,t∈T},其值域状态可以连续取值,也可以离散取值,如果他的条件概率满足下列关系:PXtn+1<=Xn+1 Xtn=xn,Xtn-1=xn-1,...,Xto=xo=PXtn+1<=xn+1 Xtn=xn 则Xt为马尔可夫过程;基于假设检验的信号检测:信号的统计检测是随机信号分析与处理的重要内容,应用统计方法来导出判决和估值的步骤,是合乎情理的;二随机信号分析理论的基本研究方法:在学习随机信号分析这一门课程时除了注意处理随机信号的方法外,更重要的是深入理解数学推演结果、结论的物理意义;对一些复杂的数学推演的中间步骤不必死记硬背,更不必深究其数学上的严密性,重在弄清楚来龙去脉,掌握分析的思路与方法;利用计算机为工具,对特定随机过程产生的数据进行统计分析,也是研究随机过程的重要方法,以及利用现代分析手段去分析,研究随机信号用来解决工程应用中的实际问题;第三章随机信号分析的应用实例均匀分布白噪声通过低通滤波器matlab环境下%%%%均匀分布白噪声通过低通滤波器xn=rand1,500; hn=fir150,;f,xi=ksdensityxn; plotxi,f;title'均匀分布白噪声概率密度';yn=filterhn,1,xn;t,xi=ksdensityyn;figure; plotxi,t;title'均匀分布白噪声通过低通滤波器后的概率密度';均匀分布白噪声概率均匀分布白噪声通过低通滤波器后的概率密度语音盲分离语音信号的盲源就是在源信号和源信号如何混合都未知的情况下,从观测到的混合信号中恢复出未知源信号;语音信号盲分离技术被成功地用在了通信、医学、图像和语音信号处理等领域;我们所要研究的混合语音信号盲分离问题就是用麦克风阵列或多个麦克风阵列来模仿人的耳朵,采集得到相互干扰的混叠语音信号,然后通过分离算法将混叠的语音信号相互分离开来,提取我们所感兴趣的信号;举个例子就是在多人同时说话的嘈杂环境下,我们能够辨识感兴趣人的说话声的能力;然后把它分辨出来;系统辨识根据系统的输入输出时间函数来确定描述系统行为的数学模型;通过辨识建立数学模型的目的是估计表征系统行为的重要参数,建立一个能模仿真实系统行为的模型,用当前可测量的系统的输入和输出预测系统输出的未来演变,以及设计控制器;对系统进行分析的主要问题是根据输入时间函数和系统的特性来确定输出信号;对系统进行控制的主要问题是根据系统的特性设计控制输入,使输出满足预先规定的要求;而系统辨识所研究的问题恰好是这些问题的逆问题;通常,预先给定一个模型类μ={M},一类输入信号u和等价准则J=Ly,yM;然后选择使误差函数J达到最小的模型,作为辨识所要求的结果;系统辨识包括两个方面:结构辨识和参数估计;在实际的辨识过程中,随着使用的方法不同,结构辨识和参数估计这两个方面并不是截然分开的,而是可以交织在一起进行的;基于bartlett的周期图法估计功率谱功率谱估计是随机信号分析中的一个重要内容;从介绍功率谱的估计原理入手分析经典谱估计和现代谱估计两类估计方法的原理、各自特点及在Matlab中的实现方法;经典功率谱估计的方差大、谱分辨率差,分辨率反比于有效信号的长度,但现代谱估计的分辨率不受此限制;给出了功率谱估计的应用;基于MATLAB_GUI的Kalman滤波程序MATLAB_GUI为Kalman滤波器的研究和应用提供了一个直观、高效、便捷的利器;它以矩阵运算为基础,把计算、可视化、仿真以及设计融合到一个交互式的工作环境中;本文基于MATLAB_GUI对Kalman滤波器进行设计和仿真;第四章展望电子信息工程是一门应用计算机等现代化技术进行电子信息控制和信息处理的学科,主要研究信息的获取与处理,电子设备与信息系统的设计、开发、应用和集成;现在,电子信息工程已经涵盖了社会的诸多方面,像电话交换局里怎么处理各种电话信号,手机是怎样传递我们的声音甚至图像的,我们周围的网络怎样传递数据,甚至信息化时代军队的信息传递中如何保密等都要涉及电子信息工程的应用技术;我们可以通过一些基础知识的学习认识这些东西,并能够应用更先进的技术进行新产品的研究和开发;中国IT行业起步至今有十年,很年轻;新鲜的事物、朝阳的产业总是备受注目;正是这个原因,计算机专业迅速成为高校的热门专业,不少同学削尖又再削尖了脑袋往这个象牙塔里的象牙顶钻,或为兴趣,或为谋生掌握一门技能,或为前途更好更快地发展;在学习随机信号分析这一门课程时,应能掌握随机过程的基本概念、其统计特性的描述、随机信号通过系统分析以及电子系统中常见的窄带、正态随机信号的分析,而数字技术的发展使得离散随机信号分析成为本课程的重点要求掌握内容,其在电子信息技术中所占比重及重要性将得到进一步加强;随机信号理论在它形成的初期,便在通信、雷达、导航以及密码学等领域中获得了广泛的应用;近年来,随着对随机信号理论研究的进一步深入,人们对随机信号有了更多的认识,随机信号的实际应用也越来越多;其应用范围从上述领域扩展到自动控制、计算机、声学和光学测量、数字式跟踪和测距系统以及数字网络系统的故障检测等方面;参考文献:1“随机信号分析与处理”研究型教学总结谢明霞,罗鹏飞,张文明,徐振海3基于局域波法和盲源分离的故障诊断方法应用郝治华 20054概率论与数理统计第二版盛骤等北京高等教育出版社 2001.5非平稳随机信号分析与处理王宏禹国防工业出版社1999.6非平稳信号的一种ARMA模型参数估计法.信号处理王文华,王宏禹 19987Electronic Design EngineeringGao Hai Ning,YUAN Lei Ming,L of signal processing module of agricultural products based on acoustic resonance. 20128随机信号分析与应用刘磊 20139随机信号分析与处理0课程设计案例张文明,罗鹏飞长沙:电气电子教学学报,201010随机信号分析赵淑清,郑薇哈尔滨:哈尔滨工业大学出版社,1999。