二次风配风方式对锅炉燃烧优化的影响
670t/h褐煤锅炉燃烧调整试验分析及优化运行

上
1
2 3
“倒塔 ”配
9% l0 6 l 0 8 % 5%、 10 炉膛 出口氧量保持在 3 % 右; 0 % 0 % 0 9 0 下 0%; 8 % 6 %l0 .左 5 上 二次风 中二次风 下 二次风 二次风采用 均等配 风方式 。 风 式 方 上 l下 上 l下 上 l下 4 . 3磨煤 机 出 口温度在保证 磨煤 出力的前 1 %l0 8 0 6 l0 提下维持在 1a 0 0 0 8 0 1 % %l % 0 % % 6 2℃左右 。当燃煤挥发份较高 时 , 上 二次风 中二 次风 下 二次风 也应 尽量保 持磨煤 机出 口 温度在 10 左右 。 ℃ 1 当 “ 鼓 ”配 腰 风 式 方 上 I下 上 J 下 上 I下 磨煤机 出 口温度低 于 8 ̄时应适 当降低锅炉负 0 C 6%I 0 1 %I0% 0 % 荷 , 0 % 0 0 8 6 8 0 1 %I0 否则会造成锅炉热效率下降。
中国新技术新产 品
Байду номын сангаас
一1 7 1—
工 业 技 术
兰 : C ia N w T c n lge n r d c s h n e e h oo isa d P o u t
60 h褐煤锅炉燃烧调整试验分析及优化运行 7t /
刘 也 .
( 大庆 油 田 电力 集 团 油 田热 电厂 发 电分 厂 , 黑龙 江 大庆 13 1 ) 6 34
摘 要 : 对 大庆 油 田热 电厂 # 针 2锅 炉运行 中锅 炉排 烟 温度 , 渣 、 灰含碳 量 偏 高 , 而导 致锅 炉效 率有所 下 降。为 了提 高锅炉 运行 灰 飞 从 经 济性 , 到影 响锅 炉效 率 的主要 因素 , 求合 理 的运 行 方式 , # 找 寻 对 2炉的锅 炉排 烟 温度 、 炉排 烟 氧量 进行 了标 定 , 锅 对灰 渣 成分进 行 测 试 , 时进行 制 粉 系统 优化 调 整 、 同 煤粉 细度 调 整 、 煤 机 出口温度 调 节 、 次风挡 板 优 化调 整 、 炉 变氧 量 等单 因素 的优 化 调 整及 磨 二 锅 测 量 , 析 五种 因素 下对锅 炉效 率的影 响 , 分 并给 出了在锅 炉额 定 工况 下的优 化运 行 方式 。 关 键词 : 燃烧 调整 ; 炉 热效 率 ; 锅 优化 运行 方 式
燃烧器各种配风作用

一次风:一次风是用来输送加热煤粉,使煤粉通过一次风管送入炉膛,并能供给煤粉中的挥发分着火燃烧所需的氧气,采用热风送粉的一次风,同时还具有对煤粉预热的作用。
它的作用除了维持一定的气粉混合物浓度以便于输送外,还要为燃料在燃烧初期提供足够的氧气。
一次风有冷一次风与热一次风之分。
热一次风用于保证煤粉进入锅炉时即有一定的温度,提高能量利用率。
冷一次风用于调节热一次风温,以保证热交换率效果达到最大。
一次风携带的煤粉进入炉膛后通过二次风提供氧气燃烧。
二次风:二次风是通过燃烧器的单独通道送入炉膛的热空气,进入炉膛后才逐渐和一次风相混合。
二次风为碳的燃烧提供氧气,并能加强气流的扰动,促进高温烟气的回流,促进可燃物与氧气的混合,为完全燃烧提供条件。
二次风的风量在一次风、三次风中最大,在总风量中占有相当大的比例。
三次风:三次风是制粉系统排出的干燥风,俗称乏气,它作为输送煤粉的介质,送粉时叫一次风,只有在以单独喷口送入炉膛时时叫做三次风。
三次风含有少时煤粉,风速高,对煤粉燃烧过程有强烈的混合作用,并补充燃尽阶段所需要的氧气,由于其风温低、含水蒸汽多,有降低炉膛温度的影响。
中心风:中心风的作用是增加一次风的刚性,防止煤粉离析和散射,并补充空气量,减少碳未完全燃烧损失。
中心风是四通道燃烧器与三通道燃烧器的根本区别所在,中心风的作用:1、冷却燃烧器端部,保护喷头。
2、在燃烧器端部形成碗状效应(气流内循环),使火焰更加稳定。
3、降低端部火焰温度,减少NOX有害气体的形成。
辅助风:辅助风控制系统以二次风风箱压力的差压为被调量,风箱/炉膛压差的定值取为负荷的函数。
辅助风控制系统为一单冲量多输出控制系统,控制系统输出同时控制各层的辅助风挡板。
在运行时各层磨煤机的负荷可能各不相同,需要不同的配风,因此每层辅助风门都设有一个操作员偏置站。
当油枪程控点火时,相应的的辅助风门自动到“油枪点火”位置。
燃料风(周界风):燃料风(周界风)控制系统为比值控制系统,燃料风风门的开度由相应的给煤机转速决定,燃料风风门的为其相应的给煤机转速的函数。
330 MW锅炉一、二次风配比分析及引风机运行优化

330 MW锅炉一、二次风配比分析及引风机运行优化摘要:定量分析330 MW亚临界火力发电机组锅炉一、二次风的配比以及冷、热一次风配比,优化引风机运行,提高锅炉燃烧效率和设备运行可靠性。
结果表明一次风和二次风的体积流量均随负荷增加而单调增大,但二次风体积流量随负荷的增加速率比一次风体积流量更大。
低负荷下,一次风占总风量的体积百分比相比设计值偏大17%,一次风量偏大,二次风不能有效包裹一次风,一、二次风配比失调。
冷一次风主要用于磨煤机密封风,主要跟磨煤机的启停有关,随负荷变化不明显。
热一次风流量和热一次风流量占一次风总风量体积百分比均随负荷增加而单调增大。
引风机运行优化措施包括降低引风机动叶动作频率、减少控制油压波动和制定低负荷时单台引风机运行措施。
关键词:燃煤火力发电机组;一次风率;二次风体积流量;一、二次风配比;引风机运行优化1引言随燃煤火力发电机组设备老化,燃料品种不断更换,锅炉一、二次风配比,冷、热一次风配比往往偏离理想工况,降低了锅炉热效率[1-3]。
引风机在长时间频繁受到不均匀轴向冲击的情况下,动叶调节的滑块经常出现磨损老化和疲劳裂纹,引风机振动增大,降低了引风机使用寿命,导致锅炉燃烧系统和风烟匹配调节的难度增大[2-4]。
因此有必要分析锅炉一、二次风配比规律,优化引风机运行,提高引风机的运行稳定性和锅炉燃烧热效率。
本研究拟定量分析330 MW亚临界火力发电机组锅炉一、二次风的配比以及冷、热一次风配比,优化引风机运行,提高锅炉燃烧效率和设备运行可靠性。
本文的分析有助于了解锅炉燃烧系统的配风规律和最佳配风,优化引风机运行,保证机组安全经济运行。
2一、二次风配比以某电厂330 MW亚临界、一次再热和直接空冷的燃煤火力发电机组为例,进行分析。
运行数据取自7月1~3日三天,数据间隔为15分钟,机组负荷为167~329 MW,平均负荷253.3 MW,平均负荷率为76.76%。
图1示出一次风和二次风的体积流量均随负荷增加而单调增大。
一二次风对燃烧的影响

一、二次风对燃烧的影响一、二次风率、风速及风温在锅炉燃烧设备和煤质一定的条件下,一次风与二次风的调节就成为决定着火和燃尽过程的关键。
一次风与二次风的工作参数用风量、风速和风温来表示。
〔1〕一次风量〔率〕一次风量主要取决于煤质条件。
当锅炉燃用的煤质确定时,一次风量对煤粉气流着火速度和着火稳定性的影响是主要的。
一次风量愈大,煤粉气流加热至着火所需的热量就越多,即着炽热愈多。
这时,着火速度就愈慢,因而,距离燃烧器出口的着火位置延长,使火焰在炉内的总行程缩短,即燃料在炉内的有效燃烧时间减少,导致燃烧不完全。
显然,这时炉膛出口烟温也会升高,不但可能使炉膛出口的受热面结渣,还会引起过热器或再热器超温等一系列问题,严重影响锅炉安全经济运行。
对于不同的燃料,由于它们的着火特性的差异较大,所需的一次风量也就不同。
应在保证煤粉管道不沉积煤粉的前提下,尽可能减小一次风量。
对一次风量的要求是,满足煤粉中挥发分着火燃烧所需的氧量,满足输送煤粉的需要。
如果同时满足这两个条件有矛盾,则应首先考虑输送煤粉的需要。
例如,对于贫煤和无烟煤,因挥发分含量很低,如按挥发分含量来决定一次风量,则不能满足输送煤粉的要求,为了保证输送煤粉,必须增大一次风量。
但因此却增加了着火的困难,这又要求加强快速与稳定着火的措施,即提高一次风温度,或采用其它稳燃措施。
一次风量通常用一次风量占总风量的比值表示,称为一次风率。
一次风率的推荐值列于下表:煤种无烟煤贫煤烟煤烟煤褐煤Vdaf 20%~30% >30% 乏气送粉20~25% 25~30% 25~35% 20~45% 热风送粉15~20% 20~25% 20~25% 25~40% 40~45% 〔2〕一次风速在燃烧器结构和燃用煤种一定时,确定了一次风量就等于确定了一次风速。
一次风速不但决定着火燃烧的稳定性,而且还影响着一次风气流的刚度。
一次风速过高,会推迟着火,引起燃烧不稳定,甚至灭火。
任何一种燃料着火后,当氧浓度和温度一定时,具有一定的火焰传播速度。
浅谈锅炉运行燃烧优化调整技术

浅谈锅炉运行燃烧优化调整技术摘要:火力发电作为国内最稳定的电力输出,对我国经济建设起着相当关键的作用。
火电厂最主要的发电设备当属锅炉,只有对发电厂锅炉运行进行良好控制,才能更好地保证发电机组在电网中利于不败之地。
现结合某公司相关锅炉机组运行状况,对燃烧调整优化内容进行分析,给出相应调整建议,针对当前锅炉脱硝系统投入问题进一步研究探讨,探讨锅炉运行更加稳定、安全、环保的运行方式方法。
关键词:锅炉运行;调节问题;发电厂引言锅炉燃烧调整是锅炉运行中最基本、最频繁的一项调整,锅炉运行工况随外界工况变化要随时进行调整,因此燃烧稳定意味着锅炉运行稳定、机组运行稳定。
随着电力行业体制的不断改革,国家节能减排法律法规的不断完善,优化锅炉燃烧,保证锅炉安全经济运行,优化脱硝系统运行,保证NOx的合理排放,处理好脱硝与空预器堵灰问题的关系成为锅炉燃烧调整的重要课题。
及时对锅炉内部各种参数进行调整,从而使锅炉适应外界变化,并且保持在一个较为稳定的水平上,才能够保证稳定的电力输出。
一、锅炉燃烧系统运行优化调整目的燃烧调整的主要目的是使锅炉参数达到额定值,满足机组负荷要求。
保持稳定和正常的汽温汽压。
均衡给煤、给水,维持正常的水煤比。
保持良好的燃烧,减少热损失,提高锅炉效率。
及时调整锅炉运行工况,使机组在安全、经济的最佳工况下运行。
而为了使燃烧调整更具经济性、安全性、环保达标,燃烧调整优化成为必然。
1.经济性:锅炉是一种能量转换设备,向锅炉输入的能量有燃料中的化学能、电能,锅炉输出具有一定热能的蒸汽、高温水。
锅炉设计建造完毕以后,形式已固定,在能量转换过程中,如果我们能够通过外力控制好能量转换的全过程,减少能量损失,也就提高了能量的利用率,也就是通过燃烧调整减少不完全燃烧损失,在设备允许范围内提高适当提高锅炉初参数,从而提高锅炉热效率;锅炉效率提高了,减少了燃料成本的投入,经济效益也就提高了。
锅炉燃烧的好坏直接影响锅炉运行的经济性,燃烧过程的经济性要求合理的风、粉配合,一、二次风配比,还要保证适当高的炉膛温度。
锅炉燃烧火焰中心调整

锅炉燃烧火焰中心调整锅炉燃烧火焰中心调整是锅炉燃烧调整重要一项,一般而言火焰中心在炉膛中的正确位置,一般应在燃烧器平均高度所在平面的几何中心处,火焰中心位置太低时,可能引起冷灰斗处结渣;火焰中心位置太高,使炉膛出口烟温升高,导致炉膛出口对流受热面结焦及过热器壁温升高;火焰中心在炉膛内偏向某一侧时,会引起锅炉受热面换热不均匀及该侧炉墙的冲刷和结焦。
火焰中心位置的变动,对锅炉传热及锅炉安全工作均有影响。
一、影响锅炉燃烧火焰中心偏心因素分析1、煤种煤质变影响由于原煤受市场因素影响使得煤价上涨,使得机组燃用煤种存在较大的变化。
不同的煤质,原煤的含碳量、挥发分、水分、灰分等因素不同,使得煤粉进入炉膛后完全燃烧的时间不同,尤其是原煤含碳量、挥发分两个因素,含碳量越大,煤粉完全燃烧滞后,火焰中心上升,挥发分越大,煤粉越容易燃烧,火焰中心下降。
2、一次风速与风温影响机组运行中,一次风速越大,使得火焰中心升高。
一次风温温度低,使得一次风对煤粉干燥、加热的能力变若,火焰中心升高。
3、二次风配风不合理燃烧器。
二次风分为下层主燃烧区我厂锅炉燃烧器采用复合空气分级低NOx和上层燃尽风区,上下燃尽风区配风量影响着火焰中心的高度和火焰偏斜情况,上部燃尽风量配比较正常偏大时炉膛火焰中心升高,炉膛主燃烧区起旋风量和上部燃尽区消旋风量及炉膛与二次风箱差压均影响着炉膛火焰中心的偏斜情况。
4、总风量过大锅炉燃烧总风量过大,使得锅炉炉膛燃烧风量增大,使得火焰中心升高。
5、炉底漏风炉底漏风,使得锅炉炉膛燃烧实际总风增大,火焰中心升高。
6、锅炉燃烧器摆角调整不当,使得锅炉燃烧火焰中心抬高或降低。
二、控制措施与对策1、优化配煤。
针对不同煤源煤种,根据煤种的含碳量、挥发分、水分、灰分的煤种进行合理配煤掺烧,以稳定的加权平均值进入炉膛燃烧。
运行人员加强煤种煤质参数监视,控制不同煤种的二次风配风量。
2、控制合理的煤粉细度。
我们知道其他情况不变的情况下,煤粉越细,煤粉越容易燃烧,炉膛火焰中心相对降低;煤粉越粗,煤粉燃烧滞后,炉膛火焰中心相对升高。
二次风配风方式对锅炉燃烧优化的影响

二次风配风方式对锅炉燃烧优化的影响李石湘(湖南湘潭电厂,湖南湘潭411102)摘 要 结合工作实际,分析了锅炉燃烧工况存在的问题,指出锅炉运行调整中二次风调整的重要性及需要注意的问题,得出了对运行调整具有指导意义的结论。
关键词 锅炉 燃烧调整 二次风 配风方式0 前 言 湘潭电厂1,2号机组锅炉型号为H G1025 18.22540 5402WM10,其燃烧器是在引进CE技术的基础上进行改进设计的,在燃用无烟煤及劣质贫煤上有其独到之处,经近几年的运行经验表明,其着火稳定性、低负荷稳燃、飞灰的燃尽度等性能均表现突出,是燃烧性能比较好的锅炉产品。
但是,现场经验表明,锅炉在运行中,冷灰斗的掉粉对锅炉的配风十分敏感,也就是说:锅炉的配风变化对炉膛中的托粉作用有很大的影响。
特别在低负荷情况下,这种影响更加突出,如不注意,则对机组的煤耗率影响很大,由于一般锅炉的炉渣损失未纳入小指标体系作动态考核,故这种影响往往还不易察觉。
为此,该厂对燃烧器的运行特性进行了分析调整,调整前后机组的供电煤耗率至少下降了3g k W·h以上,取得了明显的效益。
1 调整前的运行情况 图1为调整前锅炉低负荷运行的典型配风图,其长度是表示该风门的开度百分数。
综合分析其特点是:锅炉二次风箱风压过低;二次风小风门开度小,总二次风量过小;二次风速低,刚性差;而周界风、A,B层的腰部风开度未控制。
使得燃烧器配风不合理。
同时,锅炉的一次风量相对较大,锅炉负荷从高降到低,一次风压不变,完全由二次风变化来调节锅炉出口氧量。
图1 调整前锅炉运行配风方式1.1 炉的风量配置不理想,一次风率严重偏大:按风机的性能曲线分析,在300MW负荷下,炉的一次风率约为38%,远大于设计值。
特别是在低负荷下,习惯的操作办法是不减一次风量,而主要减小送风机的风量,即减小送风机动叶开度,同时还关小各二次风小风门,使得送入炉膛的二次风既无刚度,又无足够的风量(例如在180~200MW负荷时习惯上是维持送风机出口风压1kPa左右,二次风箱风压力200~400Pa,这时二次风的实际风速过低,明显地不利于燃烧的稳定)。
调整锅炉燃烧降低飞灰和灰渣可燃物

调整锅炉燃烧降低飞灰和灰渣可燃物摘要本文通过对锅炉炉膛燃烧过程的观察,对一、二、三次风风速及一、二次风风率配比、煤粉细度、煤种变化等影响因素进行了详细分析,并提出了降低锅炉飞灰可燃物、灰渣可燃物超标问题的措施及方法,提高了锅炉效率,从而保证机组安全、稳定、经济运行。
关键词燃烧;一、二次风;煤粉细度;煤种变化;飞灰、灰渣可燃物1 概述林西热电公司4#炉是台130t/h中温中压煤粉锅炉,锅炉为Ⅱ型布置的自然循环锅炉,制粉系统采用钢球磨煤机中间储仓式热风送粉系统,四角切圆燃烧,直流燃烧器。
近段时间4#锅炉运行暴露出一些问题,燃烧不稳、负荷变化大,飞灰、灰渣可燃物含量偏高,平均值分别在6.84%和8.76%,低负荷稳燃能力差,使锅炉燃烧效率下降,发电煤耗上升,严重影响了锅炉的安全经济运行,也给设备安全、人身安全带来了许多隐患。
2 原因分析及对策2.1 锅炉使用煤种与设计煤种的偏差原锅炉设计煤种为林西矿洗混煤,但因情况变化,现在为范矿洗煤、吕中矿煤、钱营矿煤,有时还掺烧洗矸对锅炉经济燃烧影响极大,为此对来煤情况进行了调查(参见表1)。
根据表1煤燃烧煤种与设计煤种相差很大,使锅炉燃烧强度下降,煤粉燃烧不完全,是造成锅炉燃烧不稳及飞灰、灰渣可燃物含量高的重要原因之一。
2.2 煤粉过粗原设计煤粉细度R90=18%,锅炉对煤粉细度要求较高,由于运行人员责任心不强、粗粉分离器挡板开度不当,造成煤粉过粗且不均匀。
由于煤粉过粗使锅炉燃烧不完全,导致飞灰、灰渣可燃物含量较高。
2.3 燃烧调整运行调整是燃烧好坏的重要因素,要组织起良好的燃烧工况,必须控制好风量及一、二次风率的配比,但在运行中经常出现:高负荷时,氧量控制过小,低负荷时,氧量控制过大对燃烧的稳定性有较大影响,这也是造成飞灰、灰渣可燃物含量高的一个重要原因。
3 改进措施3.1 煤粉细度的调整结合锅炉大修,对制粉系统进行彻底修整,为解决煤粉粗的问题:1)重新调整粗粉分离器挡板开度,这是降低煤粉细度的主要环节,根据制粉量及分离器的特性,确定最佳挡板开度为50℃;2)控制制粉风量,因为煤粉粗的主要原因是制粉风量偏大,经过多次试验,在保证制粉系统出力和正常运行情况下,排粉风机风门开度由100%下调到75%,再循环风门开度为50%,冷风门尽量关闭。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次风配风方式对锅炉燃烧优化的影响李石湘(湖南湘潭电厂,湖南湘潭411102)摘 要 结合工作实际,分析了锅炉燃烧工况存在的问题,指出锅炉运行调整中二次风调整的重要性及需要注意的问题,得出了对运行调整具有指导意义的结论。
关键词 锅炉 燃烧调整 二次风 配风方式0 前 言 湘潭电厂1,2号机组锅炉型号为H G1025 18.22540 5402WM10,其燃烧器是在引进CE技术的基础上进行改进设计的,在燃用无烟煤及劣质贫煤上有其独到之处,经近几年的运行经验表明,其着火稳定性、低负荷稳燃、飞灰的燃尽度等性能均表现突出,是燃烧性能比较好的锅炉产品。
但是,现场经验表明,锅炉在运行中,冷灰斗的掉粉对锅炉的配风十分敏感,也就是说:锅炉的配风变化对炉膛中的托粉作用有很大的影响。
特别在低负荷情况下,这种影响更加突出,如不注意,则对机组的煤耗率影响很大,由于一般锅炉的炉渣损失未纳入小指标体系作动态考核,故这种影响往往还不易察觉。
为此,该厂对燃烧器的运行特性进行了分析调整,调整前后机组的供电煤耗率至少下降了3g k W·h以上,取得了明显的效益。
1 调整前的运行情况 图1为调整前锅炉低负荷运行的典型配风图,其长度是表示该风门的开度百分数。
综合分析其特点是:锅炉二次风箱风压过低;二次风小风门开度小,总二次风量过小;二次风速低,刚性差;而周界风、A,B层的腰部风开度未控制。
使得燃烧器配风不合理。
同时,锅炉的一次风量相对较大,锅炉负荷从高降到低,一次风压不变,完全由二次风变化来调节锅炉出口氧量。
图1 调整前锅炉运行配风方式1.1 炉的风量配置不理想,一次风率严重偏大:按风机的性能曲线分析,在300MW负荷下,炉的一次风率约为38%,远大于设计值。
特别是在低负荷下,习惯的操作办法是不减一次风量,而主要减小送风机的风量,即减小送风机动叶开度,同时还关小各二次风小风门,使得送入炉膛的二次风既无刚度,又无足够的风量(例如在180~200MW负荷时习惯上是维持送风机出口风压1kPa左右,二次风箱风压力200~400Pa,这时二次风的实际风速过低,明显地不利于燃烧的稳定)。
同时,由于炉膛出口氧量往往维持一定值,即使燃烧未发生稳定性问题,但由于较弱的二次风不能有效地扩散到燃烧区中心,这部分的二次风中的氧量相当于未起作用,形成一种虚假的过量空气系数,可能在燃烧中心区造成还原性气氛,不利于保证燃烧效率。
按照燃烧理论,此时二次风的配置宜保证重点,对某一高度的·73·第23卷 2003年第2期湖 南 电 力经验与探讨二次风可重点保证其有足够的刚度,以扩散到火焰中心,及时补充燃烧所需要的氧量,而有些二次风则可适当关小,保证其风嘴冷却作用即可。
总之,按照劣质煤的燃烧原则,一次风基本保证挥发份燃烧所需要的氧量,在煤粉气流稳定着火后,二次风再适时掺入。
1.2 风的托粉作用未受到足够重视:从捞渣机处观察可以看出,粉状灰尘仍比较多。
按目前的操作习惯,二次风往往是平均分配,甚至不管负荷大小,更为严重的是,为了维持很小的二次风箱风压,往往采取关小二次风门的措施,所以在低负荷时最下层燃烧器下部二次风也与其它二次风一样很小,其托粉作用不大。
1.3 从前不久发生的锅炉灭火事件可知,在煤质差到一定程度时,还存在燃烧稳定性问题,故炉内动力场的组织需要多加注意,而制粉系统的运行组合由于三次风的原因对炉内流场是有一定影响的,一般建议在2台磨煤机运行时宜以1号、3号磨煤机组合或2号、4号磨煤机组合。
反映在总的运行指标上,当锅炉煤质变差时,特别是在此低负荷下机组的正平衡煤耗直线上升。
2 二次风配风方式的调整2.1 按照不同的二次风在燃烧中的作用对其进行合理的调整:首先,突出下二次风的托粉作用,确定F 层二次风的风门开度为85%以上;二次风风箱的风压保证在500Pa 以上。
在此基础上A F 层风门也开大到45%左右。
此外,锅炉燃烧器的最下一层无执行机构的二次风门全部置于全开位置。
2.2 为挽回二次风的托粉能力不足的影响,一般还使A 层的给粉机转速比其它层的低30%左右,以降低炉膛下部的煤粉浓度,这样做的效果很明显。
2.3 各周界风、腰部风均关小至10%以下。
从双通道燃烧器的回流区温度变化趋势知,随腰部风的变化,回流区的温度变化十分敏感。
这样提高了煤粉气流的着火稳定性,使煤粉气流着火提前,同时在总过量空气系数适当的前题下,提高二次风箱风压,以保证二次风的足够动量。
2.4 对于燃烬风,即EE 2,EE 1,加上辅助风EE ,考虑到低负荷下总风量不大,不必让3层都开得很大,以开1层为主,其它2层关小,以保证其足够的风速,真正起到燃烬风的作用。
2.5 其它二次风,按锅炉冷态试验所确定的缩腰配风原则适当开启,总的炉膛出口氧量则维持在4%~5%左右。
2.6 实施上述调整后,锅炉低负荷下的正平衡煤耗率明显下降,在此基础上,对锅炉满负荷下的运行也确定了调整原则:a .锅炉的空预器出口一次风压维持在2.0~2.3kPa 之间;b .二次风箱风压维持在0.6~0.7kPa 之间;c .上、下二次风小风门开度均开足,中间的二次风略小一些,呈弱缩腰配风;d .各周界风、腰部风视锅炉炉膛温度、结焦情况、双通道火嘴回流区温度等因素而确定开度。
一般开度不超过50%;e .炉膛出口氧量维持在3%左右。
3 关于下二次风的托粉效果 锅炉按上述配风原则运行,在煤质较好时,即燃煤的低位发热量在21000kJ kg 及以上,无论锅炉负荷高低,从捞渣机处观察炉渣中煤粉量很少,可见托粉效果是理想的。
在锅炉煤质较差时,即低位发热量在19000~21000kJ kg 时,负荷不高的情况下(低于250MW ),捞渣机处煤粉量无明显增多现象。
此时二次风的托粉能力也是可以接受的;但当煤质差,负荷又高时,二次风的托粉能力就不够了,捞渣机处的煤粉量明显增加。
特别是当煤的低位热值低于18000kJ kg 时,高负荷下的托粉十分困难,这也是这种燃烧器的缺陷。
4 调整效果分析 锅炉的调整工作从2002年4月底开始,以下为2002年和2001年的4~6月的指标分析(参见表1)。
4.1 调整后的5月份指标,相对于4月份,其发电煤耗降低了3g k W ·h ;供电煤耗降低了2g k W ·h ,当不计燃油的因素(把当月的耗油量平摊到供电煤耗中)时,并考虑5月份总发电量比4月份少1.6~1.1亿k W ·h 的情况,供电煤耗实际降低3g k W ·h 。
而从环境温度、平均负荷、循环水温度等外部条件看,5月份的条件不如4月份的好,按理煤耗应该升高。
因此,是由于进行了燃烧调整而使得实际煤耗下降。
4.2 2002年5月份的指标与2001年5月份比较:发电煤耗相等,均为327g k W ·h ;但供电煤耗高·83·经验与探讨湖 南 电 力第23卷 2003年第2期表1 2001年与2002年4~6月份指标对照表4月5月6月年度200120022001200220012002厂用电率 %5.685.425.415.825.85.87发电煤耗 g ·(k W ·h )-1324330327327332327供电煤耗 g ·(k W ·h )-1343349345347352347低位发热量 kJ ·kg -1214352206121218217112113221051空预器进风温度 ℃22.8018.6930.0524.532.5927.11排烟温度 ℃125.5122.64128.67125.21129.85126.79氧量 %5.34.594.324.354.294.69飞灰可燃物 %3.02.514.12.933.853.95平均负荷 MW 212.7205.15248.3198.4225.3195.86循环水进口温度 ℃17.517.6822.8322.6123.5424.47排汽温度 ℃37.838.142.7739.8241.941.61注:1)2002年6月的数据统计到24日止。
2)2002年6月的供电煤耗347是由于2号机停机的影响,实际上应该为349(即1号机的当月值)。
了2g k W ·h ,主要原因是平均负荷低而引起厂用电率高。
4.3 2002年6月与2001年5月份相比,煤耗有所升高,主要原因是有一段时间的煤质变化很大,调整工作未能适应其变化,确实煤质变化的影响也不是可以通过调整完全消除的。
如果弃除煤质变化的影响,则月煤耗为347g k W ·h 左右,与上月持平。
4.4 2002年6月与2001年6月比,则供电煤耗明显降低,按349g k W ·h 计算,降低了3g k W ·h 。
而2002年平均负荷则比2001年低了近3万k W ,按资料,应当影响煤耗升高达3.6g k W ·h 左右,由此可见,煤耗的下降趋势是十分明显的。
5 结 论 在锅炉运行调整中,调整二次风量对提高的经济性、降低供电煤耗有着重要的作用。
(收稿日期:2002209226) (上接第33页)∠101、水平5Λm ∠135,振动问题得到解决。
4.4 滚动轴承质量问题引起振动的诊断。
1995年,11号引风机大修后试运;转速741r m in ,通频振动115Λm ,基频振动44Λm ,幅值发生周期性变化。
通过测试分析认为有故障,停机检查发现大修中更换的1号滚动轴承(见图4),承力内圈裂纹宽约2mm ,更换后顺利开出,振动值在17Λm 以下。
4.5 叶轮轮毂松动引发振动。
1995年9月,12号引风机运行中振动突然增大,现场测试振动值为108Λm ,随即进行动平衡试验,发现振动幅值随动平衡加重位置出现“追随”现象,即转子加上试加重量后,按计算求得平衡重量以试加重为起点,难以追上应加重的方位。
停机进入风道检查,发现叶轮轮毂松动(见图4)。
紧固处理后,取下所加试加重量,启动试验顺利,振动值在20Λm 以下。
4.6 叶轮轮毂设计尺寸不符引起振动。
2001年7月,9号引风机大修后启动试运,当时测量各瓦振动值在20Λm 以下,但几分钟后发现振动波动很大,幅值从20~90Λm 随机变化。
分析认为是叶轮串动引起,停机检查发现叶轮宽度不合格,厂家设计尺寸不对,造成轮毂不能自锁,进行点焊加固再次启动运行正常。
5 结 论 由于机组振动状态最能反映主机的性能水平,主机绝大多数故障的出现,一般均能引起振动状态的改变,现代故障诊断是由于实施主动(视情)维修策略和建立监控系统的需要而发展起来的。
系统投入应用能防止故障的传播和灾难性事故的发生,其前提条件是要具有在线实时可靠检测和诊断故障的能力。