高中数学选修2 1第一章测试题
高中数学选修2-1经典练习100例

第一章 常用逻辑用语1.条件:12p x +>,条件:2q x ≥,则p ⌝是q ⌝的( )A .充分非必要条件B .必要不充分条件C .充要条件D .既不充分也不必要的条件2.用反证法证明数学命题时首先应该做出与命题结论相矛盾的假设.否定“自然数c b a ,, 中恰有一个偶数”时正确的反设为 ( )A .自然数c b a ,,都是奇数B .自然数c b a ,,都是偶数C .自然数c b a ,, 中至少有两个偶数D .自然数 c b a ,,中至少有两个偶数或都是奇数 3. {}{}211,,log 1,A x x x R B x x x R =-≥∈=>∈,则“x A ∈”是“x B ∈”的 () A .充分非必要条件 B .必要非充分条件C .充分必要条件D .既非充分也非必要条件4.命题“对任意的2,310x R x x ∈-+≤”的否定是( )A.不存在2000,310x R x x ∈-+≤B.存在2000,310x R x x ∈-+≤C.存在2000,310x R x x ∈-+>D.对任意的2,310x R x x ∈-+>5.已知命题p :∀x∈R,x>sinx ,则p 的否定形式为( )A.∃x∈R,x<sinxB.∀x∈R,x≤sinxC.∃x∈R,x≤sinx D.∀x∈R,x<sinx6.下列命题中的说法正确的是( )A .命题“若2x =1,则x =1”的否命题为“若2x =1,则x≠1”B.“x=-1”是“2x -5x -6=0”的必要不充分条件C .命题“x ∃∈R,使得x2+x +1<0”的否定是:“x ∀∈R,均有2x +x +1>0”D .命题“在△ABC 中,若A >B ,则sinA >sinB”的逆否命题为真命题7.下列说法中正确的是 ( )A.一个命题的逆命题为真,则它的逆否命题一定为真B.“a b >”与“a c b c +>+”不等价C.“220a b +=,则a b ,全为0”的逆否命题是“若a b ,全不为0,则220a b ≠+”D.一个命题的否命题为真,则它的逆命题一定为真8.下列命题中的说法正确的是( )A .命题“若2x =1,则x =1”的否命题为“若2x =1,则x ≠1”B.“x =-1”是“2x -5x -6=0”的必要不充分条件C .命题“0x ∃∈R,使得x 02+x 0+1<0”的否定是:“x ∀∈R,均有2x +x +1>0” D .命题“在△ABC 中,若A >B ,则sinA >sinB”的逆否命题为真命题9.下列说法中,正确的是( )A .命题“若am 2<bm 2,则a<b”的逆命题是真命题B .已知x R ∈,则“x 2-2x-3=0”是“x=3”的必要不充分条件C .命题“p∨q”为真命题,则“命题p”和“命题q”均为真命题D .已知x∈R,则“x>1”是“x>2”的充分不必要条件10.“>x π6”是“>x sin 12”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件11.给出命题p :若“0>BC AB ,则△ABC 为锐角三角形”;命题q :“实数c b a ,,满足ac b =2,则c b a ,,成等比数列”.那么下列结论正确的是( )A .p 且q 与p 或q 都为真B .p 且q 为真而p 或q 为假C .p 且q 为假且p 或q 为假D .p 且q 为假且p 或q 为真12.已知命题p :∃x ∈R ,使sin x =25;命题q :∀x ∈R ,都有x 2+x +1>0.给出下列结论:①命题“q p ∧”是真命题; ②命题“q p ⌝∨⌝”是假命题; ③命题“q p ∨⌝”是真命题;④命题“q p ⌝∧”是假命题;其中正确的是( )A .②③B .②④C .③④D .①②③13.给出以下四个命题:①若0ab ≤,则0a ≤或0b ≤;②若b a >则22am bm >;③在△A BC 中,若B A sin sin =,则A=B;④在一元二次方程20ax bx c ++=中,若240b ac -<,则方程有实数根.其中原命题.逆命题.否命题.逆否命题全都是真命题的是( )A.①B.②C.③D.④14.以下命题正确的个数为①命题“若21,1x x >>则”的否命题为“若21,1x x ≤≤则”;②命题“若,αβ>则tan tan αβ>”的逆命题为真命题;③命题“2,10x R x x ∃∈++<使得”的否定是“2,10x R x x ∀∈++≥都有”;④“1x >”是“220x x +->”的充分不必要条件.A .1 B. 2 C.3 D.415.已知a ,b∈R,下列四个条件中,使a <b 成立的必要而不充分的条件是( )A . |a|<|b|B . 2a <2bC . a <b ﹣1D . a <b+116.给定两个命题q p ,,若p ⌝是q 的必要不充分条件,则p 是q ⌝的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件17.命题p :0∀>x ,1sin -≥x ,则A .p ⌝:0∃>x ,sin 1x <-B .p ⌝:0∀>x ,1sin -<xC .p ⌝:0∃>x ,sin 1x >-D .p ⌝:0∀>x ,1sin -≥x18.设a R ∈,则1a =“”是1(1)3l ax a y +-=“直线:与直线2(1)l a x -:(23)2a y ++=互相垂直的( ).A 充分不必要条件 .B 必要不充分条件.C 充分必要条件 .D 既不充分也不必要条件19.两个事件对立是两个事件互斥的( )A.充分非必要条件B.必要非充分条件C.充要条件D.既不充分又不必要条件20.【湖南省衡阳市八中2014年高二上学期期末】若0a b >,,则“b a >”是“2233ab b a b a +>+”的( )A .充分非必要条件B .必要非充分条件C .充分且必要条件D .既非充分也非必要条件 21.若数列{}n a 满足212n na p a +=(p 为正常数,n N *∈),则称{}n a 为“等方比数列”.甲:数列{}n a 是等方比数列;乙:数列{}n a 是等比数列,则( )A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件22.下列命题是真命题的是( )A. 若ac bc >,则b a >B. 若d c b a >>,,则bd ac >C. 若b a >,则ba 11< D. 若dbc ad c ->->,,则b a > 23.下列全称命题为真命题的是( )A .所有的质数是奇数B .x ∀∈R ,233x +≥C .x ∀∈R ,120x -=D .所有的平行向量都相等24.设α,β是两个不同的平面,m 是直线且m α⊂,“//m β”是“//αβ”的().A. 充分而不必要条件B.必要而不充分条件C. 充分必要条件D.既不充分也不必要条件25.已知命题p :x R ∀∈,sin 1x ≤,则( )A .¬p :x R ∃∈,sin 1x ≥B .¬p :x R ∀∈,sin 1x ≥C .¬p :x R ∃∈,sin 1x >D .¬p :x R ∀∈,sin 1x >26.下列四个命题中的真命题是( )A .∀x ∈R,x 2+3<0B .∀x ∈N,x 2≥1 C.∃x ∈Z ,使x 5<1 D .∃x ∈Q ,x 2=327.若命题“p q ∧”为假,且“q ⌝”为假,则( )A .“q p ∨”为假B . p 假C .p 真D .不能判断q 的真假28.已知函数()()()cos 0,0,f x A x A R ωϕωϕ=+>>∈,则“()f x 是奇函数”是“2πϕ=”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件29.下列四个命题:①||333x x x ≠⇒≠≠-或;②命题“a 、b 都是偶数,则a +b 是偶数”的逆否命题是“a +b 不是偶数,则a 、b 都不是偶数”;③若有命题p :7≥7,q :l n 2>0, 则p 且q 是真命题; ④若一个命题的否命题为真,则它的逆命题一定是真. 其中真命题为( )A .①④B .②③C .②④D .③④30.已知命题:,cos 1p x x ∀∈≤R ,则( )A .:,cos 1p x x ⌝∃∈≥RB .:,cos 1p x x ⌝∀∈≥RC .:,cos 1p x x ⌝∃∈>RD .:,cos 1p x x ⌝∀∈>R31. “0>x ”是“0342>++x x ”成立的( )A .充分非必要条件B .必要非充分条件C .非充分非必要条件D .充要条件32. “a≠1或b≠2”是“a+b≠3”的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件 33.设p 211x -≤,q:[]()(1)0x a x a --+≤,若q 是p 的必要而不充分条件, 则实数a 的取值范围是( )A.10,2⎡⎤⎢⎥⎣⎦ B .10,2⎛⎫ ⎪⎝⎭ C.()1,0,2⎡⎫-∞+∞⎪⎢⎣⎭ D .()1,0,2⎛⎫-∞+∞ ⎪⎝⎭34.如果命题p ∨q 为真命题,p ∧q 为假命题,那么( )A .命题p 、q 都是真命题B .命题p 、q 都是假命题C .命题p 、q 至少有一个是真命题D .命题p 、q 只有一个真命题35.已知命题p :x R ∀∈,||0x ≥,那么命题p ⌝为( )A .,0x R x ∃∈≤B .,0x R x ∀∈≤C. ,0x R x ∃∈< D .,0x R x ∀∈<36.设n m l ,,表示三条不同的直线,γβα,,表示三个不同的平面,给出下列四个命题: ①若βα⊥⊥⊥m l m l ,,,则βα⊥;②若β⊂m ,n 是l 在β内的射影,n m ⊥,则l m ⊥;③若m 是平面α的一条斜线,α∉A ,l 为过A 的一条动直线,则可能有α⊥⊥l m l 且; ④若γαβα⊥⊥,,则βγ//其中真命题的个数为( )个(A )1 (B )2 (C )3 (D )437. “m=21”是“直线(m+2)x+3my+1=0与直线(m -2)x+(m+2)y -3=0相互垂直”的 ( ) A. 充分必要条件 B. 充分而不必要条件C. 必要而不充分条件D. 既不充分也不必要条件38.下列命题中的假命题是 ( )A. 02,1>∈∀-x R xB. 2tan ,=∈∃x R xC. 1lg ,<∈∃x R xD. ()01,2>-∈∀*x Nx 39.下列说法错误的是( ). A .“21sin =θ”是“ 30=θ”的充分不必要条件 B .命题“若0=a 则0=ab ”否命题是“若0≠a 则0≠ab ” C .若命题,01,:2<+-∈∃ x x R x p 则01,:2≥+-∈∀⌝x x R x p D .如果命题p ⌝与命题q p 或都是真命题,那么命题q 一定是真命题40. 3.已知条件:12p x +>,条件2:56q x x ->,则p ⌝是q ⌝的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件41.“sin cos αα=”是“cos20α=”的( ).A .充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要42.命题“若b a >,则),,(22R c b a bc ac ∈>”与它的逆命题、否命题、逆否命题中,真命题的个数为( ).A .0B .2C .3D .443.条件42:<<-x p ,条件:(2)()0q x x a ++<;若p 是q 的充分而不必要条件,则a 的取值范围是( )A .(4,)+∞B .(,4)-∞-C .(,4]-∞-D . [4,)-+∞44.已知命题:p ∧q 为真,则下列命题是真命题的是( )A .(p ⌝)∧(q ⌝)B .(p ⌝)∨(q ⌝)C .p ∨(q ⌝)D .(p ⌝)∧q45.下列命题中,正确命题的个数为( )①若,则或”的逆否命题为“若且,则; ②函数的零点所在区间是;③是的必要不充分条件A .0B .1C .2 D. 346."2a =” 是“函数()f x x a =-在区间[2,)+∞上为增函数”的( ). A .充分条件不必要 B .必要不充分条件C .充要条件D .既不充分也不必要条件47.下列判断错误..的是( )A .“3210x x --≤对x R ∈恒成立”的否定是“存在0x R ∈使得320010x x -->”B .“22am bm <”是“a b <”的充分不必要条件C .若n 组数据()()n n y x y x ,,11⋅⋅⋅的散点都在12+-=x y 上,则相关系数1-=rD .若“p q Λ”为假命题,则,p q 均为假命题48.设是两个单位向量,其夹角为θ,则“36πθπ<<”是“1||<-”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件49.命题“若2015x >,则0x >”的否命题是( )A .若2015x >,则0x ≤B .若0x ≤,则2015x ≤C .若2015x ≤,则0x ≤D .若0x >,则2015x >50.设集合}30|{},01|{<<=<-=x x B x xx A ,那么""m A ∈是""m B ∈的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件51. “21<-x 成立”是“0)3(<-x x 成立”的 ( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 52.下列命题中错误..的是( ) A .,(3)(7)(4)(6)x R x x x x ∀∈++≤++B .,235x R x x ∃∈-++=C .,x R ∀∈若,a b ≥则22ax bx ≥D .22,22x R x ∃∈=+53.已知命题:p n ∃∈N ,104n n +<,则p ⌝为( ) A .n ∃∈N ,104n n +< B .n ∀∈N ,104n n+> C .n ∃∈N ,104n n +≤ D .n ∀∈N ,104n n+≥ 54. “||2b <是“直线3y x b =+与圆2240x y y +-=相交”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件55. “直线l 垂直于平面α内两直线a ,b ”是“直线l ⊥平面α”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件56.已知命题:p 全等三角形面积相等;命题:q 矩形对角线互相垂直.下面四个结论中正确的是( )A .p q ∧是真命题B .p q ∨是真命题C .p ⌝是真命题D .q ⌝是假命题57. “A ,B ,C ,D 四点不在同一平面内”是“A ,B ,C ,D 四点中任意三点不在同一直线上”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件58.命题:p 20x x -<是命题:02q x <<的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件59.若,R αβ∈,则90αβ+=是sin sin 1αβ+>的( )A .充分而不必要条件B .必要而不充分条件C .充耍条件D .既不充分也不必要条件60.以下命题正确的个数是( )①命题“R x ∀∈,sin 0x >”的否定是“R x ∃∈,sin 0x ≤”.②命题“若2120x x +-=,则4x =”的逆否命题为“若4x ≠,则2120x x +-≠”. ③若p q ∧为假命题,则p 、q 均为假命题.A .0个B .1个C .2个D .3个61.已知命题p :实数m 满足m 2+12a 2<7am(a>0),命题q :实数m 满足方程21x m -+22y m -=1表示的焦点在y 轴上的椭圆,且p 是q 的充分不必要条件,a 的取值范围为________.62.对于函数1()93x x f x m +=-⋅,若存在实数0x 使得00()()f x f x -=-成立,则实数m 的取值范围是 .63.下列命题中,①命题“2(0,2),22x x x ∃∈++<0” 的否定是“2(0,2),22x x x ∀∈++>0”; ②12x y >⎧⎨>⎩是32x y xy +>⎧⎨>⎩的充要条件; ③一个命题的逆命题为真,它的否命题也一定为真;④“9<k <15”是“方程221159x y k k +=--表示椭圆”的充要条件. ⑤设P 是以1F 、2F 为焦点的双曲线一点,且120PF PF ⋅=,若21F PF ∆的面积为9,则双曲线的虚轴长为6;其中真命题的是 (将正确命题的序号填上)64.命题“00,20R x x ∃∈≤”的否定是 .65.已知命题p :220R x x ax a ∃∈++≤,,则命题p 的否定是_________________;若命题p 为假命题,则实数a 的取值范围是_______________.66.下列结论:①若命题00:,tan 1;p x R x ∃∈=命题,01,:2>+-∈∀x x R x q 则命题""q p ⌝且是假命题; ②已知直线,01:,013:21=++=-+by x l y ax l 则21l l ⊥的充要条件是3-=b a ; ③命题“若,0232=+-x x 则1=x ”的逆否命题为:“若1≠x 则.0232≠+-x x ”④命题“若0xy =,则0x =或0y =”的否命题为“若0xy ≠则0x ≠或0y ≠”⑤命题“R,20x x ∀∈>”的否定是“00R,20x x ∃∈≤”其中正确结论的序号是.____________(把你认为正确结论的序号都填上) 67.已知命题p :“对∀x ∈R,∃m ∈R 使4x -2x +1+m =0”,若命题非p 是假命题,则实数m 的取值范围是__________.68.已知命题:p R x ∃∈,220x x a ++≤,若命题p 是假命题,则实数a 的取值范围是 .(用区间表示)69.命题“0,x ∀>都有sin 1x ≥-”的否定: .70.已知a 、b 、c 是三个非零向量,命题“若a b =,则a c b c ⋅=⋅”的逆命题是 命题(填真或假).71.给出下列四个命题:①若a b <,则22a b <;②若1a b ≥>-,则11a b a b≥++; ③若正整数,m n 满足m n <,则2n m n m -≤(); ④若0x >,且1x ≠,则1ln +2x lnx≥. 其中真命题的序号是________.(请把真命题的序号都填上)72.命题“(,0)x ∃∈-∞,使得34x x <”的否定是 .73.命题“能被5整除的数,末位是0”的否定是________.74.写出命题“若a b >,则1a b +>”的逆否命题: .75.在下列结论中,①""q p ∧为真是""q p ∨为真的充分不必要条件②""q p ∧为假是""q p ∨为真的充分不必要条件③""q p ∨为真是""p ⌝为假的必要不充分条件④""p ⌝为真是""q p ∧为假的必要不充分条件正确的是 .76.命题P :直线2y x =与直线20x y +=垂直;命题Q :异面直线在同一个平面上的射影可能为两条平行直线,则命题P Q ∧为 命题(填真或假).77.已知x y R ∈、,那么命题“若x y 、中至少有一个不为0,则220x y +≠.”的逆否命题是 .78.已知p :112x ≤≤,q :()(1)0x a x a --->,若p 是q ⌝的充分不必要条件,则实数a 的取值范围是 .79.已知命题p :12=x ,命题q :1=x ,则p 是q 的 条件.(填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”)80.已知}2|1||{<-=x x A ,}11|{+<<-=m x x B ,若B x ∈成立的一个充分不必要条件是A x ∈,则实数m 的取值范围 .81.“函数()sin()f x x ϕ为奇函数” 是“0ϕ”的 条件.82.命题“∃实数,x y ,使得1x y +>”的否定是 .83.命题0:p x R ∃∈,020x ≤,命题:(0,),sin q x x x ∀∈+∞>,其中真命题的是 ;命题p的否定是84.若“0,,tan 4x x m π⎡⎤∀∈≤⎢⎥⎣⎦”是真命题,则实数m 的最小值为 . 85.已知,:64≤-x p 032≥+x x q :,若命题“ p 且q ”和“¬p ”都为假,求x 的取值范围.86.若p :q :且是的充分不必要条件,求实数的取值范围.87.已知命题p :关于x 的一元二次方程022=++m x x 没有实数根,命题q :函数)161lg()(2m x mx x f +-=的定义域为R ,若p 或q 为真命题,p 且q 为假命题,求实数m 的取值范围.88.已知命题1:132x p --≤;22:210,(0)q x x m m -+-≤> 若p ⌝是q ⌝的充分非必要条件,试求实数m 的取值范围.89.设p :实数x 满足x 2-4ax +3a 2<0,其中a≠0,q :实数x 满足⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0.(1)若a =1,且p∧q 为真,求实数x 的取值范围;(2)若p 是q 的必要不充分条件,求实数a 的取值范围.90.已知命题P :2a a <,命题Q : 对任何x ∈R ,都有2410x ax ++>,命题P 且Q 为假,P 或Q 为真,求实数a 的取值范围.91.设有两个命题::p 关于x 的不等式x 2+2ax +4>0对一切x ∈R 恒成立;:q 函数f (x )=-(4-2a )x在(-∞,+∞)上是减函数.若命题p q ∨为真,p q ∧为假,则实数a 的取值范围是多少?92.已知434:2≤⎪⎭⎫ ⎝⎛-x p ,)0(012:22>≤-+-m m x x q 若p ⌝是q ⌝的必要非充分条件,求实数m 的取值范围.93.已知0c >,设p :函数xy c =在R 上单调递减,q :不等式21x x c +->的解集为R ,如果p ∧q 是假命题,p ∨q 真命题,求c 的取值范围94.已知命题:“{}|11x x x ∃∈-<<,使等式20x x m --=成立”是真命题. (1)求实数m 的取值集合M ;(2)设不等式()(2)0x a x a -+-<的解集为N ,若x N ∈是x M ∈的必要条件,求a 的取 值范围.95.已知p:01322≤+-x x ,q :0)1()12(2≤+++-a a x a x(1)若a=21,且q p ∧为真,求实数x 的取值范围. (2)若p 是q 的充分不必要条件,求实数a 的取值范围.96.已知命题p :方程210x mx ++=有两个不相等的实根;q :不等式244(2)10x m x +-+>的解集为R ;若p 或q 为真,p 且q 为假,求实数m 的取值范围。
高中数学 第一章 常用逻辑用语B组测试题 新人教A版选修2-1

(数学选修2-1)第一章 常用逻辑用语[综合训练B 组]一、选择题1.若命题“p q ∧”为假,且“p ⌝”为假,则( )A .p 或q 为假B .q 假C .q 真D .不能判断q 的真假2.下列命题中的真命题是( )A .3是有理数B .是实数C .e 是有理数D .{}|x x 是小数R3.有下列四个命题:①“若0x y += , 则,x y 互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若1q ≤ ,则220x x q ++=有实根”的逆否命题;④“不等边三角形的三个内角相等”逆命题;其中真命题为( )A .①②B .②③C .①③D .③④4.设a R ∈,则1a >是11a < 的( )A .充分但不必要条件B .必要但不充分条件C .充要条件D .既不充分也不必要条件5.命题:“若220(,)a b a b R +=∈,则0a b ==”的逆否命题是()A . 若0(,)a b a b R ≠≠∈,则220a b +≠B . 若0(,)a b a b R =≠∈,则220a b +≠C . 若0,0(,)a b a b R ≠≠∈且,则220a b +≠D . 若0,0(,)a b a b R ≠≠∈或,则220a b +≠6.若,a b R ∈,使1a b +>成立的一个充分不必要条件是( )A .1a b +≥B .1a ≥C .0.5,0.5a b ≥≥且D .1b <-二、填空题1.有下列四个命题:①、命题“若1=xy ,则x ,y 互为倒数”的逆命题;②、命题“面积相等的三角形全等”的否命题;③、命题“若1m ≤,则022=+-m x x 有实根”的逆否命题; ④、命题“若A B B = ,则A B ⊆”的逆否命题。
其中是真命题的是 (填上你认为正确的命题的序号)。
2.已知,p q 都是r 的必要条件,s 是r 的充分条件,q 是s 的充分条件,则s 是q 的 ______条件,r 是q 的 条件,p 是s 的 条件.3.“△A B C 中,若090C ∠=,则,A B ∠∠都是锐角”的否命题为 ;4.已知α、β是不同的两个平面,直线βα⊂⊂b a 直线,,命题b a p 与:无公共点;命题βα//:q , 则q p 是的 条件。
(易错题)高中数学高中数学选修2-1第一章《常用逻辑用语》测试(含答案解析)(5)

一、选择题1.已知命题:p 关于x 的方程210x ax ++=没有实根;命题:0q x ∀≥,20x a ->.若p ⌝和p q ∧都是假命题,则实数a 的取值范围是( ) A .()(),21,-∞-⋃+∞ B .(]2,1- C .(]1,2D .[)1,22.下列命题中假命题是( ) A .∃x 0∈R ,ln x 0<0 B .∀x ∈(-∞,0),e x >x +1 C .∀x >0,5x >3xD .∃x 0∈(0,+∞),x 0<sin x 03.已知命题p :所有有理数都是实数,命题q :正数的对数都是负数,则下列命题中为真命题的是 A .()p q ⌝∨B .p q ∧C .()()p q ⌝∧⌝D .()()p q ⌝∨⌝4.下列四个命题中,真命题的个数是( ) ①命题“若ln 1x x +>,则1x >”;②命题“p 且q 为真,则,p q 有且只有一个为真命题”; ③命题“所有幂函数()af x x =的图象经过点()1,1”;④命题“已知22,,4a b R a b ∈+≥是2a b +≥的充分不必要条件”. A .1B .2C .3D .45.命题“存在[]1,0x ∈-,使得20x x a +-≤”为真命题的一个充分不必要条件是( ) A .14a ≥-B .14a >C .12a ≥-D .12a >-6.已知p :2+2=5;q :3>2,则下列判断错误的是( ) A .“p ∨q ”为真,“¬q ”为假 B .“p ∧q ”为假,“¬p ”为真 C .“p ∧q ”为假,“¬p ”为假 D .“p ∨q ”为真,“¬p ”为真7.“a <0”是“函数f (x )=ax 2﹣2x ﹣1在(0,+∞)上单调递减”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分要也不必要条件8.已知ABC 的三个内角分别为A ,B ,C ,则“A B C <<”是“cos cos cos A B C >>”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件9.命题p :函数1()(0)f x x x x=+>最小值是2;命题q :若1a b >,则a b >.下列说法正确的是( ) A .p 或q 为真 B .p 且q 为真 C .p 或q 为假 D .非p 为真 10.已知实数0x >,0y >,则“224x y +≤”是“1xy ≤”的( )A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件11.下列三个命题:①设命题p :若m 是质数,则m 一定是奇数.那么p ⌝真命题;②在ABC 中,“sin sin A B =”是“cos cos A B =”的充要条件;③“若1x >,则1x >”的否命题是“若1x >,则1x ≤”.其中真命题的个数为( ) A .3B .2C .1D .012.“1m =”是“椭圆22360mx y m +-=的焦距为4”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件二、填空题13.给出以下四个结论: ①函数()211x f x x -=+的对称中心是1,2;②若关于x 的方程10x k x-+=在()0,1∈x 没有实数根,则k 的取值范围是2k ≥; ③在ABC 中,“cos cos b A a B =”是“ABC 为等边三角形”的充分不必要条件; ④若()πsin 23f x x ⎛⎫=-⎪⎝⎭的图象向右平移()0ϕϕ>个单位后为奇函数,则ϕ最小值是π12. 其中正确的结论是______14.已知函数22(1)(1)3y a x a x =-+-+(x ∈R ),写出0y >的充要条件________. 15.关于以下结论: ①*n N ∀∈,22n n ≤;②函数44()sin cos f x x x =-的最小正周期为π; ③若向量0a b ⋅=,则向量a b ⊥; ④20182019log 2019log 2020>. 以上结论正确的个数为______. 16.给出下列命题:①命题“若21x =,则1x =”的否命题为“若21x =,则1x ≠”; ②“1x =-”是“2560x x --=”的必要不充分条件;③x R ∃∈命题“,使得210x x +-<”的否定是:“x R ∀∈,均有210x x -->”; ④命题“若x y =,则 sin sin x y =”的逆否命题为真命题 其中所有正确命题的序号是________.17.已知命题20001:,02p x R ax x ∃∈++≤,若命题p 是假命题,则实数a 的取值范围是________. 18.“”是“”的_____条件.(填“充分不必要”, “必要不充分”,“充要”,“既不充分也不必要”) 19.已知命题p :不等式01xx <-的解集为{x |0<x <1};命题q :在△ABC 中,“A >B ”是“sin A >sin B ”成立的必要不充分条件.有下列四个结论: ①p 真q 假;②“p ∧q ”为真;③“p ∨q ”为真;④p 假q 真, 其中正确结论的序号是________20.给出如下四个命题:①若“p 或q ”为真命题,则p 、q 均为真命题; ②命题“若且,则”的否命题为“若且,则”;③在中,“”是“”的充要条件;④已知条件,条件,若是的充分不必要条件,则的取值范围是; 其中正确的命题的是________.三、解答题21.已知命题p :(x +1)(x -5)≤0,命题q :1-m ≤x ≤1+m (m >0). (1)若p 是q 的充分条件,求实数m 的取值范围;(2)若m =5,p ∨q 为真命题,p ∧q 为假命题,求实数x 的取值范围.22.若函数()y f x =满足“存在正数λ,使得对定义域内的每一个值1x ,在其定义域内都存在2x ,使12()()f x f x λ=成立”,则称该函数为“依附函数”.(1)分别判断函数①()2x f x =,②2()log g x x =是否为“依附函数”,并说明理由; (2)若函数()y h x =的值域为[,]m n ,求证:“()y h x =是‘依附函数’”的充要条件是“0[,]m n ∉”.23.(1)已知命题p :()20a a a R -<∈,命题q :对任意x ∈R ,都有()2410x ax a R ++≥∈,若命题“p 且q ”为假命题,命题“p 或q ”为真命题,求实数a 的取值范围;(2)已知集合{}22|440A x x x a =-+-≤,{}2|41270B x x x =+-≤,若“x A ∈”是“x B ∈”的必要条件,求实数a 的取值范围.24.已知0c >,设p :函数x y c =在R 上递减; q :不等式|2|1x x c +->的解集为R ,如果“p 或q ”为真,且“p 且 q ”为假,求c 的取值范围. 25.已知命题P :函数()1()13f x x =-且()2<f a ,命题Q :集合(){}2210,A x x a x x R =+++=∈,{}0B x x =>且AB =∅.(1)分别求命题P 、Q 为真命题时的实数a 的取值范围;(2)当实数a 取何范围时,命题P 、Q 中有且仅有一个为真命题; (3)设P 、Q 皆为真时a 的取值范围为集合,,,0,0mS T y y x x R x m x ⎧⎫==+∈≠>⎨⎬⎩⎭,若全集U =R ,T S ⊆,求m 的取值范围.26.已知命题p :任意2,230x R x mx m ∈-->成立;命题q :存在2,410x R x mx ∈++<成立.(1)若命题p 为真命题,求实数m 的取值范围;(2)若命题,p q 中恰有一个为真命题,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】计算出当命题p 为真命题时实数a 的取值范围,以及当命题q 为真命题时实数a 的取值范围,由题意可知p 真q 假,进而可求得实数a 的取值范围. 【详解】若命题p 为真命题,则240a ∆=-<,解得22a -<<;若命题q 为真命题,0x ∀≥,20x a ->,则()min21xa <=.由于p ⌝和p q ∧都是假命题,则p 真q 假,所以221a a -<<⎧⎨≥⎩,可得12a ≤<.因此,实数a 的取值范围是[)1,2. 故选:D. 【点睛】本题考查利用复合命题、全称命题的真假求参数,考查计算能力,属于中等题.2.D解析:D 【详解】∃x 0∈R ,lnx 0<0,的当x ∈(0,1)时,恒成立,所以正确;x ∈(﹣∞,0),令g (x )=e x ﹣x ﹣1,可得g ′(x )=e x ﹣1<0,函数是减函数,g (x )>g (0)=0,可得∀x ∈(﹣∞,0),e x >x +1恒成立,正确; 由指数函数的性质的可知,∀x >0,5x >3x 正确;令f (x )=sin x -x (x >0),则f ′(x )=cos x -1≤0,所以f (x )在(0,+∞)上为减函数,所以f (x )<f (0),即f (x )<0,即sin x <x (x >0),故∀x ∈(0,+∞),sin x <x ,所以D 为假命题,故选D.3.D解析:D 【解析】试题分析:不难判断命题p 为真命题,命题q 为假命题,从而¬p 为假命题,¬q 为真命题,所以根据复合命题的真值表得A 、B 、C 均为假命题,故选D . 考点:本题考查复合命题真假的判断.点评:本题直接考查复合命题的真值判断,属于基础题型.4.C解析:C 【分析】①令()ln f x x x =+,研究其单调性判断.②根据“且”构成的复合命题定义判断.③根据幂函数()af x x =的图象判断.④由()222222a ba b a b a b +=++≥+,判断充分性,取特殊值1a b ==判断必要性. 【详解】①令()ln f x x x =+,()110f x x=+>',所以()f x 在{}1,+∞上递增 所以()()1f x f >,所以1x >,故正确. ②若p 且q 为真,则,p q 都为真命题,故错误.③因为所有幂函数()af x x =的图象经过点()1,1,故正确.④因为()2222224a ba b a b a b +=++≥+≥,所以2a b +≥,故充分性成立,当1a b ==时,推不出224a b +≥,所以不必要,故正确.故选:C 【点睛】本题主要考查命题的真假判断,还考查了理解辨析的能力,属于基础题.5.B解析:B 【分析】“存在[]1,0x ∈-,使得20x x a +-≤”为真命题,可得()2mina x x≥+,利用二次函数的单调性即可得出.再利用充要条件的判定方法即可得出. 【详解】解:因为“存在[]1,0x ∈-,使得20x x a +-≤”为真命题, 所以()22minmin 111244a xx x ⎡⎤⎛⎫≥+=+-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,因此上述命题得个充分不必要条件是14a >. 故选:B. 【点睛】本题考查了二次函数的单调性、充要条件的判定方法,考查了推理能力与计算能力,属于中档题.6.C解析:C 【分析】先判定命题p 为假命题,命题q 为真命题,再结合复合命题的真假判定,即可求解. 【详解】由题意,命题:225p +=为假命题,命题:32q >为真命题,所以命题p q ∧为假命题,p ⌝为真命题,命题p q ∨为真命题,q ⌝为假命题, 故选:C . 【点睛】本题主要考查了复合命题的真假判定,其中解答中正确判定命题,p q 的真假,熟记复合命题的真假判定方法是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.7.A解析:A 【分析】根据二次函数和一次函数的单调性,利用充分条件和必要条件的定义进行判断即可. 【详解】 当0a <时,10a<, 211()()1f x a x a a ∴=---,在(0,)+∞上单调递减,当0a =时,则()21f x x =--在(0,)+∞上单调递减,∴ “0a <”是“函数2()21f x ax x =--在(0,)+∞上单调递减”的充分不必要条件.故选:A . 【点睛】本题主要考查函数单调性的判断和应用,利用充分条件和必要条件的定义是解决本题的关键.本题属于基础题.8.C解析:C 【分析】结合余弦函数在()0,π上的单调性,分别判断充分性与必要性,可得出答案. 【详解】先来判断充分性:ABC 的三个内角分别为A ,B ,C ,由A B C <<可得0πA B C <<<<,因为函数cos y x =在()0,π上单调递减,所以cos cos cos A B C >>,故充分性成立; 再来判断必要性:ABC 的三个内角分别为A ,B ,C ,且0πA <<,0πB <<,0πC <<,因为函数cos y x =在()0,π上单调递减,且cos cos cos A B C >>,所以0πA B C <<<<,即A B C <<,故必要性成立.所以“A B C <<”是“cos cos cos A B C >>”的充分必要条件. 故选:C. 【点睛】本题考查命题的充分性与必要性,考查余弦函数单调性的应用,考查学生的推理论证能力,属于基础题.9.A解析:A 【分析】求出函数()f x 的最小值判定p 的真假;举例说明命题q 为假,再由复合命题的真假判断得答案. 【详解】 由0x >时,得1122x x x x+⋅=(当且仅当1x x =,即1x =时取等号),∴命题p 为真命题;当4a =-,2b =-,满足1ab>,但a b <,故命题q 是假命题. p ∴或q 为真;p 且q 为假;非p 为假.故选:A . 【点睛】本题考查利用基本不等式求最值,考查不等式的性质,考查复合命题的真假判断,是基础题.10.C解析:C 【分析】利用基本不等式和充分,必要条件的判断方法判断. 【详解】22x y +≥ 且224x y+≤ ,422x y ∴≤⇒⇒+≤ ,等号成立的条件是x y =,又x y +≥,0,0x y >>21xy ∴≤⇒≤ ,等号成立的条件是x y =,2241x y xy ∴+≤⇒≤,反过来,当12,3x y ==时,此时1xy ≤,但224x y +> ,不成立, ∴ “224x y +≤”是“1xy ≤”的充分不必要条件. 故选:C 【点睛】本题考查基本不等式和充分非必要条件的判断,属于基础题型.11.B解析:B 【分析】对各个命题分别判断. 【详解】命题p :若m 是质数,则m 一定是奇数.2是质数,但2是偶数,命题p 是假命题,那么p ⌝真命题;①正确;在ABC 中,sin sin A B a b A B =⇔=⇔=⇔cos cos A B =,②正确; “若1x >,则1x >”的否命题是“若1x ≤,则1x ≤”,③错. 因此有2个命题正确. 故选:B. 【点睛】本题考查命题的真假判断,这种问题难度较大,需要对每个命题进行判断,才能得出正确结论,这样考查的知识点可能很多,考查的能力要求较高.12.A解析:A 【分析】由椭圆22360mx y m +-=的焦距为4,分类讨论求得1c =或5c =时,再结合充分条件和必要条件的判定方法,即可求解. 【详解】由题意,椭圆22360mx y m +-=可化为22162x y m+=,当03m <<时,4c ==,解得1c =,当3m >时,4c ==,解得5c =, 即当1c =或5c =时,椭圆22360mx y m +-=的焦距为4,所以“1m =”是“椭圆22360mx y m +-=的焦距为4”的充分不必要条件. 故选:A . 【点睛】本题主要考查了椭圆的标准方程及几何性质,以及充分条件、必要条件的判定,其中解答中熟记椭圆的标准方程和几何性质,结合充分条件、必要条件的判定求解是解答的关键,着重考查了推理与计算能力,属于基础题.二、填空题13.①【分析】对四个结论逐个分析可选出答案【详解】对于①其图象由的图象向左平移1个单位再向上平移2个单位得到故的对称中心为即①正确;对于②由可得令且显然函数在上单调递减则又因为时故在的值域为所以当时关于解析:① 【分析】对四个结论逐个分析,可选出答案. 【详解】 对于①,()213211x f x x x -==-++,其图象由3y x =-的图象向左平移1个单位,再向上平移2个单位得到,故()f x 的对称中心为1,2,即①正确;对于②,由10x k x -+=,可得1k x x=-. 令()1g x x x=-,且()0,1∈x ,显然函数()g x 在()0,1∈x 上单调递减, 则()()10g x g >=,又因为0x →时,1+x x-→∞,故()g x 在0,1的值域为0,,所以当0k ≤时,关于x 的方程10x k x-+=在()0,1∈x 没有实数根,即②错误; 对于③,先来判断充分性,当cos cos b A a B =时,可得sin cos sin cos =B A A B ,所以()sin cos sin cos sin 0B A A B B A -=-=,即B A =,所以ABC 为等腰三角形,不能推出ABC 为等边三角形,即充分性不成立;再来判断必要性,当ABC 为等边三角形时,可得B A =,则sin cos sin cos =B A A B ,故cos cos b A a B =,即必要性成立,故③不正确;对于④,()πsin 23f x x ⎛⎫=-⎪⎝⎭的图象向右平移()0ϕϕ>个单位后,得到()πsin 223g x x φ⎛⎫=-- ⎪⎝⎭,由()g x 为奇函数,可得πsin 203φ⎛⎫--= ⎪⎝⎭,则()π2π3φk k +=∈Z ,解得()ππ26k φk =-∈Z ,当1k =时,ϕ取得最小正值为π3,故④不正确.所以,正确的结论是①. 故答案为:①. 【点睛】本题考查函数的对称中心,考查三角函数的平移变换及奇偶性的应用,考查利用参变分离法解决方程的解的存在性问题,考查充分性与必要性的判断,考查学生的推理论证能力与计算求解能力,属于中档题.14.或【分析】根据不等式的性质结合充要条件的定义进行求解即可【详解】若则当即或当时不等式等价为满足条件当时不等式等价为不满足条件当时要使则解之得:或综上:或反之也成立故答案为:或【点睛】本题考查充分必要解析:1a ≥或1311a <- 【分析】根据不等式的性质结合充要条件的定义进行求解即可. 【详解】若22(1)(1)30y a x a x =-+-+>, 则当210a -=,即1a =或1a =-, 当1a =时,不等式等价为30>,满足条件, 当1a =-时,不等式等价为230x -+>,32x <,不满足条件, 当1a ≠±时,要使0y >,则22210(1)12(1)0a a a ⎧->⎨∆=---<⎩,解之得:1a >或1311a <-, 综上:1a ≥或1311a <-,反之也成立.故答案为:1a ≥或1311a <-. 【点睛】本题考查充分必要条件的应用,考查二次函数的性质,考查逻辑思维能力和运算能力,属于常考题.15.2【分析】对命题逐一分析正误得出结论即可【详解】解:对于①当时∴;故①错误;②函数所以的最小正周期为;故②正确;③若向量则向量;当时或当时但不垂直于;故③错误;④;④正确证明如下:∵;而∴;∴故②④解析:2 【分析】对命题逐一分析正误,得出结论即可. 【详解】解:对于①*n N ∀∈,22n n ≤,当3n =时,29n =,28n =,∴22n n >;故①错误;②函数44()sin cos cos2f x x x x =-=-,所以()f x 的最小正周期为T π=;故②正确;③若向量0a b ⋅=,则向量a b ⊥;当0a =时或当0b =时,0a b ⋅=,但a 不垂直于b ;故③错误;④20182019log 2019log 2020>;④正确,证明如下:∵220182019lg2019lg2020(lg2019)lg2018lg2020log 2019log 2020lg2018lg2019lg2018lg2019-⋅-=-=⋅;而22lg 2018lg 2020lg 2018lg 2020()2+⋅<=2220182020(lg)(lg 2019)2+<=. ∴2(lg2019)lg2018lg20200-⋅>; ∴20182019log 2019log 2020>. 故②④正确;正确的个数为2个; 故答案为:2. 【点睛】本题考查命题判断真假的方法,需要逐个判断,属于基础题.16.④【分析】①根据命题的否命题和原命题之间的关系判断②利用充分条件和必要条件的定义判断③利用特称命题的否定判断④利用逆否命题的等价性进行判断【详解】解:①根据否命题的定义可知命题若则的否命题为若则所以解析:④ 【分析】①根据命题的否命题和原命题之间的关系判断.②利用充分条件和必要条件的定义判断.③利用特称命题的否定判断.④利用逆否命题的等价性进行判断. 【详解】解:①根据否命题的定义可知命题“若21x =,则1x =”的否命题为“若21x ≠,则1x ≠”,所以①错误.②由2560x x --=得1x =-或6x =,所以②“1x =-”是“2560x x --=”的充分不必要条件,所以②错误.③根据特称命题的否定是全称命题得命题“x R ∃∈,使得210x x +-<”的否定是:“x R ∀∈,均有210x x +-”,所以③错误.④根据逆否命题和原命题为等价命题可知原命题正确,所以命题“若x y =,则sin sin x y =”的逆否命题为真命题,所以④正确.故答案为④. 【点睛】本题主要考查命题的真假判断,以及四种命题的真假关系的判断,比较基础.17.【分析】根据命题否定为真结合二次函数图像列不等式解得结果【详解】因为命题是假命题所以为真所以【点睛】本题考查命题的否定以及一元二次不等式恒成立考查基本分析求解能力属基础题解析:1,2⎛⎫+∞ ⎪⎝⎭【分析】根据命题否定为真,结合二次函数图像列不等式,解得结果 【详解】因为命题20001:,02p x R ax x ∃∈++≤是假命题,所以21,02x R ax x ∀∈++>为真 所以011202a a a >⎧∴>⎨-<⎩ 【点睛】本题考查命题的否定以及一元二次不等式恒成立,考查基本分析求解能力,属基础题.18.必要不充分条件【解析】【分析】由a2>1解得a>1或a<-1由a3>1解得a>1进而判断出结论【详解】由a2>1解得a>1或a<-1由a3>1解得a>1因为(-∞-1)∪(1+∞)⊃≠(1+∞)所以解析:必要不充分条件 【解析】 【分析】 由,解得或,由解得,进而判断出结论.【详解】由,解得或,由解得,因为,所以“”是“”的必要不充分条件,故答案是:必要不充分条件.【点睛】该题考查的是有关必要不充分条件的判断,涉及到的知识点有不等式的解法,必要不充分条件的定义,属于简单题目.19.①③【分析】先判断命题的真假然后由复合命题的真值表判断复合命题的真假【详解】不等式等价于即命题为真在中命题为假因此②④为假①③为真【点睛】复合命题的真值表: 真 真 真 真 假 真 假解析:①③ 【分析】先判断命题,p q 的真假,然后由复合命题的真值表判断复合命题的真假. 【详解】 不等式01xx <-等价于()10x x -<,即01x <<,命题p 为真,在ABC ∆中,sin sin A B a b A B >⇔>⇔>,命题q 为假,因此②④为假,①③为真.【点睛】复合命题的真值表:pqp q ∧p q ∨p ⌝真 真 真 真 假 真 假 假 真 假 假 真 假 真 真 假假假假真复合命题的真假可按真值表进行判断.另外在ABC ∆中A B >与sin sin A B >是等价的,但在一般三角函数中此结论不成立.20.④【解析】试题分析:若或为真命题则pq 至少有一真所以命题 错误;命题若且则的否命题为若或则故命题‚错误;三角形ABC 中角A 时故命题 错误;若是的充分不必要条件即p 是q 的充分不必要条件由因p:所以由一解析:④ 【解析】试题分析:若“p 或q ”为真命题,则p 、q 至少有一真,所以命题•错误;命题“若且,则”的否命题为“若或,则”,故命题 错误;三角形ABC 中,角A时,,故命题 错误;若是的充分不必要条件即p 是q 的充分不必要条件.由因p:,所以由一元二次方程根的分布可得,解得,.故正确的命题是④.考点:命题的真假性判断.三、解答题21.(1)[4,+∞);(2)[4,1)(5,6]--⋃. 【分析】(1)设使命题p 成立的集合为A ,命题q 成立的集合为B ,由题意可得A ⊆B ,根据集合的包含关系,列出方程,即可求得结果;(2)由题意可得:p ,q 命题,一真一假,分别求得当p 真q 假时、 p 假q 真时x 的范围,即可得结果. 【详解】(1)设使命题p 成立的集合为A ,命题q 成立的集合为B , 则A ={x |-1≤x ≤5},B ={x |1-m ≤x ≤1+m }, 由题意得:A ⊆B , 所以01511m m m >⎧⎪+≥⎨⎪-≤-⎩,解得m ≥4,故m 的取值范围为[4,+∞).(2)根据条件可得:p ,q 命题,一真一假,当p 真q 假时,156?4x x x -≤≤⎧⎨><-⎩或,无解;当p 假q 真时,5?146x x x ><-⎧⎨-≤≤⎩或,解得-4≤x <-1或5<x ≤6.故实数x 的取值范围为[4,1)(5,6]--⋃. 【点睛】本题考查根据充分条件求参数范围、利用复合命题真假求参数范围,考查分析理解,计算求值的能力,属中档题.22.(1)①是,②不是;理由详见解析(2)详见解析. 【分析】(1)①可取1λ=,说明函数()2x f x =是“依附函数”; ②对于任意正数λ,取11x =,此时关于2x 的方程12()()g x g x λ=无解,说明2()log g x x =不是“依附函数”; (2)先证明必要性,再证明充分性,即得证. 【详解】(1)①可取1λ=,则对任意1x ∈R ,存在21x x =-∈R ,使得12221x x ⋅=成立, (说明:可取任意正数λ,则221log x x λ=-) ∴()2x f x =是“依附函数”,②对于任意正数λ,取11x =,则1()0g x =,此时关于2x 的方程12()()g x g x λ=无解,∴2()log g x x =不是“依附函数”. (2)必要性:(反证法)假设0[,]m n ∈,∵()y h x =的值域为[,]m n ,∴存在定义域内的1x ,使得1()0h x =,∴对任意正数λ,关于2x 的方程12()()h x h x λ=无解, 即()y h x =不是依附函数,矛盾, 充分性:假设0[,]m n ∉,取0mn λ=>, 则对定义域内的每一个值1x ,由1()[,]h x m n ∈,可得1[,][,]()m n h x n mλλλ∈=, 而()y h x =的值域为[,]m n , ∴存在定义域内的2x ,使得21()()h x h x λ=,即12()()h x h x λ=成立,∴()y h x =是“依附函数”. 【点睛】本题主要考查函数的新定义,考查充分必要条件的证明,意在考查学生对这些知识的理解掌握水平和分析推理能力.23.(1)11,0,122⎡⎤⎛⎫- ⎪⎢⎥⎣⎦⎝⎭;(2)112a ≥或112a ≤-.【分析】(1)分别计算命题,p q 为真、假时参数a 的取值范围,再根据题意可知命题p ,q 一真一假,进而分情况求解a 的取值范围即可.(2)由题意可知B A ⊆,再分0a ≥与0a <两种情况,分别根据区间端点满足的条件列式计算即可. 【详解】(1)若命题p :()20a a a R -<∈为真,解得01a <<.若p 为假,则0a ≤或1a ≥;若命题q :对任意x ∈R ,都有()2410x ax a R ++≥∈为真,则21640a ∆=-≤,解得1122a -≤≤,若q 为假,则12a <-或12a >. 由命题p 且q 为假,p 或q 为真可知命题p ,q 一真一假.若命题p 真,q 假,则011122a a a <<⎧⎪⎨-⎪⎩或,解得112a <<;若命题p 假,q 真,则1,01122a a a ≥≤⎧⎪⎨-≤≤⎪⎩,解得102a -≤≤. 综上可知,实数a 的取值范围是11,0,122⎡⎤⎛⎫- ⎪⎢⎥⎣⎦⎝⎭. (2)因为“x A ∈”是“x B ∈”的必要条件,所以B A ⊆,71,22B ⎡⎤=-⎢⎥⎣⎦,()(){}|220A x x a x a =-+--≤,当0a ≥时,[]2,2A a a =-+,此时应有122722a a ⎧+≥⎪⎪⎨⎪-≤-⎪⎩,即112a ≥, 当0a <时,[]2,2A a a =+-,此时应有122722a a ⎧-≥⎪⎪⎨⎪+≤-⎪⎩,即112a ≤-. 故112a ≥或112a ≤- 【点睛】本题主要考查了根据命题的真假以及充分与必要条件等求解参数范围的问题,属于中档题.24.[)10,1,2⎛⎤+∞ ⎥⎝⎦【分析】计算p 为真时()0,1c ∈,q 为真时12c >,讨论p 真q 假,或p 假q 真两种情况,分别计算得到答案. 【详解】p :函数x y c =在R 上递减,故()0,1c ∈;q :不等式|2|1x x c +->的解集为R ,当2x c ≥时,|2|221x x c x c +-=->,即12c x <-,故min11222c x c ⎧⎫<-=-⎨⎬⎩⎭, 解得12c >; 当2x c <时,|2|21x x c c +-=>,解得12c >. 综上所述:12c >. “p 或q ”为真,且“p 且 q ”为假,故p 真q 假,或p 假q 真.当p 真q 假时,0112c c <<⎧⎪⎨≤⎪⎩,故10,2c ⎛⎤∈ ⎥⎝⎦;当p 假q 真时,112c c ≥⎧⎪⎨>⎪⎩,故[)1,c ∈+∞.综上所述:[)10,1,2c ⎛⎤∈+∞ ⎥⎝⎦.【点睛】本题考查了根据命题的真假求参数,意在考查学生的计算能力和转化能力.25.(1)P 为真时,(5,7)a ∈-,Q 为真时,(4,)a ∞∈-+;(2)(5,4][7,)∞--⋃+;(3)(0,4] 【分析】(1)解出绝对值不等式可求出P 为真时a 的取值范围,讨论A =∅和A ≠∅时可求出Q 为真时a 的取值范围; (2)P 真Q 假,则574a a -<<⎧⎨≤-⎩;P 假Q 真,则574a a a ≤-≥⎧⎨>-⎩或,即可解出;(3)可求出(4,7)S =-,利用基本不等式可求出(,[2,)T m =-∞-+∞,则利用包含关系列出式子可求. 【详解】(1)对于命题P ,由1|()|(1)23f a a =-<可得616a -<-<,即57a -<<, :(5,7)P a ∴∈-,对于命题Q ,若A =∅,则Δ(2)(2)40a a =++-<,解得40a ,若A ≠∅,则2Δ(2)40(2)0a a ⎧=+-≥⎨-+<⎩,解得0a ≥,综上,4a >-,:(4,)Q a ∞∴∈-+;(2)若P 真Q 假,则574a a -<<⎧⎨≤-⎩,解得54a -<≤-,若P 假Q 真,则574a a a ≤-≥⎧⎨>-⎩或 ,解得7a ≥,综上,(5,4][7,)a ∈--⋃+∞; (3)当P ,Q 皆为真时,574a a -<<⎧⎨>-⎩,解得47a -<<,即(4,7)S =-,,,0,0(,)mT y y x x R x mx ⎧⎫==+∈≠>=-∞-⋃+∞⎨⎬⎩⎭,(T ∴=-, T S ⊆,47⎧-≥-⎪∴⎨≤⎪⎩,解得04m <≤. 【点睛】本题主要考查了复合命题真假的应用,解题的关键是要把命题,P Q 为真时所对应的参数范围准确求出,还要注意集合包含关系的应用.26.(1)(3,0)-;(2)(]11,3,0,22⎡⎫⎛⎫-∞--+∞⎪ ⎪⎢⎣⎭⎝⎭. 【分析】(1)只需24120m m ∆=+<,然后求解m 的取值范围; (2)分p 真q 假、p 假q 真两种情况讨论求解. 【详解】解:(1)若命题p 为真命题,则24120m m ∆=+<,解得30m -<<, 故实数m 的取值范围(3,0)-(2)若命题q 为真命题,则21640m ∆=->,解得12m <-或12m > ∵命题,p q 中恰有一个为真命题, ∴命题,p q 一真一假①当p 真q 假时,301122m m -<<⎧⎪⎨-≤≤⎪⎩,解得:102m -≤< ②当p 假q 真时,301122m m m m ≤-≥⎧⎪⎨-⎪⎩或或,解得:3m ≤-或12m >.综上,实数m 的取值范围(]11,3,0,22⎡⎫⎛⎫-∞--+∞⎪ ⎪⎢⎣⎭⎝⎭. 【点睛】本题考查根据命题的真假求解参数的取值范围,考查二次不等式恒成立与有解问题,难度一般.。
成都树德中学高中数学选修2-1第一章《常用逻辑用语》检测卷(有答案解析)

一、选择题1.数列{}n a 满足*111,(,0)n n a a ta t n N t +==+∈≠,则“ 12t =”是“数列{}n a 成等比数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件2.下列命题中,真命题是( ) A .命题“若a b >,则22ac bc >” B .命题“若a b =,则a b =”的逆命题 C .命题“当2x =-时,2560x x ++=”的否命题D .命题“终边相同的角的同名三角函数值(三角函数值存在)相等”的逆否命题 3.给出如下四个命题:①若“p 且q ”为假命题,则,p q 均为假命题;②命题“若a b >,则221a b >-”的否命题为“若a b <,则221a b ≤-”; ③“x ∀∈R ,211x +≥”的否定是“x ∃∈R ,211x +<”; 其中正确的命题的个数是( ) A .0B .1C .2D .34.已知a ,b 是两条直线,则“a ,b 没有公共点”是“a ,b 是异面直线”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件5.下列命题中为真命题的是( )A .若命题p :“2,10x R x x ∃∈-->”,则命题p 的否定为:“2,10x R x x ∀∈--≤”B .直线,a b 为异面直线的充要条件是直线,a b 不相交C .“1a =”是“直线0x ay -=与直线0x ay +=互相垂直”的充要条件D .0x ≠则12x x+≥ 6.已知命题p :所有有理数都是实数,命题q :正数的对数都是负数,则下列命题中为真命题的是 A .()p q ⌝∨B .p q ∧C .()()p q ⌝∧⌝D .()()p q ⌝∨⌝7.下列四个命题中,真命题的个数是( ) ①命题“若ln 1x x +>,则1x >”;②命题“p 且q 为真,则,p q 有且只有一个为真命题”; ③命题“所有幂函数()af x x =的图象经过点()1,1”;④命题“已知22,,4a b R a b ∈+≥是2a b +≥的充分不必要条件”. A .1B .2C .3D .48.已知p :2+2=5;q :3>2,则下列判断错误的是( ) A .“p ∨q ”为真,“¬q ”为假 B .“p ∧q ”为假,“¬p ”为真 C .“p ∧q ”为假,“¬p ”为假D .“p ∨q ”为真,“¬p ”为真9.已知数列{}n a 和{}n b 满足n n b a =,则“数列{}n a 为等比数列”是“数列{}n b 为等比数列”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件10.记不等式()()22124x y -+-≤表示的平面区域为D .命题p :()x y D ∀∈,,28x y +≤;命题q :(),x y D ∃∈,21x y +≤-.下面给出了四个命题:①p q ∨;②p q ⌝∨;③p q ∧⌝;④p q ⌝∧⌝.这四个命题中,所有真命题的编号是( ) A .①③B .②④C .②③D .①④11.下列三个命题:①设命题p :若m 是质数,则m 一定是奇数.那么p ⌝真命题;②在ABC 中,“sin sin A B =”是“cos cos A B =”的充要条件; ③“若1x >,则1x >”的否命题是“若1x >,则1x ≤”.其中真命题的个数为( ) A .3B .2C .1D .012.下列说法中正确的是( )A .命题“若21x =,则1x =”的否命题是“若21x =,则1x ≠”B .“1x =-”是“220x x --=”的必要不充分条件C .命题“若x y =,则sin sin x y =”的逆否命题是真命题D .“tan 1x =”是“4x π=”的充分不必要条件二、填空题13.由命题p :“矩形有外接圆”,q :“矩形有内切圆”组成的复合命题“p 或q ”“p 且q ”“非p ”形式的3个命题中真命题有__________个(只填真命题的个数).14.命题“若实数a b ,满足25a b +>,则2a =且3b =”的否命题是________命题(填“真”或 “假”).15.在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[]k ,即[]{}5,0,1,2,3,4k n k n Z k =+∈=.给出如下四个结论:①[]20111∈, ②[]33-∈,③[][][][][]01234Z =⋃⋃⋃⋃,④整数,a b 属于同一类的充要条件是[]0a b -∈.其中正确的个数是___________16.给出下列命题:①1y =是幂函数;②函数2()2log xf x x =-的零点有且只有1;2)0x -≥的解集为[2,)+∞;④“1x <”是“2x <”的充分非必要条件;其中真命题的序号是______________. 17.有下列四个命题:①“若1xy=,则x ,y 互为倒数”的逆命题;②“面积相等的三角形全等”的否命题;③“若1m ,则2x 2x m 0-+=有实数解”的逆否命题;④“若A B B =,则A B ⊆”的逆否命题.其中真命题为________(填写所有真命题的序号).18.关于以下结论: ①*n N ∀∈,22n n ≤;②函数44()sin cos f x x x =-的最小正周期为π; ③若向量0a b ⋅=,则向量a b ⊥; ④20182019log 2019log 2020>. 以上结论正确的个数为______. 19.函数()y f x =的定义域为[)(]1,00,1-,其图象上任一点(,)P x y 都满足221x y +=.①函数()y f x =一定是偶函数;②函数()y f x =可能既不是偶函数也不是奇函数; ③函数()y f x =若是偶函数,则值域是(]1,0-或[)0,1;④函数()y f x =可以是奇函数;⑤函数()y f x =的值域是(1,1)-,则()y f x =一定是奇函数. 其中正确命题的序号是__________(填上所有正确的序号)20.设命题:p 函数()21lg 16f x ax x a ⎛⎫=-+ ⎪⎝⎭的值域为R ;命题:q 不等式39x x a -<对一切正实数x 均成立,若命题p 和q 不全为真命题,则实数a 的取值范围是__________.三、解答题21.已知集合{}2|4120A x x x =--≤,{}22|440B x x x m =--+≤.(1)求集合A 、B ;(2)当0m >时,若x A ∈是x B ∈成立的充分不必要条件,求实数m 的取值范围.22.已知命题p :1232a t a a ⎛⎫-<≤+>- ⎪⎝⎭,命题q :方程222143x y t t +=+表示焦点在x轴上的椭圆.(1)当1a =时,判断“命题p ”是“命题q ”成立的什么条件?(2)若命题p 是命题q 成立的充分不必要条件,求实数a 的取值范围.23.已知0a >且1a ≠,命题:P 函数()log a f x x =在()0,∞+上为减函数,命题:Q 关于x 的不等式()22310x a x +-+≤有实数解.(1)如果P Q ∨为真且P Q ∧为假,求实数a 的取值范围. (2)命题:R 函数()2231ylg x a x ⎡⎤=+-+⎣⎦的值域包含区间[]1,3-,若命题R 为真命题,求实数a 的取值范围24.已知函数()f x 对一切,x y R ∈都有22()()(23)1f x y f y x x x y y y +--=+++++成立.(1)求()0f 的值; (2)求()f x 的解析式;(3)已知a R ∈,设P :当304x ≤≤时,不等式()2f x x a <+恒成立,Q :当[]2,2x ∈-时,()()g x f x ax =+不是单调函数,求满足P 为真命题且Q 为假命题的a 的取值范围.25.设命题:p 实数x 满足22430x ax a -+<,其中0a >.命题q :实数x 满足302x x-≥-. (1)若1a =,且p q ∧为真,求实数x 的取值范围.(2)p ⌝是q ⌝的充分不必要条件,求实数a 的取值范围. 26.设函数(),,x x Pf x x x M∈⎧=⎨-∈⎩,其中,P M 是非空数集.记()(){}()(){}|,,|f p y y f x x P f M y y f x x M ==∈==∈,. (1)若[]()0,3,,1P M ==-∞-,求()()f p f M ⋃;(2)若P M ⋂=∅,且()f x 是定义在R 上的增函数,写出满足条件的集合P ,M ,并说明理由;(3)判断命题“若P M ⋃≠R ,则()()f p f M ⋃≠R ”的真假,并加以证明.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据充分必要条件的定义和等比数列的定义判断. 【详解】12t =时,由11a =得211122a =+=,311122a =+=,,1n a =,所以{}n a 是等比数列,充分性满足; 反之若{}n a 是等比数列,则212a ta t t =+=,2322a ta t t t =+=+,123,,a a a 也成等比数列,所以2213a a a =,即2242t t t =+,又0t ≠,所以12t =,此时1(*)n a n N =∈,满足题意,必要性也满足, 应为充要条件. 故选:C . 【点睛】关键点点睛:本题考查充分必要条件的判断,考查等比数列的判断,掌握充分必要条件和等比数列的定义是解题关键.解题方法是充分性与必要性分别进行判断,充分性只要把12t =代入计算求出n a 即可判断,而必要性需由数列{}n a 是等比数列求出参数t ,因此可由开始的3项成等比数列求出t ,然后再检验对*n N ∈数列是等比数列即可. 2.D解析:D 【分析】根据不等式的性质和四种命题的关系判断各选项. 【详解】 A .当0c时,22ac bc >不成立,A 错;B .命题“若a b =,则a b =”的逆命题是若a b =,则a b =,错误,也可能是=-a b ;C .命题“当2x =-时,2560x x ++=”的否命题是若2x ≠-,则2560x x ++≠,错误,3x =-时,也有2560x x ++=;D .命题“终边相同的角的同名三角函数值(三角函数值存在)相等”是真命题,逆否命题也是真命题. 故选:D . 【点睛】关键点点睛:本题考查命题真假的判断,四种命题之间互为逆否的命题同真假,因此原命题的为真只能判断逆否命题为真,而逆命题和否命题的真假不确定,需写出逆命题,否命题进行判断.这也告诉我们当一个命题难以判断真假时可考虑判断其逆否命题的真假.3.B解析:B 【分析】结合命题相关知识,对选项逐个分析即可得到答案. 【详解】对于①,,p q 可能为一真一假也可能两个都为假,故①错误;对于②,命题“若a b >,则221a b >-”的否命题为“若a b ≤,则221a b ≤-”,故②错误;对于③,“x ∀∈R ,211x +≥”的否定是“x ∃∈R ,211x +<”,正确.故只有③正确,答案为B. 【点睛】本题考查了复合命题的性质,考查了命题的否定、原命题的否命题,属于基础题.4.B解析:B 【分析】根据异面直线的定义及充分条件、必要条件的概念求解即可. 【详解】因为a ,b 没有公共点,a ,b 可能平行也可能异面, 所以“a ,b 没有公共点”成立推不出“a ,b 是异面直线”, 反之,“a ,b 是异面直线”可以推出“a ,b 没有公共点”成立, 所以“a ,b 没有公共点”是“a ,b 是异面直线”的必要不充分条件, 故选:B 【点睛】本题主要考查了充分条件,必要条件的判定,异面直线的概念,属于中档题.5.A解析:A 【分析】A ,根据一个是特称命题的否定,变为全称命题,即可判断;B ,根据空间中两条直线的位置关系得到结果;C ,根据两条直线垂直的条件得到a 的值;D 、根据基本不等式得到,这个不等式大于等于2或小于等于2-.【详解】解:对于A ,根据特称命题的否定形式知道:命题p :“x R ∃∈,210x x -->”,则命题p 的否定为:“x R ∀∈,210x x --”,故A 是真命题;对于B ,直线a ,b ,为异面直线的充要条件是直线a ,b 不相交且不平行,故B 为假命题;对于C ,“直线0x ay -=与直线0x ay +=互相垂直” ⇔ “1a =±”,故“1a =”是“直线0x ay -=与直线0x ay +=互相垂直”的充分不必要条件,故C 为假命题;对于D ,若0x >,则12x x+,或若0x <,则12x x +-,故D 为假命题. 故选:A . 【点睛】本题考查命题的否定,考查函数的值域,考查空间中两条直线的位置关系,考查特称命题和全称命题的否定,属于中档题.6.D解析:D【解析】试题分析:不难判断命题p 为真命题,命题q 为假命题,从而¬p 为假命题,¬q 为真命题,所以根据复合命题的真值表得A 、B 、C 均为假命题,故选D . 考点:本题考查复合命题真假的判断.点评:本题直接考查复合命题的真值判断,属于基础题型.7.C解析:C 【分析】①令()ln f x x x =+,研究其单调性判断.②根据“且”构成的复合命题定义判断.③根据幂函数()af x x =的图象判断.④由()222222a ba b a b a b +=++≥+,判断充分性,取特殊值1a b ==判断必要性. 【详解】①令()ln f x x x =+,()110f x x=+>',所以()f x 在{}1,+∞上递增 所以()()1f x f >,所以1x >,故正确. ②若p 且q 为真,则,p q 都为真命题,故错误.③因为所有幂函数()af x x =的图象经过点()1,1,故正确.④因为()2222224a ba b a b a b +=++≥+≥,所以2a b +≥,故充分性成立,当1a b ==时,推不出224a b +≥,所以不必要,故正确.故选:C 【点睛】本题主要考查命题的真假判断,还考查了理解辨析的能力,属于基础题.8.C解析:C 【分析】先判定命题p 为假命题,命题q 为真命题,再结合复合命题的真假判定,即可求解. 【详解】由题意,命题:225p +=为假命题,命题:32q >为真命题,所以命题p q ∧为假命题,p ⌝为真命题,命题p q ∨为真命题,q ⌝为假命题, 故选:C . 【点睛】本题主要考查了复合命题的真假判定,其中解答中正确判定命题,p q 的真假,熟记复合命题的真假判定方法是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.9.A解析:A 【分析】根据等比数列定义可证得11n n n na b q b a ++==,可知充分性成立;通过反例可确定必要性不成立,从而得到结果. 【详解】若数列{}n a 为等比数列,公比为q ,则11n n n na b q b a ++== {}n b ∴为等比数列,充分性成立设数列{}n b 的通项公式为2nn b = {}n b ∴为等比数列,公比2q若数列{}n a 为:2,4,8,16,32,--⋅⋅⋅,满足12n na a +=,但{}n a 不是等比数列必要性不成立∴“数列{}n a 为等比数列”是“数列{}n b 为等比数列”的充分而不必要条件故选:A 【点睛】本题考查充分条件与必要条件的判定,涉及到等比数列定义的应用;关键是能够明确数列成等比数列需满足的条件.10.B解析:B 【分析】画出平面区域D ,直线28x y +=和直线21x y +=-,根据图像判断出命题p 和命题q 的真假,从而得到答案. 【详解】平面区域为D 满足不等式()()22124x y -+-≤, 画出其图像如图所示,再画出直线28x y +=和直线21x y +=-,根据图像可得存在(),x y D ∈,在直线28x y +=的上方, 所以命题p :()x y D ∀∈,,28x y +≤,是假命题, 不存在(),x y D ∈,在直线21x y +=-的下方 所以命题q :(),x y D ∃∈,21x y +≤-,是假命题.所以①p q ∨为假命题;②p q ⌝∨为真命题;③p q ∧⌝为假命题;④p q ⌝∧⌝为真命题. 故选:B.【点睛】本题考查判断含有逻辑联结词命题的真假,根据不等式画可行域,判断点是否在可行域内,属于中档题.11.B解析:B 【分析】对各个命题分别判断. 【详解】命题p :若m 是质数,则m 一定是奇数.2是质数,但2是偶数,命题p 是假命题,那么p ⌝真命题;①正确;在ABC 中,sin sin A B a b A B =⇔=⇔=⇔cos cos A B =,②正确; “若1x >,则1x >”的否命题是“若1x ≤,则1x ≤”,③错. 因此有2个命题正确. 故选:B. 【点睛】本题考查命题的真假判断,这种问题难度较大,需要对每个命题进行判断,才能得出正确结论,这样考查的知识点可能很多,考查的能力要求较高.12.C解析:C 【分析】对选项逐个进行判断,即可得出结论. 【详解】A :命题“若21x =,则1x =”的否命题是“若21x ≠,则1x ≠”,故A 不正确;B :“1x =-”是“220x x --=”的充分不必要条件,故B 不正确;C :命题“若x y =,则sin sin x y =”是真命题,所以命题“若x =y ,则sinx =siny ”的逆否命题是真命题,故C 正确;D : “tan 1x =”是“4x π=”的必要不充分条件,故D 不正确.故选:C . 【点睛】本题考查命题的真假判断与应用,考查四种命题,考查充要条件,属于中档题.二、填空题13.1【分析】先判断两个命题的真假再判断复合命题的真假即得解【详解】由题得命题:矩形有外接圆是真命题;:矩形有内切圆是假命题所以或是真命题且是假命题非是假命题故答案为:1【点睛】本题主要考查命题真假的判解析:1 【分析】先判断两个命题的真假,再判断复合命题的真假即得解. 【详解】由题得命题p :“矩形有外接圆”,是真命题;q :“矩形有内切圆”,是假命题. 所以“p 或q ”是真命题,“p 且q ”是假命题,“非p ”是假命题. 故答案为:1 【点睛】本题主要考查命题真假的判断,考查复合命题真假的判断,意在考查学生对这些知识的理解掌握水平.14.真【分析】先求逆命题及其真假再根据逆否命题等价性确定否命题真假【详解】命题若实数满足则且的逆命题是若且则是真命题所以命题若实数满足则且的否命题是真命题故答案为:真【点睛】本题考查四种命题关系及其真假解析:真 【分析】先求逆命题及其真假,再根据逆否命题等价性确定否命题真假. 【详解】命题“若实数a b ,满足25a b +>,则2a =且3b =”的逆命题是 “若2a =且3b =,则25a b +>”,是真命题,所以命题“若实数a b ,满足25a b +>,则2a =且3b =”的否命题是真命题. 故答案为:真 【点睛】本题考查四种命题关系及其真假,考查基本分析判断能力,属基础题.15.3【分析】根据2011被5除的余数为1可判断①;将=可判断②;根据整数集就是由被5除所得余数为01234可判断③;令根据类的定理可证明④的真假【详解】①由2011÷5=402…1所以2011∈1故①解析:3 【分析】根据2011被5除的余数为1,可判断①;将3-=52-+,可判断②;根据整数集就是由被5除所得余数为0,1,2,3,4,可判断③;令115a n m =+,225b n m =+,根据“类”的定理可证明④的真假. 【详解】①由2011÷5=402…1,所以2011∈[1],故①正确; ②由()3512-=⨯-+ 所以[]33-∉,故②错误;③整数集就是由被5除所得余数为0,1,2,3,4的整数构成,③正确; ④假设115a n m =+,225b n m =+,()12125a b n n m m -=-+-,,a b 要是同类. 则 12m m =,即120m m -=,所以[]0a b -∈,反之若[]0a b -∈,即120m m -=,所以12m m =,则,a b 是同类. ④正确; 故答案为:3 【点睛】本题考查的知识点是命题的真假判断与应用,正确理解新定义“类”是解答的关键,以及进行简单的合情推理.属中档题.16.④【分析】没有零点的解集为是的充分非必要条件【详解】①是常数函数或者考虑所以不是幂函数故错;②根据指数函数和对数函数的图象和性质得:函数没有零点故错;③或解得或故的解集为错;④但是推不出因此是的充分解析:④ 【分析】01,0y x x ==≠,2()2log x f x x =-2)0x -≥的解集为[){}2,1+∞,“1x <”是“2x <”的充分非必要条件.【详解】①1y =是常数函数,或者考虑01,0y x x ==≠,所以不是幂函数.故错;②根据指数函数和对数函数的图象和性质得:函数2()2log xf x x =-没有零点,故错;102)020x x x ->⎧-≥⇔⎨-≥⎩,或1x =,解得2x ≥或1x =2)0x -≥的解集为[){}2,1+∞,错;④“1x <”⇒“2x <”,但是“2x <”推不出“1x <”,因此“1x <”是“2x <”的充分不必要条件,正确. 故答案为:④.【点睛】此题考查幂函数概念辨析,函数零点讨论,解不等式,根据集合的包含关系讨论充分条件和必要条件,知识容量大,综合性强.17.①②③【分析】结合四种命题的定义及互为逆否的两个命题真假性相同分别判断各个结论的真假可得答案【详解】解:①若则互为倒数的逆命题是若互为倒数则显然是真命题故①正确;②面积相等的三角形全等的否命题是面积解析:①②③ 【分析】结合四种命题的定义,及互为逆否的两个命题,真假性相同,分别判断各个结论的真假,可得答案. 【详解】 解:①“若1xy=,则x ,y 互为倒数”的逆命题是“若x ,y 互为倒数,则1xy =”,显然是真命题,故①正确;②“面积相等的三角形全等”的否命题是“面积不相等的三角形不全等”,显然是真命题,故②正确;③若2x 2x m 0-+=有实数解,则440m ∆=-≥,解得1m ,所以“若1m ,则2x 2x m 0-+=有实数解”是真命题,故其逆否命题是真命题,故③正确;④若A B B =,则B A ⊆,故原命题错误,所以其逆否命题错误,故④错误.故真命题有①②③ 故答案为:①②③ 【点睛】本题以命题的真假判断与应用为载体,考查的知识点是四种命题,难度中档.18.2【分析】对命题逐一分析正误得出结论即可【详解】解:对于①当时∴;故①错误;②函数所以的最小正周期为;故②正确;③若向量则向量;当时或当时但不垂直于;故③错误;④;④正确证明如下:∵;而∴;∴故②④解析:2 【分析】对命题逐一分析正误,得出结论即可. 【详解】解:对于①*n N ∀∈,22n n ≤,当3n =时,29n =,28n =,∴22n n >;故①错误;②函数44()sin cos cos2f x x x x =-=-,所以()f x 的最小正周期为T π=;故②正确;③若向量0a b ⋅=,则向量a b ⊥;当0a =时或当0b =时,0a b ⋅=,但a 不垂直于b ;故③错误;④20182019log 2019log 2020>;④正确,证明如下:∵220182019lg2019lg2020(lg2019)lg2018lg2020log 2019log 2020lg2018lg2019lg2018lg2019-⋅-=-=⋅;而22lg 2018lg 2020lg 2018lg 2020()(lg 20182020)2+⋅<=⋅2220182020(lg)(lg 2019)2+<=. ∴2(lg2019)lg2018lg20200-⋅>; ∴20182019log 2019log 2020>. 故②④正确;正确的个数为2个; 故答案为:2. 【点睛】本题考查命题判断真假的方法,需要逐个判断,属于基础题.19.②④⑤【分析】因为函数的定义域为其图象上任一点都满足所以函数的图象为圆上的一部分故对每个命题通过画反例图或者结合圆的性质分析判断即可得到结果【详解】因为函数的定义域为其图象上任一点都满足所以函数的图解析:②④⑤ 【分析】因为函数()y f x =的定义域为[)(]1,00,1-,其图象上任一点(,)P x y 都满足221x y +=,所以,函数的图象为圆221x y +=上的一部分.故对每个命题通过画反例图或者结合圆的性质分析判断即可得到结果. 【详解】因为函数()y f x =的定义域为[)(]1,00,1-,其图象上任一点(,)P x y 都满足221x y +=,所以,函数的图象为圆221x y +=上的一部分.命题①:可举出反例如图,则可知函数()y f x =不一定是偶函数,故命题①错误; 命题②:举出存在的例子,由图可知函数()y f x =可能既不是偶函数,也不是奇函数,故命题②正确; 命题③:举出反例如图,则可知函数()y f x =如果是偶函数,则值域不一定是(]1,0-或[)0,1,故命题③错误; 命题④:由命题①中图象可知,函数()y f x =可以是奇函数,故命题④正确; 命题⑤:由函数图象性质可知,若函数()y f x =值域是(1,1)-,则函数一定是奇函数,故命题⑤正确.故其中正确的命题的序号是②④⑤. 故答案为:②④⑤. 【点睛】本题主要考查函数的性质,以及圆的方程的性质,通过举反例排除是判断命题正确与否的常用手段,属中档题.20.【分析】根据对数型复合函数值域可知是的值域的子集根据二次函数图象分析可得不等关系求得命题为真时;利用换元法将转化为求解的最值可求得命题为真时;求出当全为真时的范围取补集得到结果【详解】若命题为真即值 解析:(,0)(2,)-∞+∞【分析】根据对数型复合函数值域可知()0,∞+是2116y ax x a =-+的值域的子集,根据二次函数图象分析可得不等关系,求得命题p 为真时,02a ≤≤;利用换元法将39x x a -<转化为()21a t tt >->,求解2t t-的最值可求得命题q 为真时,0a ≥;求出当,p q 全为真时a 的范围,取补集得到结果.【详解】若命题p 为真,即()21lg 16f x ax x a ⎛⎫=-+⎪⎝⎭值域为R 当0a =时,0x ->,解得:0x <,满足题意当0a ≠时,201104a a >⎧⎪⎨∆=-≥⎪⎩,解得:02a <≤ 综上所述:若命题p 为真,则02a ≤≤若命题q 为真,即不等式39x x a -<对()0,x ∈+∞恒成立 令31x t =>,则2a t t >-1t > 2110t t ∴-<-= 0a ∴≥即若命题q 为真,则0a ≥∴当命题,p q 全为真命题时,02a ≤≤命题,p q 不全为真命题 a ∴的取值范围为:()(),02,-∞+∞故答案为:()(),02,-∞+∞【点睛】本题考查根据命题的真假性求解参数范围,涉及到根据对数型复合函数的值域求解参数范围、不等式恒成立问题的求解等知识.三、解答题21.(1)分类讨论,详见解析;(2)()4,+∞. 【分析】(1) 由24120x x --≤, 解得x 范围,可得集合A ,由22440x x m --+=解得x=2+m ,或2-m .对m 分类讨论即可得出集合B ;(2)根据x A ∈是x B ∈成立的充分不必要条件,可得[-2,6]是[2-m ,2+m ]的真子集,进而得出范围. 【详解】(1)由24120x x --≤,得26x -≤≤. 故集合{}|26A x x =-≤≤.由22440x x m --+=,得12x m =+,22x m =-.当0m >时,22m m -<+,由22440x x m --+≤得22m x m -≤≤+, 故集合{}|22B x m x m =-≤≤+.当0m <时,22m m ->+,由22440x x m --+≤得:22m x m +≤≤-, 故集合{}|22B x m x m =+≤≤-. 当0m =时,由2440x x -+≤得2x =, 故集合{}|2B x x ==.(2)∵x A ∈是x B ∈成立的充分不必要条件, ∴[]2,6-是[]2,2m m -+的真子集,则有222226m m m m -<+⎧⎪-≤⎨⎪+≥⎩,解得4m ≥,又当4m =时,[][]2,22,6m m -+=-,不合题意, ∴实数m 的取值范围为()4,+∞. 【点睛】本题考查了不等式的解法、简易逻辑的判定方法、分类讨论方法,考查了推理能力与计算能力,属于中档题.22.(1)“命题p ”是“命题q ”成立的必要不充分条件.(2)102a -<< 【分析】(1)分别求解使命题p ,q 为真的t 的范围,判断推出关系,即得解;(2)由命题p 是命题q 成立的充分不必要条件,得到p ,q 所对应范围的包含关系,列出不等式组,即得解. 【详解】(1)当1a =时,若命题p 为真,则14t <≤; 若命题q 为真,则243t t >+,即13t <<,由命题q 能推出命题p ,但命题p 不能推出命题q , 所以“命题p ”是“命题q ”成立的必要不充分条件. (2)命题p 是命题q 成立的充分不必要条件,所以2133a a -≥⎧⎨+<⎩,解得0a <,因为12a >-, 所以102a -<<. 【点睛】本题考查了充分必要条件的判定以及通过充分必要条件得到参数范围,考查了学生综合分析,转化划归,数学运算的能力,属于中档题. 23.(1)112a <<或52a ≥,(2)a ≥a ≤ 【分析】(1)首先分别算出P 真,Q 真a 的范围,再根据P ,Q 一真一假分别讨论即可. (2)首先设2()(23)1g x x a =+-+,将题意转化为min 1()10g x ≤,解不等式即可.【详解】(1)因为函数()log a f x x =在()0,∞+上为减函数,所以P 真:01a <<. 因为关于x 的不等式()22310xa x +-+≤有实数解,Q 真:2(23)40a ∆=--≥,解得52a ≥或102a <≤.因为P Q ∨为真且P Q ∧为假,所以P ,Q 一真一假.当P 真Q 假时,01111521122a a a a <<⎧⎪⇒<<⎨<<<<⎪⎩或. 当P 假Q 真时,15512022a a a a >⎧⎪⇒≥⎨≥<≤⎪⎩或. 综上112a <<或52a ≥. (2)设2()(23)1g x x a =+-+,因为函数()2231ylg x a x ⎡⎤=+-+⎣⎦的值域包含区间[]1,3-,等价于min 1()10g x ≤,即24(23)1410a --≤,218(23)5a -≥,解得1510a +≥或1510a -≤. 【点睛】本题第一问考查逻辑连接词,同时考查了二次不等式的有解问题,第二问考查对数函数的值域问题,属于中档题.24.(1)1;(2)2()1f x x x =++;(3)[)3,+∞. 【分析】(1)令0x y ==,即可求解;(2))令0y =,得22()()31f x f x x x --=++,再用x -替换x 得22()()31f x f x x x --=-+,两式消去()f x -即可得()f x 的解析式;(3)若P 为真命题,21x x a -+<恒成立,只需要()2max1a x x >-+,利用二次函数性质即可求解,若Q 为真命题,2()()(1)1g x f x ax x a x =+=+++,对称轴:12a x +=-,则1222a +-<-<,即可求解. 【详解】(1)由22()()(23)1f x y f y x x x y y y +--=+++++, 取0x y ==得2(0)(0)1(0)1f f f -=⇒=.(2)取0y =,得22()()31f x f x x x --=++,① 将x 换成x -,有22()()31f x f x x x --=-+② ①×2+②得223()333()1f x x x f x x x =++⇒=++, 故()f x 的解析式为2()1f x x x =++. (3)(i )若P 为真命题,有当304x ≤≤时,不等式()2f x x a <+恒成立, 即21x x a -+<恒成立,记23()104h x x x x ⎛⎫=-+≤≤⎪⎝⎭, 有对称轴12x =,()max ()01h x h ==,所以1a >. (ii )若Q 为真命题,2()()(1)1g x f x ax x a x =+=+++,对称轴:12a x +=-, 由于当[]2,2x ∈-时,()()g x f x ax =+不是单调函数,所以()12,22a x +=-∈-, 即122532a a +-<-<⇒-<<. 综上,满足P 为真命题且Q 为假命题的a 满足135a a a >⎧⎨≥≤-⎩或,解得3a ≥,故满足P 为真命题且Q 为假命题的a 的取值范围为[)3,+∞. 【点睛】方法点睛:求不等式恒成立问题的方法 (1)分离参数法若不等式(),0f x λ≥()x D ∈(λ是实参数)恒成立,将(),0f x λ≥转化为()g x λ≥或()()g x x D λ≤∈恒成立,进而转化为()max g x λ≥或()()min g x x D λ≤∈,求()g x 的最值即可. (2)数形结合法结合函数图象将问题转化为函数图象的对称轴、区间端点的函数值或函数图象的位置关系(相对于x 轴)求解.此外,若涉及的不等式转化为一元二次不等式,可结合相应一元二次方程根的分布解决问题. (3)主参换位法把变元与参数变换位置,构造以参数为变量的函数,根据原变量的取值范围列式求解,一般情况下条件给出谁的范围,就看成关于谁的函数,利用函数的单调性求解. 25.(1)()2,3;(2)(]1,2. 【分析】(1)分别求解两个命题为真命题时x 的取值范围,再求交集;(2)首先根据命题的等价性转化为q 是p 的充分不必要条件,得到B A ≠⊂,再求参数a 的取值范围.【详解】()1由()224300x ax a a -+<>,得3a x a <<即p 为真命题时3a x a << 由302x x-≥-, 得()()3202x x x ⎧--≥⎨≠⎩即23x <≤,即q 为真命题时,23x <≤1a =时,:13p x <<由p q ∧为真,知,p q 均为真命题,则1323x x <<⎧⎨<≤⎩得23x <<,所以实数x 的取值范围为()2,3()2设{}{}3,23A x a x a B x x =<<=<≤由题意知q 是p 的充分不必要条件,所以B A ≠⊂ 有0233a a <≤⎧⎨>⎩12a ∴<≤所以实数a 的取值范围为(]1,2.26.(1)[)0,+∞;(2){}0M =,()(),00,P =-∞+∞,理由见解析;(3)真命题,证明见解析 【分析】(1)由[]()0,3,,1P M ==-∞-,结合()f x 的解析式,可求出()f p ,()f M ,进而可求出()()f p f M ⋃;(2)易知()00=f ,根据()f x 的单调性,可得0x <时,()0f x <,0x >时,()0f x >,进而可得()(),00,P =-∞+∞,再由P M ⋂=∅,可求出M ;(3)利用反证法,假设原命题为假,进而推出矛盾,可知假设是错误的,原命题为真命题.【详解】(1)因为[]()0,3,,1P M ==-∞-,所以()[](),0,3,,1x x f x x x ⎧∈⎪=⎨-∈-∞-⎪⎩,所以()[]{}[]|,0,30,3f p y y x x ==∈=,()(){}()|,11,f M y y x x ==-∈-∞-=+∞,, 所以()()[)0,f p f M ⋃=+∞.(2)因为()f x 是定义在R 上的增函数,且()00=f ,所以0x <时,()0f x <;0x >时,()0f x >,由(),,x x Pf x x x M ∈⎧=⎨-∈⎩,可得(),0P -∞⊆,()0,P +∞⊆,因为P M ⋂=∅,所以{}0M =,()(),00,P =-∞+∞.(3)该命题为真命题,证明如下:假设原命题为假,即存在非空数集,P M ,且P M ⋃≠R ,但()()f p f M ⋃=R . 首先证明()0P M ∈,假若()0PM ∉,则0,0P M ∉∉,所以()()0,0f P f M ∉∉,即()()0f p f M ∉⋃,与()()f p f M ⋃=R 矛盾, 所以()0PM ∈;若存在()0x PM ∉,且00x ≠,则00,x P x M ∉∉,所以()()00,x f P x f M ∉-∉,因为()()f p f M ⋃=R ,所以()()00,x f M x f P ∈-∈, 则00,x p x M -∈-∈,所以()00f x x -=-,且()()000f x x x -=--=, 因为00x ≠,所以00x x -≠,即()0f x -有两个不同的值,不满足函数的概念,所以假设错误,即原命题为真命题. 【点睛】关键点点睛:本题考查新定义函数,解题关键是根据新定义的特点,弄清新定义的性质,按照新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决,考查学生的逻辑推理能力,计算求解能力,属于中档题.。
高中数学选修2-1各章节课时同步练习及详解

第1章1.1.1一、选择题(每小题5分,共20分)1.下列语句中命题的个数是( )①-5∈Z;②π不是实数;③大边所对的角大于小边所对的角;④2是无理数.A.1 B.2C.3 D.4解析:①②③④都是命题.答案: D2.下列说法正确的是( )A.命题“直角相等”的条件和结论分别是“直角”和“相等”B.语句“最高气温30 ℃时我就开空调”不是命题C.命题“对角线互相垂直的四边形是菱形”是真命题D.语句“当a>4时,方程x2-4x+a=0有实根”是假命题解析:对于A,改写成“若p,则q”的形式应为“若有两个角是直角,则这两个角相等”;B所给语句是命题;C的反例可以是“用边长为3的等边三角形与底边为3,腰为2的等腰三角形拼成的四边形不是菱形”来说明.故选D.答案: D3.下列语句中假命题的个数是( )①3是15的约数;②15能被5整除吗?③{x|x是正方形}是{x|x是平行四边形}的子集吗?④3小于2;⑤矩形的对角线相等;⑥9的平方根是3或-3;⑦2不是质数;⑧2既是自然数,也是偶数.A.2 B.3C.4 D.5解析:④⑦是假命题,②③不是命题,①⑤⑥⑧是真命题.答案: A4.设m,n是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题:①若m⊥α,n∥α,则m⊥n;②若α∥β,β⊥γ,则α∥γ;③若m⊥α,n⊥α,则m∥n;④若α⊥γ,β⊥γ,则α∥β.其中为真命题的是( )A.①②B.①③C.③④D.②④解析:显然①是正确的,结论选项可以排除C,D,然后在剩余的②③中选一个来判断,即可得出结果,①③为真命题.故选B.答案: B二、填空题(每小题5分,共10分) 5.给出下列命题:①在△ABC 中,若∠A >∠B ,则sin A >sin B ; ②函数y =x 3在R 上既是奇函数又是增函数; ③函数y =f (x )的图象与直线x =a 至多有一个交点;④若将函数y =sin 2x 的图象向左平移π4个单位,则得到函数y =sin ⎝ ⎛⎭⎪⎫2x +π4的图象. 其中正确命题的序号是________.解析: ①∠A >∠B ⇒a >b ⇒sin A >sin B .②③易知正确. ④将函数y =sin 2x 的图象向左平移π4个单位,得到函数y =sin ⎝ ⎛⎭⎪⎫2x +π2的图象. 答案: ①②③6.命题“一元二次方程ax 2+bx +c =0(a ≠0)有两个不相等的实数根”,条件p :________,结论q :________,是________(填“真”或“假”)命题.答案: 一元二次方程ax 2+bx +c =0(a ≠0) 此方程有两个不相等的实数根 假 三、解答题(每小题10分,共20分) 7.指出下列命题的条件p 和结论q : (1)若x +y 是有理数,则x ,y 都是有理数;(2)如果一个函数的图象是一条直线,那么这个函数为一次函数. 解析: (1)条件p :x +y 是有理数,结论q :x ,y 都是有理数. (2)条件p :一个函数的图象是一条直线,结论q :这个函数为一次函数.8.已知命题p :lg(x 2-2x -2)≥0;命题q :0<x <4,若命题p 是真命题,命题q 是假命题,求实数x 的取值范围.解析: 命题p 是真命题,则x 2-2x -2≥1, ∴x ≥3或x ≤-1,命题q 是假命题,则x ≤0或x ≥4. ∴x ≥4或x ≤-1. 尖子生题库 ☆☆☆9.(10分)(1)已知下列命题是真命题,求a 、b 满足的条件. 方程ax 2+bx +1=0有解.(2)已知下列命题是假命题,若x 1<x 2<0,则a x 1>a x 2,求a 满足的条件. 解析: (1)∵ax 2+bx +1=0有解.∴当a =0时,bx +1=0有解,只有b ≠0时, 方程有解x =-1b.当a ≠0时,方程为一元二次方程,有解的条件为 Δ=b 2-4a ≥0.综上,当a =0,b ≠0或a ≠0,b 2-4a ≥0时,方程ax 2+bx +1=0有解. (2)∵命题当x 1<x 2<0时,a x 1>a x 2为假命题, ∴应有当x 1<x 2<0时,a x 1≤a x 2. 即a x 2-x 1x 1x 2≤0.∵x 1<x 2<0,∴x 2-x 1>0,x 1x 2>0, ∴a ≤0.第1章 1.2一、选择题(每小题5分,共20分) 1.“|x |=|y |”是“x =y ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析: |x |=|y |⇒x =y 或x =-y ,但x =y ⇒|x |=|y |. 故|x |=|y |是x =y 的必要不充分条件. 答案: B2.“x =2k π+π4(k ∈Z)”是“tan x =1”成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析: 当x =2k π+π4时,tan x =1,而tan x =1得x =k π+π4,所以“x =2k π+π4”是“tan x =1”成立的充分不必要条件.故选A.答案: A3.设x ,y ∈R ,则“x ≥2且y ≥2”是“x 2+y 2≥4”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件解析: ∵x ≥2且y ≥2, ∴x 2+y 2≥4,∴x ≥2且y ≥2是x 2+y 2≥4的充分条件;而x 2+y 2≥4不一定得出x ≥2且y ≥2,例如当x ≤-2且y ≤-2时,x 2+y 2≥4亦成立,故x ≥2且y ≥2不是x 2+y 2≥4的必要条件.答案: A4.设A 是B 的充分不必要条件,C 是B 的必要不充分条件,D 是C 的充要条件,则D 是A 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件解析: 由题意得:故D 是A 的必要不充分条件 答案: B二、填空题(每小题5分,共10分)5.下列命题中是假命题的是________.(填序号) (1)x >2且y >3是x +y >5的充要条件 (2)A ∩B ≠∅是A B 的充分条件(3)b 2-4ac <0是ax 2+bx +c <0的解集为R 的充要条件(4)三角形的三边满足勾股定理的充要条件是此三角形为直角三角形 解析: (1)因x >2且y >3⇒x +y >5,x +y >5⇒/ x >2且y >3,故x >2且y >3是x +y >5的充分不必要条件. (2)因A ∩B ≠∅⇒/ A B, A B ⇒A ∩B ≠∅. 故A ∩B ≠∅是A B 的必要不充分条件. (3)因b 2-4ac <0⇒/ ax 2+bx +c <0的解集为R ,ax 2+bx +c <0的解集为R ⇒a <0且b 2-4ac <0,故b 2-4ac <0是ax 2+bx +c <0的解集为R 的既不必要也不充分条件. (4)三角形的三边满足勾股定理的充要条件是此三角形为直角三角形. 答案: (1)(2)(3) 6.设集合A =⎩⎨⎧⎭⎬⎫x |xx -1<0,B ={x |0<x <3},那么“m ∈A ”是“m ∈B ”的________条件.解析: A =⎩⎨⎧⎭⎬⎫x |xx -1<0={x |0<x <1}.m ∈A ⇒m ∈B ,m ∈B ⇒/ m ∈A .∴“m ∈A ”是“m ∈B ”的充分不必要条件. 答案: 充分不必要三、解答题(每小题10分,共20分)7.已知p :12≤x ≤1,q :a ≤x ≤a +1,若p 的必要不充分条件是q ,求实数a 的取值范围.解析: q 是p 的必要不充分条件, 则p ⇒q 但q ⇒/p .∵p :12≤x ≤1,q :a ≤x ≤a +1.∴a +1≥1且a ≤12,即0≤a ≤12.∴满足条件的a 的取值范围为⎣⎢⎡⎦⎥⎤0,12.8.求证:0≤a <45是不等式ax 2-ax +1-a >0对一切实数x 都成立的充要条件.证明: 充分性:∵0<a <45,∴Δ=a 2-4a (1-a )=5a 2-4a =a (5a -4)<0, 则ax 2-ax +1-a >0对一切实数x 都成立. 而当a =0时,不等式ax 2-ax +1-a >0可变成1>0.显然当a =0时,不等式ax 2-ax +1-a >0对一切实数x 都成立. 必要性:∵ax 2-ax +1-a >0对一切实数x 都成立,∴a =0或⎩⎪⎨⎪⎧a >0,Δ=a 2-4a 1-a <0.解得0≤a <45.故0≤a <45是不等式ax 2-ax +1-a >0对一切实数x 都成立的充要条件.尖子生题库 ☆☆☆9.(10分)已知条件p :A ={x |2a ≤x ≤a 2+1},条件q :B ={x |x 2-3(a +1)x +2(3a +1)≤0}.若p 是q 的充分条件,求实数a 的取值范围.解析: 先化简B ,B ={x |(x -2)[x -(3a +1)]≤0}, ①当a ≥13时,B ={x |2≤x ≤3a +1};②当a <13时,B ={x |3a +1≤x ≤2}.因为p 是q 的充分条件, 所以A ⊆B ,从而有⎩⎪⎨⎪⎧a ≥13a 2+1≤3a +12a ≥2,解得1≤a ≤3. 或⎩⎪⎨⎪⎧a <13a 2+1≤22a ≥3a +1,解得a =-1.综上,所求a 的取值范围是{a |1≤a ≤3或a =-1}.第1章 1.3一、选择题(每小题5分,共20分)1.已知p :x 2-1≥-1,q :4+2=7,则下列判断中,错误的是( ) A .p 为真命题,p 且q 为假命题 B .p 为假命题,q 为假命题 C .q 为假命题,p 或q 为真命题 D .p 且q 为假命题,p 或q 为真命题解析: ∵p 为真命题,q 为假命题, ∴p 且q 为假命题,p 或q 是真命题.答案: B2.如果命题“綈p ∨綈q ”是假命题,则在下列各结论中,正确的为( ) ①命题“p ∧q ”是真命题; ②命题“p ∧q ”是假命题; ③命题“p ∨q ”是真命题; ④命题“p ∨q ”是假命题. A .①③ B .②④ C .②③D .①④解析: ∵綈p ∨綈q 是假命题 ∴綈(綈p ∨綈q )是真命题 即p ∧q 是真命题 答案: A3.“p ∨q 为假命题”是“綈p 为真命题”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 解析: 若p ∨q 为假命题,则p ,q 都为假命题,綈p 为真命题. 若綈p 为真命题,则p ∨q 可能为真命题,∴“p ∨q 为假命题”是“綈p 为真命题”的充分不必要条件. 答案: A4.已知命题p 1:函数y =2x-2-x在R 上为增函数,p 2:函数y =2x +2-x 在R 上为减函数,则在命题q 1:p 1∨p 2,q 2:p 1∧p 2,q 3:(綈p 1)∨p 2和q 4:p 1∧(綈p 2)中,真命题是( ) A .q 1,q 3 B .q 2,q 3 C .q 1,q 4D .q 2,q 4解析: ∵y =2x 在R 上为增函数,y =2-x=⎝ ⎛⎭⎪⎫12x 在R 上为减函数,∴y =-2-x=-⎝ ⎛⎭⎪⎫12x 在R 上为增函数,∴y =2x-2-x在R 上为增函数,故p 1是真命题.y =2x +2-x 在R 上为减函数是错误的,故p 2是假命题.∴q 1:p 1∨p 2是真命题,因此排除B 和D ,q 2:p 1∧p 2是假命题,q 3:綈p 1是假命题,(綈p 1)∨p 2是假命题,故q 3是假命题,排除A.故选C.答案: C二、填空题(每小题5分,共10分)5.“a ≥5且b ≥3”的否定是____________; “a ≥5或b ≤3”的否定是____________. 答案: a <5或b <3 a <5且b >3 6.在下列命题中:①不等式|x +2|≤0没有实数解;②-1是偶数或奇数;③2属于集合Q,也属于集合R;④A A∪B.其中,真命题为________.解析:①此命题为“非p”的形式,其中p:不等式|x+2|≤0有实数解,因为x=-2是该不等式的一个解,所以p是真命题,所以非p是假命题.②此命题是“p或q”的形式,其中p:-1是偶数,q:-1是奇数.因为p为假命题,q 为真假题,所以p或q是真命题,故是真命题.③此命题是“p且q”的形式,其中p:2属于集合Q,q:2属于集合R.因为p为假命题,q为真命题,所以p且q是假命题,故是假命题.④此命题是“非p”的形式,其中p:A⊆A∪B.因为p为真命题,所以“非p”为假命题,故是假命题.所以填②.答案:②三、解答题(每小题10分,共20分)7.分别写出由下列各组命题构成的p∧q,p∨q,綈p形式命题.(1)p:8∈{x|x2-8x≤0},q:8∈{2,8}.(2)p:函数f(x)=3x2-1是偶函数,q:函数f(x)=3x2-1的图象关于y轴对称.解析:(1)p∧q:8∈({x|x2-8x≤0}∩{2,8}).p∨q:8∈({x|x2-8x≤0}∪{2,8}).綈p:8∉{x|x2-8x≤0}.(2)p∧q:函数f(x)=3x2-1是偶函数并且它的图象关于y轴对称.p∨q:函数f(x)=3x2-1是偶函数或它的图象关于y轴对称.綈p:函数f(x)=3x2-1不是偶函数.8.写出下列命题的否定,然后判断其真假:(1)p:方程x2-x+1=0有实根;(2)p:函数y=tan x是周期函数;(3)p:∅⊆A;(4)p:不等式x2+3x+5<0的解集是∅.解析:∅ A尖子生题库 ☆☆☆9.(10分)设命题p :实数x 满足x 2-4ax +3a 2<0,其中a >0,命题q :实数x 满足⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0.(1)若a =1,且p ∧q 为真,求实数x 的取值范围; (2)綈p 是綈q 的充分不必要条件,求实数a 的取值范围.解析: (1)由x 2-4ax +3a 2<0得(x -3a )(x -a )<0. 又a >0,所以a <x <3a , 当a =1时,1<x <3,即p 为真命题时实数x 的取值范围是1<x <3.由⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0.解得⎩⎪⎨⎪⎧-2≤x ≤3,x <-4或x >2.即2<x ≤3.所以q 为真时实数x 的取值范围是2<x ≤3.若p ∧q 为真,则⎩⎪⎨⎪⎧1<x <3,2<x ≤3⇔2<x <3,所以实数x 的取值范围是(2,3).(2)綈p 是綈q 的充分不必要条件,即綈p ⇒綈q 且綈q ⇒/ 綈p .设A ={x |x ≤a 或x ≥3a },B ={x |x ≤2或x >3},则A B . 所以0<a ≤2且3a >3,即1<a ≤2. 所以实数a 的取值范围是(1,2].第1章1.4.1、2一、选择题(每小题5分,共20分) 1.下列命题中的假命题是( ) A .∃x ∈R ,lg x =0 B .∃x ∈R ,tan x =1 C .∀x ∈R ,x 2>0D .∀x ∈R,2x>0解析: A 中当x =1时,lg x =0,是真命题.B 中当x =π4+k π时,tan x =1,是真命题.C 中当x =0时,x 2=0不大于0,是假命题. D 中∀x ∈R,2x>0是真命题. 答案: C2.下列命题中,真命题是( )A .∃m ∈R ,使函数f (x )=x 2+mx (x ∈R )是偶函数 B .∃m ∈R ,使函数f (x )=x 2+mx (x ∈R )是奇函数 C .∀m ∈R ,使函数f (x )=x 2+mx (x ∈R )都是偶函数 D .∀m ∈R ,使函数f (x )=x 2+mx (x ∈R )都是奇函数 解析: ∵当m =0时,f (x )=x 2(x ∈R ). ∴f (x )是偶函数又∵当m =1时,f (x )=x 2+x (x ∈R ) ∴f (x )既不是奇函数也不是偶函数. ∴A 对,B 、C 、D 错.故选A. 答案: A 3.下列4个命题:p 1:∃x ∈(0,+∞),⎝ ⎛⎭⎪⎫12x <⎝ ⎛⎭⎪⎫13x ;p 2:∃x ∈(0,1),log 12x >log 13x ; p 3:∀x ∈(0,+∞),⎝ ⎛⎭⎪⎫12x >log 12x ; p 4:∀x ∈⎝⎛⎭⎪⎫0,13,⎝ ⎛⎭⎪⎫12x <log 13x .其中的真命题是( ) A .p 1,p 3 B .p 1,p 4 C .p 2,p 3D .p 2,p 4解析: 对于命题p 1,当x ∈(0,+∞)时,总有⎝ ⎛⎭⎪⎫12x >⎝ ⎛⎭⎪⎫13x成立.所以p 1是假命题,排除A 、B ;对于命题p 3,在平面直角坐标系中作出函数y =⎝ ⎛⎭⎪⎫12x与函数y =log 12x 的图象,可知在(0,+∞)上,函数y =⎝ ⎛⎭⎪⎫12x 的图象并不是始终在函数y =log 12x图象的上方,所以p 3是假命题,排除C.故选D.答案: D4.若命题p :∀x ∈R ,ax 2+4x +a ≥-2x 2+1是真命题,则实数a 的取值范围是( ) A .a ≤-3或a >2 B .a ≥2 C .a >-2D .-2<a <2解析: 依题意:ax 2+4x +a ≥-2x 2+1恒成立, 即(a +2)x 2+4x +a -1≥0恒成立,所以有:⎩⎪⎨⎪⎧a +2>0,16-4 a +2 a -1 ≤0⇔⎩⎪⎨⎪⎧a >-2,a 2+a -6≥0⇔a ≥2.答案: B二、填空题(每小题5分,共10分)5.命题“有些负数满足不等式(1+x )(1-9x )>0”用“∃”或“∀”可表述为________. 答案: ∃x 0<0,使(1+x 0)(1-9x 0)>06.已知命题p :∃x 0∈R ,tan x 0=3;命题q :∀x ∈R ,x 2-x +1>0,则命题“p 且q ”是________命题.(填“真”或“假”)解析: 当x 0=π3时,tan x 0=3,∴命题p 为真命题;x 2-x +1=⎝⎛⎭⎪⎫x -122+34>0恒成立,∴命题q 为真命题, ∴“p 且q ”为真命题. 答案: 真三、解答题(每小题10分,共20分)7.指出下列命题中哪些是全称命题,哪些是特称命题,并判断真假: (1)若a >0,且a ≠1,则对任意实数x ,a x>0. (2)对任意实数x 1,x 2,若x 1<x 2,则tan x 1<tan x 2. (3)∃T 0∈R ,使|sin(x +T 0)|=|sin x |. (4)∃x 0∈R ,使x 20+1<0.解析: (1)(2)是全称命题,(3)(4)是特称命题. (1)∵a x>0(a >0且a ≠1)恒成立,∴命题(1)是真命题. (2)存在x 1=0,x 2=π,x 1<x 2,但tan 0=tan π,∴命题(2)是假命题.(3)y =|sin x |是周期函数,π就是它的一个周期, ∴命题(3)是真命题. (4)对任意x 0∈R ,x 20+1>0.∴命题(4)是假命题.8.选择合适的量词(∀、∃),加在p(x)的前面,使其成为一个真命题:(1)x>2;(2)x2≥0;(3)x是偶数;(4)若x是无理数,则x2是无理数;(5)a2+b2=c2(这是含有三个变量的语句,则p(a,b,c)表示)解析:(1)∃x∈R,x>2.(2)∀x∈R,x2≥0;∃x∈R,x2≥0都是真命题.(3)∃x∈Z,x是偶数.(4)存在实数x,若x是无理数,则x2是无理数.(如42)(5)∃a,b,c∈R,有a2+b2=c2.尖子生题库 ☆☆☆9.(10分)若∀x∈R,函数f(x)=mx2+x-m-a的图象和x轴恒有公共点,求实数a的取值范围.解析:(1)当m=0时,f(x)=x-a与x轴恒相交,所以a∈R;(2)当m≠0时,二次函数f(x)=mx2+x-m-a的图象和x轴恒有公共点的充要条件是Δ=1+4m(m+a)≥0恒成立,即4m2+4am+1≥0恒成立.又4m2+4am+1≥0是一个关于m的二次不等式,恒成立的充要条件是Δ=(4a)2-16≤0,解得-1≤a≤1.综上所述,当m=0时,a∈R;当m≠0,a∈[-1,1].第1章1.4.3一、选择题(每小题5分,共20分)1.命题:对任意x∈R,x3-x2+1≤0的否定是( )A.不存在x0∈R,x30-x20+1≤0B.存在x0∈R,x30-x20+1≥0C.存在x0∈R,x30-x20+1>0 D.对任意x∈R,x3-x2+1>0解析:由全称命题的否定可知,命题的否定为“存在x0∈R,x30-x20+1>0”.故选C.答案: C2.命题p:∃m0∈R,使方程x2+m0x+1=0有实数根,则“綈p”形式的命题是( )A .∃m 0∈R ,使得方程x 2+m 0x +1=0无实根 B .对∀m ∈R ,方程x 2+mx +1=0无实根 C .对∀m ∈R ,方程x 2+mx +1=0有实根D .至多有一个实数m ,使得方程x 2+mx +1=0有实根解析: 由特称命题的否定可知,命题的否定为“对∀m ∈R ,方程x 2+mx +1=0无实根”.故选B.答案: B3.“∃x 0∉M ,p (x 0)”的否定是( ) A .∀x ∈M ,綈p (x ) B .∀x ∉M ,p (x ) C .∀x ∉M ,綈p (x ) D .∀x ∈M ,p (x )答案: C4.已知命题p :∃x ∈R ,使tan x =1,命题q :x 2-3x +2<0的解集是{x |1<x <2},下列结论:①命题“p ∧q ”是真命题;②命题“p ∧¬q ”是假命题;③命题“¬p ∨q ”是真命题;④命题“¬p ∨¬q ”是假命题,其中正确的是( )A .②③B .①②④C .①③④D .①②③④解析: 当x =π4时,tan x =1,∴命题p 为真命题.由x 2-3x +2<0得1<x <2,∴命题q 为真命题. ∴p ∧q 为真,p ∧¬q 为假,¬p ∨q 为真,¬p ∨¬q 为假. 答案: D二、填空题(每小题5分,共10分)5.命题p :∃x ∈R ,x 2+2x +5<0是________(填“全称命题”或“特称命题”),它是________命题(填“真”或“假”),它的否定命题綈p :________,它是________命题(填“真”或“假”).解析: ∵x 2+2x +5=(x +1)2+4≥0恒成立,所以命题p 是假命题. 答案: 特称命题 假 ∀x ∈R ,x 2+2x +5≥0 真6.(1)命题“对任何x ∈R ,|x -2|+|x -4|>3”的否定是________. (2)命题“存在x ∈R ,使得x 2+2x +5=0”的否定是________. 答案: (1)∃x 0∈R ,|x 0-2|+|x 0-4|≤3 (2)∀x ∈R ,x 2+2x +5≠0 三、解答题(每小题10分)7.写出下列命题的否定并判断其真假. (1)所有正方形都是矩形;(2)∀α,β∈R ,sin(α+β)≠sin α+sin β;(3)∃θ0∈R,函数y=sin(2x+θ0)为偶函数;(4)正数的对数都是正数.解析:(1)命题的否定:有的正方形不是矩形,假命题.(2)命题的否定:∃α,β∈R,sin(α+β)=sin α+sin β,真命题.(3)命题的否定:∀θ∈R,函数y=sin(2x+θ)不是偶函数,假命题.(4)命题的否定:存在一个正数,它的对数不是正数,真命题.8.已知函数f(x)=x2-2x+5.(1)是否存在实数m,使不等式m+f(x)>0对于任意x∈R恒成立,并说明理由.(2)若存在一个实数x0,使不等式m-f(x0)>0成立,求实数m的取值范围.解析:(1)不等式m+f(x)>0可化为m>-f(x),即m>-x2+2x-5=-(x-1)2-4.要使m>-(x-1)2-4对于任意x∈R恒成立,只需m>-4即可.故存在实数m,使不等式m+f(x)>0对于任意x∈R恒成立,此时只需m>-4.(2)若m-f(x0)>0,∴m>f(x0).∵f(x0)=x20-2x0+5=(x0-1)2+4≥4.∴m>4.尖子生题库 ☆☆☆9.(10分)写出下列各命题的否命题和命题的否定,并判断真假.(1)∀a,b∈R,若a=b,则a2=ab;(2)若a²c=b²c,则a=b;(3)若b2=ac,则a,b,c是等比数列.解析:(1)否命题:∀a,b∈R,若a≠b,则a2≠ab,假;命题的否定:∃a,b∈R,若a=b,则a2≠ab,假;(2)否命题:若a²c≠b²c,则a≠b.真;命题的否定:∃a,b,c,若a²c=b²c,则a≠b,真;(3)否命题:若b2≠ac,则a,b,c不是等比数列,真.命题的否定:∃a,b,c∈R,若b2=ac,则a,b,c不是等比数列,真.1章整合(考试时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.给出下列语句:①二次函数是偶函数吗?②2>2;③sin π2=1;④x 2-4x +4=0.其中是命题的有( )A .1个B .2个C .3个D .4个解析: 只有②和③是命题,语句①是疑问句,语句④含有变量x ,不能判断真假. 答案: B2.与命题:“若a ∈P ,则b ∉P ”等价的命题是( ) A .若a ∉P ,则b ∉P B .若b ∉P ,则a ∈P C .若a ∉P ,则b ∈P D .若b ∈P ,则a ∉P答案: D3.对命题p :1∈{1},命题q :1∉∅,下列说法正确的是( ) A .p 且q 为假命题 B .p 或q 为假命题 C .非p 为真命题D .非q 为假命题 解析: ∵p 、q 都是真命题,∴綈q 为假命题. 答案: D4.下列四个命题中真命题的个数为( )①若x =1,则x -1=0;②“若ab =0,则b =0”的逆否命题;③“等边三角形的三边相等”的逆命题;④“全等三角形的面积相等”的逆否命题.A .1B .2C .3D .4解析: ①是真命题;②逆否命题为“若b ≠0,则ab ≠0”,是假命题;③“等边三角形的三边相等”改为“若p ,则q ”的形式为“若一个三角形为等边三角形,则这个三角形的三边相等”,其逆命题为“若一个三角形的三边相等,则这个三角形为等边三角形”,是真命题;④“全等三角形的面积相等”改为“若p ,则q ”的形式为“若两个三角形为全等三角形,则这两个三角形的面积相等”,其逆否命题为“若两个三角形的面积不相等,则这两个三角形不是全等三角形”,是真命题.答案: C5.已知命题①若a >b ,则1a <1b,②若-2≤x ≤0,则(x +2)(x -3)≤0,则下列说法正确的是( )A .①的逆命题为真B .②的逆命题为真C .①的逆否命题为真D .②的逆否命题为真解析: 命题①是假命题,其逆命题为1a <1b,则a >b ,是假命题.故A 、C 错误.命题②是真命题,其逆命题为假命题,逆否命题为真命题.故选D.答案: D6.已知a >0,函数f (x )=ax 2+bx +c ,若x 0满足关于x 的方程2ax +b =0,则下列选项的命题中为假命题的是( )A .∃x ∈R ,f (x )≤f (x 0)B .∃x ∈R ,f (x )≥f (x 0)C .∀x ∈R ,f (x )≤f (x 0)D .∀x ∈R ,f (x )≥f (x 0)解析: 函数f (x )=ax 2+bx +c =a ⎝ ⎛⎭⎪⎫x +b 2a 2+4ac -b 24a (a >0),∵2ax 0+b =0,∴x 0=-b2a .当x =x 0时,函数f (x )取得最小值. ∴∀x ∈R ,f (x )≥f (x 0),故选C. 答案: C7.“x <-1”是“x 2-1>0”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件解析: x 2-1>0⇒x >1或x <-1,故x <-1⇒x 2-1>0,但x 2-1>0⇒/ x <-1, ∴“x <-1”是“x 2-1>0”的充分而不必要条件. 答案: A8.已知a ,b 是实数,则“a >0且b >0”是“a +b >0且ab >0”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件解析: 由a >0且b >0可得a +b >0,ab >0,由a +b >0有a ,b 至少一个为正,ab >0可得a 、b 同号, 两者同时成立,则必有a >0,b >0.故选C. 答案: C9.命题“对任意的x ∈R ,x 3-x 2+1≤0”的否定是( ) A .不存在x 0∈R ,x 30-x 20+1≤0 B .存在x 0∈R ,使x 30-x 20+1>0 C .存在x 0∈R ,使x 30-x 20+1≤0D .对任意的x ∈R ,x 3-x 2+1>0解析: 由于已知命题是全称命题,其否定应为特称命题,并且对原命题的结论进行否定,由此可知B 正确.答案: B10.对∀x ∈R ,kx 2-kx -1<0是真命题,则k 的取值范围是( ) A .-4≤k ≤0 B .-4≤k <0 C .-4<k ≤0D .-4<k <0解析: 依题意,有k =0或⎩⎪⎨⎪⎧k <0,k 2+4k <0.解得-4<k ≤0.答案: C二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上) 11.“若x 2=y 2,则x =-y ”的逆命题是________命题,否命题是________命题.(填“真”或“假”)解析: 若x 2=y 2,则x =-y 的逆命题为:若x =-y ,则x 2=y 2,是真命题;否命题为:若x 2≠y 2,则x ≠-y ,是真命题.答案: 真 真12.对于非零向量a ,b ,“a +b =0”是“a ∥b ”的________条件.解析: 由a +b =0得a =-b ,即a ∥b ,但a ∥b 不一定有a =-b ,所以“a +b =0”是“a ∥b ”的充分不必要条件.答案: 充分不必要 13.下列命题:①∀x ∈R ,不等式x 2+2x >4x -3成立; ②若log 2x +log x 2≥2,则x >1;③命题“若a >b >0且c <0,则c a >c b”的逆否命题;④若命题p :∀x ∈R ,x 2+1≥1.命题q :∃x 0∈R ,x 20-2x 0-1≤0,则命题p ∧綈q 是真命题.其中真命题有________.(填序号)解析: ①中不等式x 2+2x >4x -3⇔x 2-2x +3>0⇔x ∈R . ∴对∀x ∈R ,x 2+2x >4x -3成立.①是真命题.②中log 2x +log x 2≥2⇔ log 22x -2log 2x +1log 2x ≥0⇔log 2x >0或log 2x =1⇔x >1.∴②是真命题.③中⎭⎪⎬⎪⎫a >b >0⇒1a <1b c <0⇒c a >c b ,原命题为真命题,逆否命题为真命题,∴③是真命题. ④中p 为真命题,q 为真命题,命题p ∧綈q 是假命题.答案: ①②③14.令p (x ):ax 2+2x +1>0,若对∀x ∈R ,p (x )是真命题,则实数a 的取值范围是________. 解析: 对∀x ∈R ,p (x )是真命题,就是不等式ax 2+2x +1>0对一切x ∈R 恒成立. (1)若a =0,不等式化为2x +1>0,不能恒成立;(2)若⎩⎪⎨⎪⎧a >0,Δ=4-4a <0,解得a >1;(3)若a <0,不等式显然不能恒成立. 综上所述,实数a 的取值范围是a >1. 答案: a >1三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分)写出下列命题的“若p ,则q ”形式,并写出它的逆命题、否命题与逆否命题,并判断它们的真假.(1)全等三角形的对应边相等; (2)四条边相等的四边形是正方形.解析: (1)“若p ,则q ”的形式:若两个三角形全等,则这两个三角形的对应边相等;是真命题.逆命题:若两个三角形的对应边相等,则这两个三角形全等;是真命题. 否命题:若两个三角形不全等,则这两个三角形的对应边不全相等;是真命题. 逆否命题:若两个三角形的对应边不全相等,则这两个三角形不全等;是真命题. (2)“若p ,则q ”的形式:若一个四边形的四条边相等,则它是正方形;是假命题. 逆命题:若一个四边形是正方形,则它的四条边相等;是真命题. 否命题:若一个四边形的四条边不全相等,则它不是正方形;是真命题. 逆否命题:若一个四边形不是正方形,则它的四条边不全相等;是假命题.16.(本小题满分12分)写出由下列各组命题构成的“p 或q ”“p 且q ”以及“非p ”形式的命题,并判断它们的真假:(1)p :3是质数,q :3是偶数;(2)p :x =-2是方程x 2+x -2=0的解,q :x =1是方程x 2+x -2=0的解. 解析: (1)p 或q :3是质数或3是偶数;p 且q :3是质数且3是偶数;非p :3不是质数.因为p 真,q 假,所以“p 或q ”为真命题,“p 且q ”为假命题,“非p ”为假命题. (2)p 或q :x =-2是方程x 2+x -2=0的解或x =1是方程x 2+x -2=0的解;p 且q :x =-2是方程x 2+x -2=0的解且x =1是方程x 2+x -2=0的解;非p :x =-2不是方程x 2+x -2=0的解.因为p 真,q 真,所以“p 或q ”为真命题,“p 且q ”为真命题,“非p ”为假命题. 17.(本小题满分12分)是否存在实数p ,使4x +p <0是x 2-x -2>0的充分条件?如果存在,求出p 的取值范围;否则,说明理由.解析: 由x 2-x -2>0,解得x >2或x <-1, 令A ={x |x >2或x <-1},由4x +p <0,得B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-p4, 当B ⊆A 时,即-p4≤-1,即p ≥4,此时x <-p4≤-1⇒x 2-x -2>0,∴当p ≥4时,4x +p <0是x 2-x -2>0的充分条件.18.(本小题满分14分)已知命题p :函数y =x 2+2(a 2-a )x +a 4-2a 3在[-2,+∞)上单调递增.q :关于x 的不等式ax 2-ax +1>0解集为R .若p ∧q 假,p ∨q 真,求实数a 的取值范围.解析: ∵函数y =x 2+2(a 2-a )x +a 4-2a 3=[x +(a 2-a )]2-a 2,在[-2,+∞)上单调递增, ∴-(a 2-a )≤-2,即a 2-a -2≥0,解得a ≤-1或a ≥2. 即p :a ≤-1或a ≥2由不等式ax 2-ax +1>0的解集为R 得⎩⎪⎨⎪⎧a ≥0Δ<0,即⎩⎪⎨⎪⎧a ≥0-a 2-4a <0解得0≤a <4 ∴q :0≤a <4. ∵p ∧q 假,p ∨q 真. ∴p 与q 一真一假. ∴p 真q 假或p 假q 真, 即⎩⎪⎨⎪⎧a ≤-1或a ≥2a <0或a ≥4或⎩⎪⎨⎪⎧-1≤a <2,0≤a <4.∴a ≤-1或a ≥4或0≤a <2.所以实数a 的取值范围是(-∞,-1]∪[0,2)∪[4,+∞).第2章2.1.1一、选择题(每小题5分,共20分)1.曲线C 的方程为y =x (1≤x ≤5),则下列四点中在曲线C 上的是( ) A .(0,0) B.⎝ ⎛⎭⎪⎫15,15 C .(1,5)D .(4,4)解析: 代入每个点逐一验证,D 正确. 答案: D2.已知坐标满足方程f (x ,y )=0的点都在曲线C 上,那么( ) A .曲线C 上的点的坐标都适合方程f (x ,y )=0 B .凡坐标不适合f (x ,y )=0的点都不在C 上 C .不在C 上的点的坐标必不适合f (x ,y )=0D .不在C 上的点的坐标有些适合f (x ,y )=0,有些不适合f (x ,y )=0 答案: C3.方程(3x -4y -12)[log 2(x +2y )-3]=0的图象经过点A (0,-3),B (0,4),C (4,0),D ⎝ ⎛⎭⎪⎫53,-74中的( )A .0个B .1个C .2个D .3个解析: 由方程x +2y >0,可知A ,D 两点不符合题意;对于点B (0,4),x +2y =8=23,则有log 2(x +2y )-3=0;对于点C (4,0),3x -4y -12=0.故选C.答案: C4.方程y =|x |x2表示的曲线为图中的( )解析: y =|x |x2,x ≠0,为偶函数,图象关于y 轴对称,故排除A ,B.又因为当x >0时,y =1x>0;当x <0时,y =-1x>0,所以排除D.答案: C二、填空题(每小题5分,共10分)5.已知0≤α<2π,点P (cos α,sin α)在曲线(x -2)2+y 2=3上,则α的值为________. 解析: 由(cos α-2)2+sin 2α=3,得cos α=12.又因为0≤α<2π, 所以α=π3或α=53π.答案:π3或5π36.曲线y =-1-x 2与曲线y +|ax |=0(a ∈R)的交点有______个. 解析: 利用数形结合的思想方法,如图所示:答案: 2三、解答题(每小题10分,共20分) 7.判断下列命题是否正确.(1)过点P (0,3)的直线l 与x 轴平行,则直线l 的方程为|y |=3. (2)以坐标原点为圆心,半径为r 的圆的方程是y =r 2-x 2. (3)方程(x +y -1)²x 2+y 2-4=0表示的曲线是圆或直线.(4)点A (-4,3),B (-32,-4),C (5,25)都在方程x 2+y 2=25(x ≤0)所表示的曲线上.解析: (1)不对,过点P (0,3)的直线l 与x 轴平行,则直线l 的方程为y =3,而不是|y |=3.(2)不对.设(x 0,y 0)是方程y =r 2-x 2的解, 则y 0=r 2-x 20,即x 20+y 20=r 2. 两边开平方取算术根,得x 20+y 20=r .即点(x 0,y 0)到原点的距离等于r ,点(x 0,y 0)是这个圆上的点.因此满足以方程的解为坐标的点都是曲线上的点.但是,以原点为圆心、半径为r 的圆上的一点如点⎝ ⎛⎭⎪⎫r2,-32r 在圆上,却不是y =r 2-x 2的解,这就不满足曲线上的点的坐标都是方程的解.所以,以原点为圆心,半径为r 的圆的方程不是y =r 2-x 2,而应是y =±r 2-x 2. (3)不对.由(x +y -1)²x 2+y 2-4=0得⎩⎪⎨⎪⎧x +y -1=0或x 2+y 2-4=0x 2+y 2-4≥0所以表示的是圆和两条射线. (4)不对.把点A (-4,3)的坐标代入方程x 2+y 2=25,满足方程,且A 点的横坐标满足x ≤0, 则点A 在方程x 2+y 2=25(x ≤0)所表示的曲线上. 把点B (-32,-4)的坐标代入方程x 2+y 2=25, ∵(-32)2+(-4)2=34≠25,∴点B 不在方程所表示的曲线上.尽管C 点坐标满足方程,但 ∵横坐标5不满足小于或等于0的条件, ∴点C 不在曲线x 2+y 2=25(x ≤0)上.8.已知曲线C 的方程为x =9-y 2,说明曲线C 是什么样的曲线,并求该曲线与y 轴围成的图形的面积.解析: 由x =9-y 2,得x 2+y 2=9.又x ≥0,∴方程x =9-y 2表示的曲线是以原点为圆心,3为半径的右半圆,从而该曲线C 与y 轴围成的图形是半圆,其面积S =12π²9=92π.所以所求图形的面积为92π.尖子生题库 ☆☆☆9.(10分)已知方程(x +1)2+ny 2=1的曲线经过点A (-1,1),B (m ,-1).求m ,n 的值. 解析: ∵方程(x +1)2+ny 2=1的曲线经过点A (-1,1),B (m ,-1),∴⎩⎪⎨⎪⎧-1+1 2+n =1, m +1 2+n =1,解得⎩⎪⎨⎪⎧n =1,m =-1.∴m =-1,n =1为所求.第2章2.1.2一、选择题(每小题5分,共20分)1.与点A (-1,0)和点B (1,0)连线的斜率之和为-1的动点P 的轨迹方程是( ) A .x 2+y 2=3 B .x 2+2xy =1(x ≠±1) C .y =1-x 2D .x 2+y 2=9(x ≠0)解析: 设P (x ,y ),∵k PA +k PB =-1, ∴y -0x - -1 +y -0x -1=-1,整理得x 2+2xy =1(x ≠±1).答案: B2.已知两点M (-2,0)、N (2,0),点P 为坐标平面内的动点,满足|M N →|²|M P →|+M N →²N P →=0,则动点P (x ,y )的轨迹方程为( )A .y 2=-8x B .y 2=8x C .y 2=4xD .y 2=-4x解析: 由|M N →|²|M P →|+M N →²N P →,得4³[x - -2 ]2+ y -0 2+(4,0)²(x -2,y -0)=0, ∴y 2=-8x . 答案: A3.已知两定点A (-2,0),B (1,0),如果动点P 满足|PA |=2|PB |,则点P 的轨迹所包围的图形的面积等于( )A .πB .4πC .8πD .9π解析: 设P (x ,y ),由|PA |=2|PB |得 x +2 2+y 2=2 x -1 2+y 2, 整理得x 2-4x +y 2=0 即(x -2)2+y 2=4.所以点P 的轨迹是以(2,0)为圆心,以2为半径的圆, 故S =4π. 答案: B4.已知A (-1,0),B (1,0),且MA →²M B →=0,则动点M 的轨迹方程是( ) A .x 2+y 2=1 B .x 2+y 2=2C .x 2+y 2=1(x ≠±1)D .x 2+y 2=2(x ≠±2)解析: 设动点M (x ,y ),则MA →=(-1-x ,-y ),M B →=(1-x ,-y ).由MA →²M B →=0,得(-1-x )(1-x )+(-y )2=0, 即x 2+y 2=1.故选A. 答案: A二、填空题(每小题5分,共10分)5.已知点A (0,-1),当点B 在曲线y =2x 2+1上运动时,线段AB 的中点M 的轨迹方程是________.解析: 设点B (x 0,y 0),则y 0=2x 20+1.①设线段AB 中点为M (x ,y ),则x =x 02,y =y 0-12,即x 0=2x ,y 0=2y +1,代入①式,得 2y +1=2²(2x )2+1.即y =4x 2为线段AB 中点的轨迹方程. 答案: y =4x 26.已知动圆P 与定圆C :(x +2)2+y 2=1相外切,又与定直线l :x =1相切,那么动圆的圆心P 的轨迹方程是________.解析: 设P (x ,y ),动圆P 在直线x =1的左侧, 其半径等于1-x ,则|PC |=1-x +1, 即 x +2 2+y 2=2-x , 整理得y 2=-8x . 答案: y 2=-8x三、解答题(每小题10分,共20分)7.设过点P (x ,y )的直线分别与x 轴的正半轴和y 轴的正半轴交于A ,B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点,若B P →=2P A →,且O Q →²A B →=1.求P 点的轨迹方程.解析: 由B P →=2P A →,P (x ,y )可得B (0,3y ),A ⎝ ⎛⎭⎪⎫32x ,0,∴A B →=⎝ ⎛⎭⎪⎫-32x ,3y .∵Q 与P 关于y 轴对称, ∴Q (-x ,y ),且OQ →=(-x ,y ).由O Q →²A B →=1得32x 2+3y 2=1(x >0,y >0).8.过点P 1(1,5)作一条直线交x 轴于点A ,过点P 2(2,7)作直线P 1A 的垂线,交y 轴于点B ,点M 在线段AB 上,且BM ∶MA =1∶2,求动点M 的轨迹方程.解析: 如图所示,设过P 2的直线方程为y -7=k (x -2)(k ≠0),则过P 1的直线方程为y -5=-1k(x -1),所以A (5k +1,0),B (0,-2k +7).① 设M (x ,y ),则由BM ∶MA =1∶2, 得⎩⎪⎨⎪⎧x =5k +13,y =-4k +143,②消去k ,整理得12x +15y -74=0. 故点M 的轨迹方程为12x +15y -74=0.③尖子生题库 ☆☆☆9.(10分)已知圆C :x 2+(y -3)2=9,过原点作圆C 的弦OP ,求OP 中点Q 的轨迹方程.(分别用直接法、定义法、代入法求解)解析: 方法一(直接法):如图,因为Q 是OP 的中点, 所以∠OQC =90°.设Q (x ,y ),由题意,得|OQ |2+|QC |2=|OC |2, 即x 2+y 2+[x 2+(y -3)2]=9,所以x 2+⎝ ⎛⎭⎪⎫y -322=94(去掉原点).方法二(定义法):如图所示,因为Q 是OP 的中点,所以∠OQC =90°,则Q 在以OC 为直径的圆上,故Q 点的轨迹方程为x 2+⎝ ⎛⎭⎪⎫y -322=94(去掉原点).方法三(代入法):设P (x 1,y 1),Q (x ,y ),由题意,得⎩⎪⎨⎪⎧x =x 12y =y12,即⎩⎪⎨⎪⎧x 1=2x y 1=2y,又因为x 21+(y 1-3)2=9,所以4x 2+4⎝ ⎛⎭⎪⎫y -322=9,即x 2+⎝ ⎛⎭⎪⎫y -322=94(去掉原点).第2章2.2.1一、选择题(每小题5分,共20分)1.若方程x 225-m +y 2m +9=1表示焦点在y 轴上的椭圆,则实数m 的取值范围是( )A .-9<m <25B .8<m <25C .16<m <25D .m >8解析: 依题意有⎩⎪⎨⎪⎧25-m >0m +9>0m +9>25-m,解得8<m <25,即实数m 的取值范围是8<m <25,故选B. 答案:B2.已知椭圆的焦点为(-1,0)和(1,0),点P (2,0)在椭圆上,则椭圆的方程为( ) A.x 24+y 23=1 B.x 24+y 2=1 C.y 24+x 23=1 D.y 24+x 2=1 解析: c =1,a =2,∴b 2=a 2-c 2=3. ∴椭圆的方程为x 24+y 23=1.答案: A3.已知(0,-4)是椭圆3kx 2+ky 2=1的一个焦点,则实数k 的值是( ) A .6 B.16 C .24D.124解析: ∵3kx 2+ky 2=1, ∴x 213k +y 21k=1. 又∵(0,-4)是椭圆的一个焦点,∴a 2=1k ,b 2=13k ,c 2=a 2-b 2=1k -13k =23k =16,∴k =124.答案: D4.椭圆x 225+y 29=1的焦点为F 1,F 2,P 为椭圆上的一点,已知PF 1→²PF 2→=0,则△F 1PF 2的面积为( )A .12B .10C .9D .8解析: ∵PF 1→²PF 2→=0,∴PF 1⊥PF 2. ∴|PF 1|2+|PF 2|2=|F 1F 2|2且|PF 1|+|PF 2|=2a . 又a =5,b =3,∴c =4,∴⎩⎪⎨⎪⎧|PF 1|2+|PF 2|2=64 ①|PF 1|+|PF 2|=10 ②②2-①,得2|PF 1|²|PF 2|=102-64, ∴|PF 1|²|PF 2|=18, ∴△F 1PF 2的面积为9. 答案: C二、填空题(每小题5分,共10分)5.椭圆x 29+y 22=1的焦点为F 1,F 2,点P 在椭圆上,若|PF 1|=4,则|PF 2|=________;∠F 1PF 2的大小为________.解析: 由椭圆标准方程得a =3,b =2, 则c =a 2-b 2=7,|F 1F 2|=2c =27. 由椭圆的定义得|PF 2|=2a -|PF 1|=2. 在△F 1PF 2中,由余弦定理得 cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|²|PF 2|=42+22- 27 22³4³2=-12,所以∠F 1PF 2=120°. 答案: 2 120°6.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →²FP→的最大值为________.解析: 椭圆的左焦点F 为(-1,0),设P (x ,y ), 则x 24+y 23=1, OP →²FP →=(x ,y )²(x +1,y )=x (x +1)+y 2 =14x 2+x +3 =14(x +2)2+2 ∵-2≤x ≤2,∴当x =2时,OP →²FP →有最大值6. 答案: 6三、解答题(每小题10分,共20分) 7.求适合下列条件的椭圆的标准方程: (1)焦点在x 轴上,且经过点(2,0)和点(0,1);(2)焦点在y 轴上,与y 轴的一个交点为P (0,-10),P 到它较近的一个焦点的距离等于2.解析: (1)因为椭圆的焦点在x 轴上,所以可设它的标准方程为x 2a +y 2b=1(a >b >0),。
人教版高中数学选修2-1第一章单元测试(一)- Word版含答案

2018-2019学年选修2-1第一章训练卷常用逻辑用语(一)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知命题:"若0x ≥,0y ≥,则0xy ≥",则原命题、逆命题、否命题、逆否命题这四个命题中,真命题的个数是( ) A .1B .2C .3D .42.命题“若A B ⊆,则A B =”与其逆命题、否命题、逆否命题这四个命题中, 真命题的个数是( ) A .0B .2C .3D .43.给定空间中的直线l 及平面α,条件“直线l 与平面α内两条相交直线都垂直”是“直线l 与平面α垂直”的( ) A .充分非必要条件 B .必要非充分条件C .充要条件D .既非充分又非必要条件4.已知p :若a A ∈,则b B ∈,那么命题p ⌝是( ) A .若a A ∈,则b B ∉ B .若a A ∉,则b B ∉ C .若b B ∉,则a A ∉D .若b B ∈,则a A ∈5.命题“p 且q ”与命题“p 或q ”都是假命题,则下列判断正确的是( )A .命题“非p ”与“非q ”真假不同B .命题“非p ”与“非q ”至多有一个是假命题C .命题“非p ”与“q ”真假相同D .命题“非p 且非q ”是真命题6.已知a ,b 为任意非零向量,有下列命题:①|a |=|b |;②()()22=a b ;③()2⋅=a a b ,其中可以作为=a b 的必要非充分条件的命题是( ) A .①B .①②C .②③D .①②③7.已知A 和B 两个命题,如果A 是B 的充分不必要条件,那么“A ⌝”是“B ⌝”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件8.若向量()(),3x x =∈R a ,则“4x =”是“5=a ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件9.下列全称命题中,正确的是( ) A .{},x y ∀∈锐角,sin sin s )n (i x y x y +>+ B .{},x y ∀∈锐角,sin cos c )s (o x y x y +>+ C .{},x y ∀∈锐角,cos sin c )s (o x y x y +<+ D .{},x y ∀∈锐角,cos cos s )n (i x y x y -<+10.以下判断正确的是( )A .命题“负数的平方是正数”不是全称命题B .命题“x ∀∈Z ,32x x >”的否定是“x ∃∈Z ,32x x >”C .“=2ϕπ”是“函数()sin y x ϕ=+为偶函数”的充要条件D .“0b =”是“关于x 的二次函数()2f x ax bx c ++=是偶函数”的充要条件此卷只装订不密封班级 姓名 准考证号 考场号 座位号11.已知命题p :函数()log 05()3f x x =-.的定义域为(-∞,3);命题q :若k <0,则函数()kh x x=在(0,)+∞上是减函数,对以上两个命题,下列结论中正确的是( )A .命题“p 且q ”为真B .命题“p 或q ⌝”为假C .命题“p 或q ”为假D .命题“p ⌝”且“q ⌝”为假12.已知向量),(x y =a ,co ()s ,sin αα=b ,其中x y α∈R ,,,若4=a b , 则2λ⋅<a b 成立的一个必要不充分条件是( ) A .λ>3或λ<-3 B .λ>1或λ<-1 C .-3<λ<3D .-1<λ<1二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.“对顶角相等”的否定为________,否命题为________.14.令()221:0p x ax x ++>,如果对x ∀∈R ,()p x 是真命题,则a 的取值范围是________.15.试写出一个能成为2()(0)21a a -->的必要不充分条件________. 16.给定下列结论:①已知命题p :∃x ∈R ,t a n x =1;命题q :∀x ∈R ,210x x -+>.则命题“p q ⌝∧”是假命题;②已知直线1l :ax +3y -1=0,2l :x +b y +1=0,则12l l ⊥的充要条件是3ab =-;③若()1sin 2αβ+=,()1sin 3αβ-=,则t a nα=5t a nβ;④圆224210x y x y ++-+=与直线12y x =,所得弦长为2. 其中正确命题的序号为________(把你认为正确的命题序号都填上).三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)已知命题p :∀非零向量a 、b 、c ,若()0⋅-=a b c ,则=b c .写出其否定和否命题,并说明真假.18.(12分)给定两个命题P :对任意实数x 都有210ax ax ++>恒成立;Q :关于x 的方程20x x a -+=有实数根.如果P ∧Q 为假命题,P ∨Q 为真命题,求实数a 的取值范围.19.(12分)求证:一元二次方程()22100ax x a ++=≠有一个正根和一个负根的充分不必要条件是a <-1.20.(12分)已知p :2290x x a -+<,q :22430680x x x x ⎧-+<⎪⎨-+<⎪⎩,且p ⌝是q ⌝的充分条件,求实数a 的取值范围.21.(12分)给出命题p:“在平面直角坐标系xOy中,已知点P(2cos x+1,2cos2x +2)和Q(cos x,-1),∀x∈[0,π],向量OP与OQ不垂直.”试判断该命题的真假并证明.22.(12分)已知ab≠0,求证:a+b=1的充要条件是33220a b ab a b++--=.2018-2019学年选修2-1第一章训练卷常用逻辑用语(一)答 案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.【答案】B【解析】由题得原命题“若0x ≥,0y ≥,则0xy ≥”是真命题,所以其逆否命题也是真命题.逆命题为:“若0xy ≥,则0x ≥,0y ≥”,是假命题,所以否命题也是假命题, 所以四个命题中,真命题的个数为2.故答案为B . 2.【答案】B【解析】可设{}1,2A =,{}1,2,3B =,满足A B ⊆,但A B ≠,故原命题为假命题,从而逆否命题为假命题.易知否命题、逆命题为真. 3.【答案】C【解析】直线l 与平面α内两相交直线垂直⇔直线l 与平面α垂直,故选C . 4.【答案】A【解析】命题“若p ,则q ”的否定形式是“若p ,则q ⌝”.故选A . 5.【答案】D【解析】p 且q 是假命题⇒p 和q 中至少有一个为假,则非p 和非q 至少有一个是真命题.p 或q 是假命题⇒p 和q 都是假命题,则非p 和非q 都是真命题.故选D . 6.【答案】D【解析】由向量的运算即可判断. 7.【答案】B【解析】由于“A ⇒B ,A /⇐B ”等价于“A B ⌝⌝⇐,A ⌝/⇒B ⌝”,故“A ⌝”是“B ⌝”的必要不充分条件.故选B . 8.【答案】A【解析】由“4x =”,得)3(4,=a ,故5=a ;反之,由5=a ,得4x =±.所以“4x =”是“5=a ”的充分而不必要条件.故选A . 9.【答案】D【解析】由于cos cos c (os sin sin )x y x y x y -+=,而当{},x y ∈锐角时,0cos 1y <<,0sin 1x <<,所以cos cos cos sin sin cos s (in )x y x y x y x y -<+=+,故选项D 正确. 10.【答案】D【解析】A 为全称命题;B 中否定应为0x ∃∈Z ,3200x x ≤;C 中应为充分不必要条件.D 选项正确. 11.【答案】D【解析】由题意知p 真,q 假.再进行判断. 12.【答案】B【解析】由已知1=b ,∴44==a b,4.又∵()()cos sin 4sin 4x y αααϕαϕ⋅=++=+≤a b ,由于2λ⋅<a b 成立,则24λ>,解得λ>2或λ<-2,这是2λ⋅<a b 成立的充要条件,因此2λ⋅<a b 成立的一个必要不充分的条件是λ>1或λ<-1.故选B .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.【答案】对顶角不相等 若两个角不是对顶角,则它们不相等【解析】“对顶角相等”的否定为“对顶角不相等”,否命题为“若两个角不是对顶角,则它们不相等”. 14.【答案】1a >【解析】由已知x ∀∈R ,2210ax x ++>恒成立.显然0a =不合题意, 所以0440a a ∆>⎧⎨=-<⎩⇒1a >.15.【答案】1a > (不惟一)【解析】2()(0)21a a -->的解集记为B ={1|a a >且a ≠2},所找的记为集合{}1A a a =>,则B ⇒A ,B /⇐A .16.【答案】①③【解析】对于①易知p 真,q 真,故命题p q ⌝∧假,①正确; 对于②1l 与2l 垂直的充要条件应为a +3b =0; 对于③利用两角和与差的正弦公式展开整理即得;,④错.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.【答案】见解析.【解析】p ⌝:∃非零向量a 、b 、c ,若()0⋅-=a b c ,使≠b c .p ⌝为真命题. 否命题:∀非零向量a 、b 、c ,若()0⋅-≠a b c ,则≠b c .否命题为真命题. 18.【答案】()1,0,44⎛⎫-∞ ⎪⎝⎭. 【解析】命题P :对任意实数x 都有210ax ax ++>恒成立,则“a =0”,或“a >0且240a a -<”.解得0≤a <4.命题Q :关于x 的方程20x x a -+=有实数根,则140a ∆=-≥,得14a ≤. 因为P ∧Q 为假命题,P ∨Q 为真命题,则P ,Q 有且仅有一个为真命题, 故P Q ⌝∧为真命题,或P Q ⌝∧为真命题,则0414a a a <≥⎧⎪⎨≤⎪⎩或或0414a a ≤<⎧⎪⎨>⎪⎩, 解得a <0或144a <<.所以实数a 的取值范围是()1,0,44⎛⎫-∞ ⎪⎝⎭.19.【答案】见解析.【解析】一元二次方程()22100ax x a ++=≠有一个正根和一个负根的充要条件是:4401a a ∆=->⇔<,并且10a<,从而a <0.有一个正根和一个负根的充分不必要条件应该是{a |a <0}的真子集,a <-1符合题意.所以结论得证. 20.【答案】a ≤9.【解析】由22430680x x x x ⎧-+<⎪⎨-+<⎪⎩,得1324x x <<⎧⎨<<⎩,即2<x <3.∴q :2<x <3.设{}290|2A x x x a =-+<,B ={x |2<x <3},∵p q ⌝⌝⇒,∴q ⇒p .∴B ⊆A .∴2<x <3包含于集合A ,即2<x <3满足不等式2290x x a -+<.∴2<x <3满足不等式292a x x <-.∵当2<x <3时,222981819818192229,21616488x x x x x ⎛⎫⎛⎫⎛⎤-=--+-=--+∈ ⎪ ⎪ ⎥⎝⎭⎝⎭⎝⎦,即2819928x x <-≤,∴a ≤9. 21.【答案】见解析.【解析】命题p 是假命题,证明如下:由OP 和OQ 不垂直, 得cos x (2cos x +1)-(2cos2x +2)≠0,变形得:22cos cos 0x x -≠, 所以cos x ≠0或1cos 2x ≠. 而当[]0,x ∈π时,cos2π=0,1cos 32π=, 故存在2x π=或3x π=,使向量OP OQ ⊥成立,因而p 是假命题. 22.【答案】见解析.【解析】必要性:∵a +b =1,∴b =1-a ,∴()()()32332232111a b ab a b a a a a a a ++--=+--+--- 323222133120a a a a a a a a a =+-+-+---+-=.充分性:∵33220a b ab a b ++--=,即()()()22220a b a ab b a ab b --+-+=+, ∴()()2210a ab b a b -+-=+,又ab≠0,即a≠0且b≠0,∴2222324b ba ab b a⎛⎫-+=-+≠⎪⎝⎭,只有1a b+=.综上可知,当ab≠0时,a+b=1的充要条件是33220a b ab a b++--=.。
(必考题)高中数学选修二第一单元《数列》测试题(含答案解析)(1)
一、选择题1.对大于1的自然数m 的三次幂可用奇数进行以下形式的“分裂”:仿此,若3m 的“分裂数”中有一个是2017,则m 的值为( )3331373152,39,4,5171119⎧⎧⎪⎧⎪⎪⎨⎨⎨⎩⎪⎪⎩⎪⎩A .44B .45C .46D .472.已知等比数列{}n a 的n 项和2n n S a =-,则22212n a a a +++=( )A .()221n -B .()1213n- C .41n -D .()1413n- 3.已知数列{}n a 满足111n n n n a a a a ++-=+,且113a =,则{}n a 的前2021项之积为( ) A .23B .13C .2-D .3-4.数列{}n a 的通项公式为12n n a +=,其前n 项和为n T ,若不等式()2log 4(1)73n n T n n λ+-++对任意*n N ∈恒成立,则实数λ的取值范围为( )A .3λB .4λC .23λ D .34λ5.定义:在数列{}n a 中,若满足211n n n na a d a a +++-=(n N +∈,d 为常数),称{}n a 为“等差比数列”。
已知在“等差比数列”{}n a 中,1231,3a a a ===则20152013a a =( ) A .2420151⨯- B .2420141⨯- C .2420131⨯-D .242013⨯6.数列{}n a 是等差数列,51260a a =>,数列{}n b 满足123n n n n b a a a +++=,*n N ∈,设n S 为{}n b 的前n 项和,则当n S 取得最大值时,n 的值等于( )A .9B .10C .11D .127.数列{}n a 是等比数列,若21a =,518a =,则12231n n a a a a a a ++++的取值范围是( ) A .8,3⎛⎫-∞ ⎪⎝⎭B .2,23⎛⎤ ⎥⎝⎦C .81,3⎡⎫⎪⎢⎣⎭D .82,3⎡⎫⎪⎢⎣⎭8.数列{a n }中,已知对任意n ∈N *,a 1+a 2+a 3+…+a n =3n ﹣1,则a 12+a 22+a 32+…+a n 2等于( )A .n 2(31)-B .()n1912- C .n 91- D .()n1314- 9.已知正项数列{a n }的前n 项和为S n ,a 1>1,且6S n =a n 2+3a n +2.若对于任意实数a ∈[﹣2,2].不等式()2*1211+<+-∈+n a t at n N n 恒成立,则实数t 的取值范围为( ) A .(﹣∞,﹣2]∪[2,+∞) B .(﹣∞,﹣2]∪[1,+∞) C .(﹣∞,﹣1]∪[2,+∞) D .[﹣2,2]10.函数()2cos 2f x x x =-{}n a ,则3a =( ) A .1312πB .54π C .1712πD .76π 11.已知数列{}n a 是等比数列,11a >,且前n 项和n S 满足11lim n n S a →∞=,那么1a 的取值范围是( ) A.(B .()1,4C .()1,2D .()1,+∞12.已知数列{}n a 满足:11a =,()*12nn n a a n N a +=∈+.若()*+11()1n n b n n N a λ⎛⎫=-+∈ ⎪⎝⎭,1b λ=-,且数列{}n b 是单调递增数列,则实数λ的取值范围为( ) A .2λ>B .3λ>C .2λ<D .3λ<二、填空题13.数列{}n a 的前n 项和是11,1,0,31n n n n n S a a S a a +=≠=+,若2020k a =,则k =______.14.将正整数12分解成两个正整数的乘积有112⨯,26⨯,34⨯,三种,其中34⨯是这三种分解中两数差的绝对值最小的,我们称34⨯为12的最佳分解,当(),,p q p q p N q N **⨯≤∈∈是正整数n 的最佳分解时,我们定义函数()f n q p =-,例如(12)431f =-=,则数列(){}3nf 的前2020项和为______.15.已知{}{},n n a b 均为等差数列,其前n 项和分别为,n n S T ,且233n n S n T n -=+,则55a b =________.16.如图所示,正方形ABCD 的边长为5cm ,取正方形ABCD 各边的中点,,,E F G H ,作第2个正方形EFGH ,然后再取正方形EFGH 各边的中点,,,I J K L ,作第3个正方形IJKL ,依此方法一直继续下去.如果这个作图过程可以一直继续下去,那么所有这些正方形的面积之和将趋近于___2cm ?17.设n S 是数列{}n a 的前n 项和,若点(),n n S a 在直线21y x =+上,则5a =__________. 18.设公差不为零的等差数列{}n a 的前n 项和为n S ,12a =.若存在常数λ,使得2n n a a λ=()*N n ∈恒成立,则910nn S ⎛⎫ ⎪⎝⎭取最大值时,n =________. 19.下表给出一个“直角三角形数阵”:满足每一列成等差数列,从第三行起,每一行的数成等比数列,且每一行的公比相等,记第i 行第j 列的数为(,)i j a (i ,j ∈N *),则(20,20)a =_____. 20.若数列{}n a 满足11a =,且()*1111n nn a a N +∈-=,则 ①数列{}na e是等比数列;②满足不等式:1112n n a a +++≥ ③若函数()f x 在R 上单调递减,则数列(){}n f a 是单调递减数列; ④存在数列{}n a 中的连续三项,能组成三角形的三条边; ⑤满足等式:122311n n n a a a a a a n +++⋅⋅⋅+=+. 正确的序号是________三、解答题21.直线:2l x =与x 轴交于点M ,过动点P 作直线l 的垂线交l 于点N ,若OM 、OP 、PN 成等比数列,其中O 为坐标原点.(1)求动点P 的轨迹方程. (2)求OP PN -的最大值.22.数列{}n a 满足()1121nn n a a n ++-=-,n *∈N 且1a a =(a 为常数).(1)(i )当n 为偶数时,求4n n a a +-的值; (ii )求{}n a 的通顶公式;(2)设n S 是数列{}n a 的前n 项和,求证:48411114n S S S ++⋅⋅⋅+< 23.设等差数列{}n a 的前n 项和为n S ,34a =,43a S =.数列{}n b 满足:对每个*n N ∈,n n S b +,1n n S b ++,2n n S b ++成等比数列.(1)求数列{}n a ,{}n b 的通项公式; (2)记n c =*n N ∈,证明:12n c c c +++<.24.已知数列{}n a 是等差数列,数列{}n b 是等比数列,且满足112a b ==,35730a a a ++=,2316b b a =.(1)求数列{}n a 与和{}n b 的通项公式;(2)设数列{}n a ,{}n b 的前n 项和分别为n S ,n T .①是否存在正整数k ,使得132k k k T T b +=++成立?若存在,求出k 的值,若不存在,请说明理由;②解关于n 的不等式n n S b ≥.25.已知数列{a n }的前n 项和S n =3n +1-t ,求证:数列{a n }是等比数列的充要条件为t =3. 26.已知n S 是数列{}n a 的前n 项和,131n n S S +=+,11a =. (1)证明:数列{}n a 是等比数列,并求n a 的通项公式; (2)若()11n n n b na -=-⋅,求数列{}n b 的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由题意,从32到3m ,正好用去从3开始的连续奇数,共123(2)(1)2m m m +++=+-个,再由2017是从3开始的第1008个奇数,可得选项. 【详解】由题意,从32到3m ,正好用去从3开始的连续奇数,共123(2)(1)2m m m +++=+-个,212017n += ,得1008n =, 所以2017是从3开始的第1008个奇数,当45m =时,从32到345,用去从3开始的连续奇数共474410342⨯=个, 当44m =时,从32到344,用去从3开始的连续奇数共46439892⨯=个, 所以45m =, 故选:B . 【点睛】方法点睛:对于新定义的数列问题,关键在于找出相应的规律,再运用等差数列和等比数列的通项公式和求和公式,得以解决.2.D解析:D 【分析】由n a 与n S 的关系可求得12n n a ,进而可判断出数列{}2n a 也为等比数列,确定该数列的首项和公比,利用等比数列的求和公式可求得所化简所求代数式.【详解】已知等比数列{}n a 的n 项和2n n S a =-. 当1n =时,112a S a ==-;当2n ≥时,()()111222nn n n n n a S S a a ---=-=---=.由于数列{}n a 为等比数列,则12a a =-满足12n na ,所以,022a -=,解得1a =,()12n n a n N -*∴=∈,则()221124n n na --==,2121444n n n n a a +-∴==,且211a =, 所以,数列{}2n a 为等比数列,且首项为1,公比为4, 因此,222121441143n n na a a --+++==-. 故选:D. 【点睛】方法点睛:求数列通项公式常用的七种方法:(1)公式法:根据等差数列或等比数列的通项公式()11n a a n d +-=或11n n a a q -=进行求解;(2)前n 项和法:根据11,1,2n nn S n a S S n -=⎧=⎨-≥⎩进行求解;(3)n S 与n a 的关系式法:由n S 与n a 的关系式,类比出1n S -与1n a -的关系式,然后两式作差,最后检验出1a 是否满足用上面的方法求出的通项;(4)累加法:当数列{}n a 中有()1n n a a f n --=,即第n 项与第1n -项的差是个有规律的数列,就可以利用这种方法; (5)累乘法:当数列{}n a 中有()1nn a f n a -=,即第n 项与第1n -项的商是个有规律的数列,就可以利用这种方法;(6)构造法:①一次函数法:在数列{}n a 中,1n n a ka b -=+(k 、b 均为常数,且1k ≠,0k ≠).一般化方法:设()1n n a m k a m -+=+,得到()1b k m =-,1bm k =-,可得出数列1n b a k ⎧⎫+⎨⎬-⎩⎭是以k 的等比数列,可求出n a ;②取倒数法:这种方法适用于()112,n n n ka a n n N ma p*--=≥∈+(k 、m 、p 为常数,0m ≠),两边取倒数后,得到一个新的特殊(等差或等比)数列或类似于1n n a ka b-=+的式子;⑦1nn n a ba c +=+(b 、c 为常数且不为零,n *∈N )型的数列求通项n a ,方法是在等式的两边同时除以1n c +,得到一个1n n a ka b +=+型的数列,再利用⑥中的方法求解即可.3.B解析:B 【分析】由111n n n n a a a a ++-=+,且113a =,可得:111n n n a a a ++=-,可得其周期性,进而得出结论. 【详解】因为111n n n n a a a a ++-=+,且113a =, 所以111nn na a a ++=-, 21132113a +∴==-,33a =-,412a =-,513a =,⋯⋯,4n n a a +∴=.123411···2(3)()132a a a a ∴=⨯⨯--⋅⨯=.则{}n a 的前2021项之积50511133=⨯=.故选:B 【点睛】方法点睛:已知递推关系式求通项:(1)用代数的变形技巧整理变形,然后采用累加法、累乘法、迭代法、构造法或转化为基本数列(等差数列或等比数列)等方法求得通项公式.(2)通过具体的前几项找到其规律,如周期性等求解.4.A解析:A 【分析】将不等式()2log 4(1)73n n T n n λ+-++对任意*n N ∈恒成立,转化为271n n n λ-++对任意*n N ∈恒成立,由2min71n n n λ⎛⎫-+ ⎪+⎝⎭求解.【详解】 依题意得,()24122412n n nT +-==--,∴不等式()2log 4(1)73n n T n n λ+-++可化为22log 2(1)73n n n n λ+-++,即27(1)n n n λ-++.又*n N ∈,∴271n n n λ-++对任意*n N ∈恒成立.只需满足2min71n n n λ⎛⎫-+ ⎪+⎝⎭即可.设1n t +=,则*t N ∈,2t ,∴27931n n t n tλ-+=+-+.∵993233t t t t+-⋅-=,当且仅当3t =,即2n =时等号成立, ∴2min731n n n ⎛⎫-+= ⎪+⎝⎭.∴3λ,故选:A. 【点睛】方法点睛:恒(能)成立问题的解法:若()f x 在区间D 上有最值,则()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<;若能分离常数,即将问题转化为:()a f x >(或()a f x <),则()()max a f x a f x >⇔>;()()min a f x a f x <⇔<. 5.C解析:C 【分析】 利用定义,可得1n n a a +⎧⎫⎨⎬⎩⎭是以1为首项,2为公差的等差数列,从而121n na n a +=-,利用201520152014201320142013a a a a a a =⋅,可得结论. 【详解】121a a ==,33a =,32212a a a a ∴-=, 1n n a a +⎧⎫∴⎨⎬⎩⎭是以1为首项,2为公差的等差数列, 121n na n a +∴=-, ()()20152015201420132014201322014122013140274025a a a a a a ∴=⋅=⨯-⨯-=⨯ 22(40261)(40261)40261420131=+-=-=⨯-.故选:C. 【点睛】数列的递推关系是给出数列的一种方法,根据给出的初始值和递推关系可以依次写出这个数列的各项,由递推关系求数列的通项公式,常用的方法有:①求出数列的前几项,再归纳猜想出数列的一个通项公式;②将已知递推关系式整理、变形,变成等差、等比数列,或用累加法、累乘法、迭代法求通项.6.D解析:D 【分析】由51260a a =>,得到首项和公差的关系以及公差的范围,然后求得通项公式,判断,n n a b 的正负,再利用通项与前n 项和关系求解.【详解】设数列{}n a 的公差为d , 因为51260a a =>,所以()1104116a a d d +=>+,即1625a d =-, 因为512a a >, 所以0d <,所以167(1)5n a n d n d a ⎛⎫=+-=-⎪⎝⎭, 当113n ≤≤时,0n a >,当14n ≥时,0n a <, 所以12101314...0...b b b b b >>>>>>>, 又因为()111213141215131405db b a a a a a a +=+=>, 所以1210S S >,故n S 中12S 最大 , 故选:D 【点睛】本题主要考查等差数列的通项公式以及数列前n 项和的最值问题,还考查逻辑推理的能力,属于中档题.7.D解析:D 【分析】由题意计算出{}n a 的公比q ,由等比数列的性质可得{}1n n a a +也为等比数列,由等比数列前n 项和计算即可得结果. 【详解】因为数列{}n a 是等比数列,21a =,518a =,所以35218a q a ==,即12q =,所以12a =,由等比数列的性质知{}1n n a a +是以2为首项,以14为公比的等比数列. 所以12122311214881813343142n n n n a a a a a a a a +⎛⎫⎛⎫- ⎪⎪ ⎪⎝⎭⎛⎫⎝⎭≤==-< ⎪⎝⎭=+++-, 故选:D. 【点睛】本题主要考查了等比数列的性质以及等比数列前n 项和的计算,属于中档题.8.B解析:B 【分析】由a 1+a 2+a 3+…+a n =3n ﹣1,可求得a n ,从而可知2n a ,利用等比数列的求和公式即可求得答案. 【详解】∵a 1+a 2+a 3+…+a n =3n ﹣1,①,∴a 1+a 2+a 3+…+a n +1=3n +1﹣1,② ②﹣①得:a n +1=3n +1﹣3n =2×3n ,∴a n =2×3n ﹣1()2n ≥. 当n =1时,a 1=31﹣1=2,符合上式,∴a n =2×3n ﹣1. ∴221211249,4,9n n nna a a a -+=⨯∴==,∴{}2n a 是以4为首项,9为公比的等比数列, ∴a 12+a 22+a 32+…+a n 2=()()419191921n n⨯-=--. 故选B . 【点睛】本题考查数列通项公式的确定及等比数列的判断与求和公式的综合应用,属于中档题.9.A解析:A 【分析】根据a n 与S n 的关系,由6S n =a n 2+3a n +2,得6S n ﹣1=a n ﹣12+3a n ﹣1+2,两式相减整理得a n ﹣a n﹣1=3,由等差数列的定义求得a n 的通项公式,然后将不等式()2*1211+<+-∈+n a t at n N n 恒成立,转化为2t 2+at ﹣4≥0,对于任意的a ∈[﹣2,2],n ∈N *恒成立求解. 【详解】由6S n =a n 2+3a n +2,当n =1时,6a 1=a 12+3a 1+2.解得a 1=2, 当n ≥2时,6S n ﹣1=a n ﹣12+3a n ﹣1+2,两式相减得6a n =a n 2+3a n ﹣(a n ﹣12+3a n ﹣1), 整理得(a n +a n ﹣1)(a n ﹣a n ﹣1﹣3)=0,由a n >0,所以a n +a n ﹣1>0,所以a n ﹣a n ﹣1=3, 所以数列{a n }是以2为首项,3为公差的等差数列, 所以a n +1=2+3(n +1﹣1)=3n +2,所以11n a n ++=321++n n =3﹣11n +<3,因此原不等式转化为2t 2+at ﹣1≥3,对于任意的a ∈[﹣2,2],n ∈N *恒成立, 即为:2t 2+at ﹣4≥0,对于任意的a ∈[﹣2,2],n ∈N *恒成立, 设f (a )=2t 2+at ﹣4,a ∈[﹣2,2], 则f (2)≥0且f (﹣2)≥0,即有222020t t t t ⎧+-⎨--⎩,解得t ≥2或t ≤﹣2,则实数t 的取值范围是(﹣∞,﹣2]∪[2,+∞) 故选:A . 【点睛】本题主要考查数列与不等式的,a n 与S n 的关系,等差数列的定义,方程的根的分布问题,还考查了转化化归思想和运算求解的能力,属于中档题.10.B解析:B 【分析】先将函数化简为()2sin 26f x x π⎛⎫=-⎪⎝⎭4x k ππ=+或512x k ππ=+,k Z ∈,再求3a 即可. 【详解】 解:∵()2cos 22sin 26f x x x x π⎛⎫=-=-- ⎪⎝⎭∴ 令()0f x =得:2263x k πππ-=+或22263x k πππ-=+,k Z ∈, ∴4x k ππ=+或512x k ππ=+,k Z ∈, ∴ 正数零点从小到大构成数列为:12355,,,4124a a a πππ===故选:B. 【点睛】本题考查三角函数的性质,数列的概念,考查数学运算求解能力,是中档题.11.A解析:A 【分析】设等比数列{}n a 的公比为q ,可知10q -<<或01q <<,计算出111lim 1n n a S q a →∞==-,可得出q 关于1a 的表达式,结合q 的范围,可解出1a 的取值范围. 【详解】设等比数列{}n a 的公比为q ,由于11lim n n S a →∞=,则10q -<<或01q <<,()111n n a q S q-=-,则()11111lim lim11n n n n a q a S qq a →∞→∞-===--,得211q a =-. ①若10q -<<,则21110a -<-<,即2112a <<,11a >,解得1a <<; ②当01q <<,则21011a <-<,得2101a <<,11a >,则2101a <<不成立.综上所述,1a的取值范围是(. 故选A. 【点睛】本题考查利用极限求等比数列首项的取值范围,解题的关键就是得出公比与首项的关系,结合公比的取值范围得出关于首项的不等式,考查运算求解能力,属于中等题.12.C解析:C 【分析】 数列{a n }满足()*12nn n a a n N a +=∈+,两边取倒数可得1121n na a +=+,从而得到11=2n n a +,于是b n +1=(n ﹣λ)(11a +1)=(n ﹣λ)•2n ,由于数列{b n }是单调递增数列,可得b n +1>b n ,解出即可. 【详解】∵数列{a n }满足:a 1=1,()*12nn n a a n N a +=∈+, ∴1121n n a a +=+,化为111121n n a a +⎛⎫+=+ ⎪⎝⎭, ∴数列11n a ⎧⎫+⎨⎬⎩⎭是首项为11a +1=2,公比为2的等比数列,∴11=2n na +, ∴b n +1=(n ﹣λ)(11a +1)=(n ﹣λ)•2n ,∵数列{b n }是单调递增数列,∴b n +1>b n ,∴n ≥2时,(n ﹣λ)•2n >(n ﹣1﹣λ)•2n ﹣1,化为λ<n +1, ∵数列{n +1}为单调递增数列,∴λ<3.当n =1时,b 2=(1﹣λ)×2>﹣λ=b 1,解得λ<2. 综上可得:实数λ的取值范围为λ<2. 故选:C . 【点睛】本题考查由数列的递推关系式求数列的通项公式、考查由数列的单调性求解参数问题,考查等比数列的通项公式,考查推理能力与计算能力,属于中档题.二、填空题13.1347【分析】当时则两式相减得到得到代入数据计算得到答案【详解】解:当时当时由则两式相减得到因为故数列的奇数项为以为首项3为公差的等差数列;偶数项为以为首项3为公差的等差数列;所以当为奇数时成立;解析:1347 【分析】当2n ≥时131n n n S a a +=+则1131n n n S a a --=+,两式相减得到113n n a a +--=,得到31,2231,2n n n a n n ⎧-⎪⎪=⎨⎪-⎪⎩为奇数为偶数,代入数据计算得到答案.【详解】解:当1n =时,2112312S a a a =+∴=当2n ≥时,由131n n n S a a +=+则1131n n n S a a --=+,两式相减得到()113n n n n a a a a +-=- 因为0n a ≠113n n a a +-∴-=,故数列的奇数项为以1为首项,3为公差的等差数列;偶数项为以2为首项,3为公差的等差数列;所以31,2231,2n n n a n n ⎧-⎪⎪=⎨⎪-⎪⎩为奇数为偶数 当k 为奇数时,202013473122k a k k ==-=∴,成立; 当k 为偶数时,404220203312k a k k ∴==-=,不成立; 故答案为:1347 【点睛】本题考查了数列的通项公式,灵活运用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩是解题的关键.14.【分析】先通过归纳得再利用等比数列求和得解【详解】由题意得归纳得则故答案为:【点睛】关键点睛:解答本题的关键在通过特殊值归纳出归纳出这个结论之后后面利用等比数列求和就迎刃而解了 解析:101031-【分析】 先通过归纳得()()2111233323,3330k kk k k k k f f ---=-=⨯=-=,再利用等比数列求和得解.【详解】由题意得()()232(3)312,3330,333236f f f =-==-==-=⨯=,()4223330f =-=,归纳得()()2111233323,3330k kk k kkkf f ---=-=⨯=-=,则()()()()()()232020352019(3)333(3)333f f f f f f f f ++++=++++012100923232323=⨯+⨯+⨯++⨯()10101210091010132333323113-=⨯++++=⨯=--.故答案为:101031- 【点睛】关键点睛:解答本题的关键在通过特殊值归纳出()()2111233323,3330k k k k k k k f f ---=-=⨯=-=,归纳出这个结论之后,后面利用等比数列求和就迎刃而解了.15.【分析】根据等差数列的前n 项和公式有结合已知条件令即可得进而求【详解】∵均为等差数列令公差分别为则有∴令则有∴故答案为:【点睛】思路点睛:利用等差数列的前n 项和公式结合等差数列通项公式的特点合理假设解析:54【分析】根据等差数列的前n 项和公式有11(1)2n n n S na d -=+,12(1)2n n n T nb d -=+,结合已知条件,令122,1d d ==即可得11,a b ,进而求55a b .【详解】∵{}{},n n a b 均为等差数列,令公差分别为12,d d ,则有11(1)2n n n S na d -=+,12(1)2n n n T nb d -=+, ∴11121222323n n S nd a d n T nd b d n +--==+-+,令122,1d d ==,则有111,22a b =-=, ∴5115124544a a db b d +==+, 故答案为:54【点睛】思路点睛:利用等差数列的前n 项和公式,结合等差数列通项公式的特点合理假设即可得到数列的基本量11(1)2n n n S na d -=+,12(1)2n n n T nb d -=+,则有11121222n n S nd a d T nd b d +-=+-.结合已知233n n S n T n -=+,假设122,1d d ==,即可求11,a b . 16.50【分析】根据题意正方形边长成等比数列正方形的面积等于边长的平方可得代入求出的通项公式然后根据等比数列的前n 项和的公式得到的和即可求解【详解】记第1个正方形的面积为第2个正方形的面积为第n 个正方形解析:50 【分析】根据题意,正方形边长成等比数列,正方形的面积等于边长的平方可得2n n S a =,代入求出n S 的通项公式,然后根据等比数列的前n 项和的公式得到123n s S S S +++⋯+的和即可求解. 【详解】记第1个正方形的面积为1S ,第2个正方形的面积为2S ,⋯,第n 个正方形的面积为n S ,设第n 个正方形的边长为n a ,则第nn , 所以第n +1个正方形的边长为12n n a a +=,12n n a a +∴=, 即数列{n a }是首项为15a =,公比为2的等比数列,15n n a -∴=⋅, 数列{n S }是首项为125S =,公比为12的等比数列, 123125(1)1250(1)1212nn nS S S S -+++⋯+==⋅-∴-,所以如果这个作图过程可以一直继续下去,那么所有这些正方形的面积之和将趋近于50, 故答案为:5017.【分析】由得两式相减得时然后利用等比数列的定义求解【详解】由题意知当时两式相减得即当时所以数列是首项为公比为的等比数列则故答案为:-1【点睛】本题主要考查数列的递推关系还考查了运算求解能力属于中档题解析:1-【分析】由21n n a S =+,得1121n n a S --=+,两式相减得1n n a a -=-,1n =时,11a =-,然后利用等比数列的定义求解. 【详解】由题意知21n n a S =+, 当2n ≥时,1121n n a S --=+, 两式相减,得12n n n a a a --=, 即1n n a a -=-, 当1n =时,11a =-,所以数列{}n a 是首项为1-,公比为1-的等比数列, 则()()45111a =-⨯-=-. 故答案为:-1 【点睛】本题主要考查数列的递推关系,还考查了运算求解能力,属于中档题.18.或19【分析】利用等差数列的通项公式求出再利用等差数列的前项和公式求出记利用作商法判断出数列的单调性即可求解【详解】设等差数列的公差为由题意当时当时所以解得或(舍去)所以记所以当时此时当时时此时所以解析:18或19 【分析】利用等差数列的通项公式求出λ、d ,再利用等差数列的前n 项和公式求出n S ,记910nn n T S ⎛⎫= ⎪⎝⎭,利用作商法判断出数列的单调性即可求解.【详解】设等差数列{}n a 的公差为d ,由题意, 当1n =时,21a a λ=, 当2n =时,42a a λ=,所以()22232d d d λλ+=⎧⎨+=+⎩,解得22d λ=⎧⎨=⎩ 或10d λ=⎧⎨=⎩(舍去),所以()2112n n n dS na n n -=+=+, 记()2991010nnn n n T S n =⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭+,所以()()()12129119210110910n n nnn n T T n n n ++⎛⎫⎡⎤+++ ⎪⎣⎦⎛⎫⎝⎭==+ ⎪⎝⎭⎛⎫+ ⎪⎝⎭, 当118n ≤≤,n *∈N 时,1921110n n T T n +⎛⎫=+≥ ⎪⎝⎭,此时1n n T T +≥, 当10n >时,n *∈N 时,1921110n n T T n +⎛⎫=+< ⎪⎝⎭,此时1n n T T +<, 所以910nn S ⎛⎫ ⎪⎝⎭取最大值时,18n =或19 故答案为:18或19 【点睛】本题考查了差数列的通项公式、等差数列的前n 项和公式、数列的单调性求数列中的最大项,属于中档题.19.【分析】先计算第一列形成的数列再计算第20行形成的数列得到答案【详解】设第一列形成的数列为则是首项为公差为的等差数列故设第20行形成的数列为是首项为公比为的等比数列故即故答案为:【点睛】本题考查了等 解析:1952 【分析】先计算第一列形成的数列205b =,再计算第20行形成的数列201952c =,得到答案. 【详解】设第一列形成的数列为n b ,则{}n b 是首项为14,公差为14的等差数列,故4n n b =,205b =.设第20行形成的数列为n c ,{}n c 是首项为5,公比为12的等比数列,故201952c =. 即(20,20)201952a c ==. 故答案为:1952. 【点睛】本题考查了等差数列和等比数列的综合应用,意在考查学生对于数列公式方法的灵活运用.20.②④⑤【分析】利用所给递推公式求出的通项公式由证明数列不是等比数列根据的单调性求出范围证明②正确根据复合函数的增减性判断规则说明③错误举出例子证明④正确利用裂项相消法求和证明⑤正确【详解】且数列是以解析:②④⑤ 【分析】利用所给递推公式求出{}n a 的通项公式,由3212b b b b ≠证明数列{}n a e 不是等比数列,根据1111(1)1n n a n a n +++=+++的单调性求出范围证明②正确,根据复合函数的增减性判断规则说明③错误,举出例子证明④正确,利用裂项相消法求和证明⑤正确. 【详解】()*1111n n a a n N +-=∈且111a ,∴数列1{}n a 是以1为首项,1为公差的等差数列,则()*1nn n N a =∈, ()*1n a n N n∴=∈. ①设1n n na b e e ==,则1132123,,b e b e b e ===,因为11326212,b b e e b b --==,所以3212b b b b ≠,因此数列{}na e 不是等比数列;②1111(1)1n n a n a n +++=+++,因为1(1)1y n n =+++在[1,)+∞上单调递增,所以115(1)2122n n ++≥+=+,②正确; ③因为若数列{}n a 是单调递减的数列,所以若函数()f x 在R 上单调递减,则数列(){}nf a 是单调递增数列;④234111,,234a a a ===即可构成三角形的三边,所以④正确; ⑤因为1111(1)1n n n n a n a n +==-++,所以1223111112111231n n n a a a a a a n n n +++⋅⋅⋅+=--=++-+++,⑤正确. 故答案为:②④⑤ 【点睛】本题考查由递推公式求数列的通项公式,用定义证明等比数列,复合函数的单调性,裂项相消法求和,属于中档题.三、解答题21.(1)22(1)5x y ++=;(2)4-. 【分析】(1)本题首先可设(,)P x y ,然后根据OM 、OP 、PN 成等比数列得出2222x y x +=⋅-,最后分为2x >、2x <两种情况进行讨论,即可得出结果;(2)本题首先可根据动点P的轨迹方程得出1x ⎡⎤∈⎣⎦,然后将OP PN -转2x +,最后令()2f x x =+,根据导函数性质即可求出最值.【详解】(1)设(,)P x y ,则(2,)N y ,(2,0)M , 因为OM 、OP 、PN 成等比数列,所以2OP P O N M =⋅,即2222x y x +=⋅-,2x ≠, 当2x >时,2224x y x +=-,即22(1)3x y -+=-(舍去);当2x <时,2242x y x +=-,即22(1)5x y ++=,故动点P 的轨迹方程为22(1)5x y ++=.(2)因为动点P 的轨迹方程为22(1)5x y ++=,所以1x ⎡⎤∈⎣⎦,则(2)2OP PN x x -=-=+,令()2f x x =+,则()1f x '=因为当1x ⎡⎤∈⎣⎦时()0f x '>,所以)max ()121134f x f===+=,故OP PN -的最大值为4. 【点睛】关键点点睛:本题考查动点的轨迹方程的求法以及利用导函数求最值,考查等比中项的性质的应用,利用导函数求最值时,可先通过导函数求出函数单调性,然后根据函数单调性求出最值,考查计算能力,体现了综合性,是中档题.22.(1)(i )8;(ii )()()()(),4323,422,4121,4n a n k n a n k a a n k n a n k ⎧=-⎪+-=-⎪=⎨-=-⎪⎪--=⎩;(2)证明见解析. 【分析】(1)(i )推导出当n 为正偶数时,24n n a a n ++=,可得出+4248n n a a n ++=+,两式作差可得出结论成立;(ii )推导出当n 为正奇数时,4n n a a +=,求出2a 、3a 、4a ,对任意的k *∈N ,分43n k =-,42n k =-,41n k =-,4n k =四种情况讨论,结合等差数列的通项公式以及周期数列的定义可求得数列{}n a 的通项公式;(2)计算出4342414n n n n a a a a ---+++,可求得2482n S n n =+,利用放缩法得出4111142121n S n n ⎛⎫<- ⎪-+⎝⎭,结合裂项相消法可证得所证不等式成立. 【详解】(1)(i )当n 为正偶数时,121n n a a n ++=-,2121n n a a n ++-=+, 两式相加得24n n a a n ++=,① 可得+4248n n a a n ++=+,② ②-①得48n n a a +-=;(ii )当n 为正奇数时,121n n a a n +-=-,2121n n a a n +++=+, 两式作差得22n n a a ++=,所以,422n n a a +++=, 上述两个等式作差得4n n a a +=, 又211a a -=,则2111a a a =+=+,323a a +=,则3232a a a =-=-, 435a a -=,则4357a a a =+=-.对任意的k *∈N ,当43n k =-,则1n a a a ==; 当42n k =-时,()()()422811818722723n k a a a k a k a k a n a n -==+-=++-=+-=++-=+-;当41n k =-时,32n a a a ==-;当4n k =时,()()44817818121n k a a a k a k k a n a ==+-=-+-=--=--.综上所述,()()()(),4323,422,4121,4n a n k n a n k a a n k n a n k ⎧=-⎪+-=-⎪=⎨-=-⎪⎪--=⎩; (2)()434241424232241166n n n n a a a a a n a a n a n ---+++=+-+-+-+⨯--=-,()2410166822n n n S n n +-∴==+,()()2241111114212124241n S n n n n n ⎛⎫∴=<=- ⎪-++-⎝⎭, 所以,48411111111111111433521214214n S S S n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫++⋅⋅⋅+<-+-++-=-< ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦. 【点睛】方法点睛:证明数列不等式常用放缩法,常用的放缩公式如下: (1)()()21111211n n n n n n<=-≥--; (2)()()()211111211211n n n n n n ⎛⎫<=-≥ ⎪-+-+⎝⎭; (3)()()2221144112141212121214n n n n n n n ⎛⎫<===- ⎪--+-+⎝⎭-; (4()22n =<=≥. 23.(1)22n a n =-,(1)n b n n =+;(2)证明见解析.【分析】(1)根据等差数列的通项公式求出公差d 可得n a ,根据等差数列的求和公式可得n S ,根据n n S b +,1n n S b ++,2n n S b ++成等比数列可得(1)n b n n =+;(2)将n c 放大后再裂项,利用裂项求和方法求解可证不等式成立.【详解】(1)设等差数列{}n a 的公差为d ,由题意得31413124333a a d a a d S a d =+=⎧⎨=+==+⎩,解得102a d =⎧⎨=⎩, 从而22n a n =-,2(1)(1)2n n n S n n -==-. 因为n n S b +,1n n S b ++,2n n S b ++成等比数列所以()()()212n n n n n n S b S b S b +++=++,从而()211222n n n n n n n n S S b S S b S S +++++=++, 所以2221221(1)(1)(1)(2)2(1)(1)2(1)(1)(2)2(1)2n n n nn n n S S Sn n n n n n n n b n nS S S n n nn n n ++++-+--+++====++--+++-+. (2)证明:因为n c ===<=, 所以122(10211)2n c c c n n n +++<-+-++--=【点睛】关键点点睛:将n c 放大后再裂项,利用裂项求和方法求解是解题关键.24.(1)2n a n =,2n n b =;(2)①存在,5k =;②{}1,2,3,4.【分析】(1)由等差数列以及等比数列的性质以及通项公式得出答案;(2)①11k k k b T T ++-=结合数列{}n b 的通项公式得出k 的值;②由()1n S n n =+将不等式化为()210n n n -+≤,令()()21nf n n n =-+并得出其单调性,再由单调性确定解集. 【详解】(1)因为等差数列{}n a 中,3575330a a a a ++==,所以510a =. 设等差数列{}n a 的公差是d ,所以51251a a d -==- 所以()112n a a n d n =+-=.设等比数列{}n b 的公比是q ,因为2316b b a =所以2331432b q q ==,所以2q ,所以112n n n b b q -==. (2)①若存在正整数k ,使得132k k k T T b +=++成立,则132k k b b +=+ 所以12232k k +=+,即232k =,解得5k =.存在正整数5k =满足条件.②()()112n n n a a S n n +==+ 所以()12n n n +≥,即()210n n n -+≤令()()21nf n n n =-+, 因为()()()()()()11121221221n n n f n f n n n n n n +-⎡⎤+-=-++-++=-+⎣⎦ 所以当4n ≥时,(){}f n 单调递增.又()()210f f -<,()()320f f -<,()()430f f -=所以()()()()()1234f f f f f n >>=<<<因为()10f =,()44f =-,()52f =,所以1n =,2,3,4时,()0f n ≤,5n ≥时,()0f n >,所以不等式n n S b ≥,的解集为{}1,2,3,4.【点睛】解决本题的关键是构造新函数,通过作出确定函数的单调性,从而求得()0f n ≤的解集. 25.证明见解析.【分析】由定义法分别结合n a 和n S 的关系分别证明充分性和必要性成立即可.【详解】当n =1时,S 1=32-t =9-t ,当n ≥2时,由S n =3n +1-t 得S n -1=3n -t ,两式相减得a n =3n +1-3n =2·3n (n ≥2), (1)充分性已知t =3,此时S 1=32-t =9-3=6,令n =1,得a 1=2·31=6=S 1,所以a n =2·3n (n ∈N *) 所以13n na a +=,所以数列{a n }是等比数列. (2)必要性因为数列{a n }是等比数列,所以a 1=2·31=6, 又因为S 1=9-t ,所以9-t =6,所以t =3,综上所述:数列{a n }是等比数列的充要条件为t =3.【点睛】关键点睛:本题考查等比数列的判断和证明,解题的关键是利用n a 和n S 的关系得出()232n n a n =⋅≥,再根据充分必要的定义证明.26.(1)证明见解析,13-=n n a ;(2)()11316164n n n T ⎛⎫=-+⋅- ⎪⎝⎭. 【分析】(1)首先根据131n n S S +=+,131n n S S -=+两式相减得()132n n a a n +=≥,即可得到n a 的通项公式.(2)首先求出()13n n b n -=⋅-,再利用错位相减法求前n 项和n T 即可. 【详解】(1)证明:由131n n S S +=+,当2n ≥时,131n n S S -=+,两式相减得()132n n a a n +=≥,当1n =时,2131S S =+即12131a a a +=+,∴23a =,∴213a a =,∴1n ≥时都有13n n a a +=,∴数列{}n a 是首项为1,公比为3的等比数列,∴13-=n n a .(2)解:()()1113n n n n b na n --=-⋅=⋅-, ∴()()()()()122112333133n n n T n n --=+⋅-+⋅-+⋅⋅⋅+-⋅-+⋅-, ()()()()()12131323133n n n T n n --=⋅-+⋅-+⋅⋅⋅+-⋅-+⋅-, ∴()()()()111413333n n n T n -=+-+-+⋅⋅⋅+--⋅-,∴()()()131********nn n n T n n --⎛⎫=-⋅-=-+⋅- ⎪+⎝⎭∴()11316164n n n T ⎛⎫=-+⋅- ⎪⎝⎭. 【点睛】方法点睛:本题主要考查数列的求和,常见的数列求和方法如下:公式法:直接利用等差、等比数列的求和公式计算即可;分组求和法:把需要求和的数列分成熟悉的数列,再求和即可;裂项求和法:通过把数列的通项公式拆成两项之差,再求和即可;错位相减法:当数列的通项公式由一个等差数列和一个等比数列的乘积构成时,可使用此方法求和.。
(必考题)高中数学选修二第一单元《数列》检测(答案解析)
一、选择题1.设数列{}n a 满足11a =,()*112n n n a a n +-=∈N ,则数列{}n a 的通项公式为( ). A .()*2212n n a n ⎛⎫=-∈ ⎪⎝⎭N B .()*2112n n a n ⎛⎫=-∈ ⎪⎝⎭N C .()*1112n n a n -=-∈ND .()*122n n a n =-∈N 2.已知数列{}n a 为等差数列,首项为2,公差为3,数列{}n b 为等比数列,首项为2,公比为2,设n n b c a =,n T 为数列{}n c 的前n 项和,则当2020n T <时,n 的最大值是( ) A .8B .9C .10D .113.在函数()y f x =的图像上有点列{},n n x y ,若数列{}n x 是等比数列,数列{}n y 是等差数列,则函数()y f x =的解析式可能是( ) A .3(4)f x x =+B .2()4f x x =C .3()4xf x ⎛⎫= ⎪⎝⎭D .4()log f x x =4.数列{}:1,1,2,3,5,8,13,21,34,...,n F 成为斐波那契数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”,该数列从第三项开始,每项等于其前两相邻两项之和,记该数{}n F 的前n 项和为n S ,则下列结论正确的是( ) A .201920212S F =+ B .201920211S F =- C .201920202S F =+D .201920201S F =-5.数列{}n a 满足1n n a a n +=+,且11a =,则8a =( ). A .29B .28C .27D .266.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件11a >,667711,01a a a a -><-,则下列结论正确的是( ) A .681a a >B .01q <<C .n S 的最大值为7SD .n T 的最大值为7T7.设n S 为等比数列{}n a 的前n 项和,若110,,22n n a a S >=<,则等比数列{}n a 的公比的取值范围是( )A .30,4⎛⎤ ⎥⎝⎦B .20,3⎛⎤ ⎥⎝⎦C .30,4⎛⎫ ⎪⎝⎭D .20,3⎛⎫ ⎪⎝⎭8.已知数列{}n a 满足11a =,24a =,310a =,且{}1n n a a +-是等比数列,则81ii a==∑( ) A .376B .382C .749D .7669.已知等差数列{}n a 的前n 项和为n S ,若633S S =,则129SS =( ) A .43B .53C .2D .310.已知数列{a n }是等比数列,S n 为其前n 项和,若a 1+a 2+a 3=4,a 4+a 5+a 6=8,则S 12= A .40 B .60 C .32D .5011.设等比数列{}n a 的前n 项和为n S ,且510315S S ==,,则20S =( ) A .255B .375C .250D .20012.已知数列{}n a 满足:11a =,()*12nn n a a n N a +=∈+.若()*+11()1n n b n n N a λ⎛⎫=-+∈ ⎪⎝⎭,1b λ=-,且数列{}n b 是单调递增数列,则实数λ的取值范围为( ) A .2λ>B .3λ>C .2λ<D .3λ<二、填空题13.朱载堉(1536-1611)是中国明代一位杰出的音乐家、数学家和天文历算家,他的著作《律学新说》中制作了最早的“十二平均律”.十二平均律是目前世界上通用的把一组音(八度)分成十二个半音音程的律制,各相邻两律之间的频率之比完全相等,亦称“十二等程律”,即一个八度13个音,相邻两个音之间的频率之比相等,且最后一个音是最初那个音的频率的2倍.设第三个音的频率为1f ,第七个音的频率为2f ,则21f f =______. 14.已知数列{}n a 的前n 项和为1,3,23n n n S a S a λ==-,其中λ为常数,若14n n a b n =-,则数列{}n b 中的项的最小值为__________.15.在数列{}n a 中,11a =,22a =,()*212n n n a a a n ++=+∈N ,记()321nn n n c a λ=-⨯-,若对任意的*n ∈N ,1n n c c +>恒成立,则实数λ的取值范围为______.16.已知数列{}n a 的前n 项和22n S n =,*n N ∈.求数列{}n a 的通项公式为______.设2(1)n n n n b a a =+-,求数列{}n b 的前2n 项和n T =______.17.今年冬天流感盛行,据医务室统计,北校近30天每天因病请假人数依次构成数列{}n a ,已知11a =,22a=,且()*21(1)nn n a a n N +-=+-∈,则这30天因病请假的人数共有人______.18.数列{}n a 中,11a =,121n n a a n +=++,则数列{}n a 的通项公式为______.19.若数列{}n a 满足11a =,且()*1111n nn a a N +∈-=,则 ①数列{}na e是等比数列;②满足不等式:1112n n a a +++≥ ③若函数()f x 在R 上单调递减,则数列(){}n f a 是单调递减数列; ④存在数列{}n a 中的连续三项,能组成三角形的三条边; ⑤满足等式:122311n n n a a a a a a n +++⋅⋅⋅+=+. 正确的序号是________20.数列{}n a 满足()211122,3,1n n nn n a a a a n a -+--+==+,21a =,33a =,则7a =________.三、解答题21.设数列{}n a 的前n 项和为n S ,且122n n n S a +=-,*n N ∈.(1)求数列{}n a 的通项公式; (2)令11n n n n b a a n +=-+,记数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和为n T .求证:43n T <,*n N ∈. 22.若数列{}n a ,12,a =且132n n a a +=+. (1)证明{}1n a +是等比数列; (2)设()131n n n a b n n +=⋅+,n T 是其前n 项和,求n T .23.设函数()112f x x =+,正项数列{}n a 满足11a =,11n n a f a -⎛⎫= ⎪⎝⎭,n *∈N ,且2n ≥.(1)求数列{}n a 的通项公式; (2)求证:122334111112n n a a a a a a a a ++++⋅⋅⋅+<. 24.已知正项数列{}n a 满足2220n n a na n --=,数列(){}12n nn aa -⋅+的前n 项和为n S .(1)求数列{}n a 的通项公式; (2)求n S .25.设数列{}n a 的前n 项和为n S ,且12n n S a +=. (1)求数列{}n a 的通项公式; (2)设21nn b a n =+,求数列{}n b 的前n 项和n T . 26.已知递增等比数列{}n a 满足:1418a a +=,2332a a ⋅=,数列{}n b 的前n 项和为n S ,且212n S n =32n +,记()()111221n n n n n n a c a b a b +++++-=-⋅-.(1)求数列{}n a 和{}n b 的通项公式; (2)求数列{}n c 的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】利用累加法可求得结果. 【详解】112n n na a +-=, 所以当2n ≥时,1112n n n a a ---=,12212n n n a a ----=,,21112a a -=, 将上式累加得:1121111222n n a a --=++⋅⋅⋅+,1111221112n n a -⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-=-1112n -⎛⎫=- ⎪⎝⎭,即1122n n a -⎛⎫=- ⎪⎝⎭(2)n ≥, 又1n =时,11a =也适合,1122n n a -∴=-1212n⎛⎫=- ⎪⎝⎭. 故选:B . 【点睛】关键点点睛:利用累加法求解是解题关键.2.A解析:A 【分析】由已知分别写出等差数列与等比数列的通项公式,求得数列{}n c 的通项公式,利用数列的分组求和法可得数列{}n c 的前n 项和n T ,验证得答案. 【详解】解:由题意得:323(1)1n a n n ⨯-=+-=,2nn b =,2321n n n n b c a a ==⨯-=,123n T c c c ∴=+++…n c +123321321321=⨯-+⨯-+⨯-+…321n +⨯-(1233222=⨯+++…)2n n +-()212312n n ⨯-=⨯--1326n n +=⨯--,当8n =时,98326815222020T =⨯--=<;当9n =时,109326930572020T =⨯--=>,n ∴的最大值为8.故选:A. 【点睛】关键点点睛:本题解题的关键是求出数列{}n c 的通项公式,利用分组求和求出数列{}n c 的前n 项和n T .3.D解析:D 【分析】把点列代入函数解析式,根据{x n }是等比数列,可知1n nx x +为常数进而可求得1n n y y +-的结果为一个与n 无关的常数,可判断出{y n }是等差数列. 【详解】对于A ,函数3(4)f x x =+上的点列{x n ,y n },有y n =43n x +,由于{x n }是等比数列,所以1n nx x +为常数, 因此1n n y y +-=()()()()114343441n n n n n x x x x x q +++-+=-=-这是一个与n 有关的数,故{y n }不是等差数列;对于B ,函数2()4f x x =上的点列{x n ,y n },有y n =24n x ,由于{x n }是等比数列,所以1n nx x +为常数,因此1n n y y +-=()222214441n n n x x x q +-=-这是一个与n 有关的数,故{y n }不是等差数列;对于C ,函数3()4xf x ⎛⎫= ⎪⎝⎭上的点列{x n ,y n },有y n =3()4n x ,由于{x n }是等比数列,所以1n nx x +为常数, 因此1n n y y +-=133()()44n n x x+-=33()()144n qx⎡⎤-⎢⎥⎣⎦,这是一个与n 有关的数,故{y n }不是等差数列;对于D ,函数4()log f x x =上的点列{x n ,y n },有y n =4log n x,由于{x n }是等比数列,所以1n nx x +为常数, 因此1n n y y +-=114444log log log log n n n nx x x x q ++-==为常数,故{y n }是等差数列;故选:D . 【点睛】 方法点睛:判断数列是不是等差数列的方法:定义法,等差中项法.4.B解析:B 【分析】利用迭代法可得21123211n n n n n n n F F F F F F F F F ++---=+=+++++++,可得21n n F S +=+,代入2019n =即可求解.【详解】由题意可得该数列从第三项开始,每项等于其前两相邻两项之和, 则211112n n n n n n n n n n F F F F F F F F F F ++----=+=++=+++1211232n n n n n n n n n F F F F F F F F F -------=+++=++++=123211n n n n F F F F F F ---=+++++++,所以21n n F S +=+,令2019n =,可得201920211S F =-,故选:B 【点睛】关键点点睛:本题的关键点是理解数列新定义的含义得出21n n n F F F ++=+,利用迭代法得出21123211n n n n n n n F F F F F F F F F ++---=+=+++++++,进而得出21n n F S +=+.5.A解析:A 【分析】由已知得11n n n a a -=--,运用叠加法可得选项. 【详解】 解:由题意知:1n n a a n +=+,11n n a a n -∴-=-,即:211a a -=,322a a -=,,11n n n a a -=--,把上述所有式子左右叠加一起得:(1)12n n n a -=+, 88(81)1292a ⨯-∴=+=. 故选:A. 【点睛】方法点睛:求数列通项公式常用的七种方法:(1)公式法:根据等差数列或等比数列的通项公式1(1)n a a n d =+-,或11n n a a q -=进行求解;(2)前n 项和法:根据11,1,2n nn S n a S S n -=⎧=⎨-≥⎩进行求解;(3)n S 与n a 的关系式法:由n S 与n a 的关系式,类比出1n S -与1n a -的关系式,然后两式作差,最后检验出1a ,是否满足用上面的方法求出的通项;(4)累加法:当数列{}n a 中有()1n n a a f n --=,即第n 项与第n −1项的差是个有规律的数列,就可以利用这种方法; (5)累乘法:当数列{}n a 中有()1nn a f n a -=,即第n 项与第n −1项商是个有规律的数列,就可以利用这种方法;(6)构造法:①一次函数法:在数列{}n a 中,1n n a ka b -=+(k 、b 均为常数,且k ≠1,k ≠0).一般化方法:设()1n n a m k a m -+=+,得到()11b b k m m k =-=-,, 可得出数列1n b a k ⎧⎫+⎨⎬-⎩⎭ 是以k 的等比数列,可求出n a ;②取倒数法:这种方法适用于112(),n n n ka a n n N ma p*--=≥∈+(k 、m 、p 为常数,m ≠0),两边取倒数后,得到一个新的特殊(等差或等比)数列或类似于1n n a ka b -=+的式子;(7)1nn n a ba c +=+(b 、c 为常数且不为零,n *∈N )型的数列求通项n a ,方法是在等式的两边同时除以1n c +,得到一个1n n a ka b +=+型的数列,再利用(6)中的方法求解即可.6.B解析:B 【分析】根据11a >,667711,01a a a a -><-,分0q < ,1q ≥,01q <<讨论确定q 的范围,然后再逐项判断. 【详解】若0q <,因为11a >,所以670,0a a <>,则670a a ⋅<与671a a ⋅>矛盾, 若1q ≥,因为11a >,所以671,1a a >>,则67101a a ->-,与67101a a -<-矛盾, 所以01q <<,故B 正确; 因为67101a a -<-,则6710a a >>>,所以()26870,1a a a =∈,故A 错误; 因为0n a >,01q <<,所以111n n a q a S q q=---单调递增,故C 错误; 因为7n ≥时,()0,1n a ∈,16n ≤≤时,1n a >,所以n T 的最大值为6T ,故D 错误; 故选:B 【点睛】关键点点睛:本题的关键是通过穷举法确定01q <<.7.A解析:A 【分析】设等比数列{}n a 的公比为q ,依题意可得1q ≠.即可得到不等式1102n q -⨯>,1(1)221n q q-<-,即可求出参数q 的取值范围;【详解】解:设等比数列{}n a 的公比为q ,依题意可得1q ≠.110,2n a a >=,2n S <, ∴1102n q -⨯>,1(1)221n q q-<-, 10q ∴>>.144q ∴-,解得34q. 综上可得:{}n a 的公比的取值范围是:30,4⎛⎤ ⎥⎝⎦.故选:A . 【点睛】等比数列基本量的求解是等比数列中的一类基本问题,解决这类问题的关键在于熟练掌握等比数列的有关公式并能灵活运用,尤其需要注意的是,在使用等比数列的前n 项和公式时,应该要分类讨论,有时还应善于运用整体代换思想简化运算过程.8.C解析:C 【分析】利用累加法求出通项n a ,然后利用等比数列的求和公式,求解81i i a =∑即可【详解】由已知得,213a a -=,326a a -=,而{}1n n a a +-是等比数列,故2q,∴11221()()()n n n n a a a a a a ----+-+-=23632n -+++⨯1133232312n n ---⨯==⨯--,1n a a ∴-=1323n -⨯-,化简得1322n n a -=⨯-,8712818123(122)2831612i iaa a a =-=++=⨯+++-⨯=⨯--∑83219749=⨯-=故选:C 【点睛】关键点睛:解题关键在于利用累加法求出通项,难度属于中档题9.B解析:B 【分析】由已知条件利用等差数列前n 项和公式推导出a 1=2d ,由此能求出129S S 的值【详解】∵等差数列{a n }的前n 项和为S n ,63S S =3, ∴1165623232a d a d⨯+=⨯+3,整理,得a 1=2d ,∴112191112111212665298936392a dS a d S a d a d ⨯++===⨯++. 故选:B . 【点睛】本题考查等差数列的前n 项和比值的求法,是基础题,解题时要注意等差数列的前n 项和公式的合理运用.10.B解析:B 【解析】由等比数列的性质可知,数列S 3,S 6−S 3,S 9−S 6,S 12−S 9是等比数列,即数列4,8,S 9−S 6,S 12−S 9是等比数列,因此S 12=4+8+16+32=60,选B .11.A解析:A 【分析】由等比数列的性质,510515102015,,,S S S S S S S ---仍是等比数列,先由51051510,,S S S S S --是等比数列求出15S ,再由10515102015,,S S S S S S ---是等比数列,可得20S . 【详解】由题得,51051510,,S S S S S --成等比数列,则有210551510()()S S S S S -=-,215123(15)S =-,解得1563S =,同理有215101052015()()()S S S S S S -=--,2204812(63)S =-,解得20255S =.故选:A 【点睛】本题考查等比数列前n 项和的性质,这道题也可以先由510315S S ==,求出数列的首项和公比q ,再由前n 项和公式直接得20S 。
高中数学选修2-1 第一章《 常用逻辑用语》单元测试题(含答案)
高中数学选修2-1 第一章单元测试题《常用逻辑用语》时间:120分钟满分:150分一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列语句中,不能成为命题的是( )A.指数函数是增函数吗?B.2 012>2 013C.若a⊥b,则a·b=0D.存在实数x0,使得x0<02.已知命题:“若x≥0,y≥0,则xy≥0”,则原命题、逆命题、否命题、逆否命题这四个命题中,真命题的个数是( )A.1 B.2C.3 D.43.设a∈R,则“a=1”是“直线l1:ax+2y-1=0与直线l2:x+2y+4=0平行”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.下列命题中的假命题是( )A.存在x∈R,lg x=0 B.存在x∈R,tan x=1C.任意x∈R,x3>0 D.任意x∈R,2x>05.下列命题中是全称命题并且是真命题的是( )A.每个二次函数的图象与x轴都有两个不同的交点B.对任意非正数c,若a≤b+c,则a≤bC.存在一个菱形不是平行四边形D.存在一个实数x使不等式x2-3x+7<0成立18.(本小题满分12分)写出下列命题的否定,并判断其真假.(1)p:不论m取何实数,方程x2+mx-1=0必有实数根;(2)p:存在一个实数x,使得3x<0;(3)p:若a n=-2n+1,则∃n∈N,使S n<0;(4)p:有些偶数是质数.19.(本小题满分12分)设命题p:c2<c和命题q:对∀x∈R,x2+4cx+1>0,且p∨q为真,p∧q为假,求实数c的取值范围.20.(本小题满分12分)已知p:|x-3|≤2,q:(x-m+1)(x-m-1)≤0,若綈p是綈q的充分而不必要条件,求实数m的取值范围.21.(本小题满分12分)已知ab≠0,求证:a+b=1的充要条件是a3+b3+ab-a2-b2=0.22.(本小题满分12分)给出两个命题:命题甲:关于x的不等式x2+(a-1)x+a2≤0的解集为∅,命题乙:函数y=(2a2-a)x为增函数.分别求出符合下列条件的实数a的范围.(1)甲、乙至少有一个是真命题;(2)甲、乙中有且只有一个是真命题.高中数学选修2-1 第一章单元测试题《常用逻辑用语》参考答案时间:120分钟满分:150分一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列语句中,不能成为命题的是( )A.指数函数是增函数吗?B.2 012>2 013C.若a⊥b,则a·b=0D.存在实数x0,使得x0<0解析:疑问句不能判断真假,因此不是命题.D是命题,且是个特称命题.答案:A2.已知命题:“若x≥0,y≥0,则xy≥0”,则原命题、逆命题、否命题、逆否命题这四个命题中,真命题的个数是( )A.1 B.2C.3 D.4解析:原命题是真命题,逆否命题为真命题,逆命题为“若xy≥0,则x≥0,y≥0”是假命题,则否命题为假命题.答案:B3.设a∈R,则“a=1”是“直线l1:ax+2y-1=0与直线l2:x+2y+4=0平行”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:先求出两直线平行的条件,再判断与a=1的关系.若l1∥l2,则2a -2=0,∴a=1.故a=1是l1∥l2的充要条件.答案:C。
(必考题)高中数学高中数学选修2-1第一章《常用逻辑用语》测试题(含答案解析)(1)
一、选择题1.设x ∈R ,则“1x >”是“2320x x -+<”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.以下四个命题中,真命题的个数是( )①存在正实数M ,N ,使得()log log log a a a M N MN +=;②“若函数()f x 满足()()201920200f f ⋅<,则()f x 在()2019,2020上有零点”的否命题;③函数()()()log 320,1a f x x a a =->≠的图象过定点()1,0; ④“1x =-”是“2230x x --=”的必要不充分条件. A .1B .2C .3D .43.已知实数0x >,0y >,则“1xy <”是“1133log log 0x y +>”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 4.若命题p 是真命题,命题q 是假命题,则下列命题一定是真命题的是( )A .p ∧qB .¬p ∨qC .¬p ∧qD .¬p ∨q ⌝5.下列说法不正确的是( ) A .命题“若a b >,则ac bc >”是真命题 B .命题“若220a b +=,则,a b 全为0”是真命题C .命题“若0a =,则0ab =”的否命题是“若0a ≠,则0ab ≠”D .命题“若0a =,则0ab =”的逆否命题是“若0ab ≠,则0a ≠” 6.给出下列四个命题:①某班级一共有52名学生,现将该班学生随机编号,用系统抽样的方法抽取一个容量为4的样本,已知7号、33号、46号同学在样本中,那么样本中另一位同学的编号为23; ②一组数据1,2,3,3,4,5的平均数、众数、中位数都相同;③一组数据a ,0,1,2,3,若该组数据的平均值为1,则样本的标准差为2;④根据具有线性相关关系的两个变量的统计数据所得的回归直线方程为ˆˆˆy a bx=+中,ˆ2b=,1x =,3y =,则ˆ1a =. 其中真命题为( ) A .①②④B .②④C .②③④D .③④7.命题:p 关于x 的不等式2240x ax ++>对一切x ∈R 恒成立,:q 函数()()32xf x a =-是增函数,若“p q ∨”为真命题,“p q ∧”为假命题,则实数a 取值范围为( )A .()(),22,-∞-+∞B .(][),21,2-∞-C .(](],21,2-∞-D .(][),22,-∞-+∞8.下列有关命题的说法错误的是( )A .“若22am bm <,则a b <”的逆命题为假命题B .命题“如果()()150x x +-=2=”的否命题是真命题C .若p q ∧为假命题,则p 、q 均为假命题D .若p q ∨为假命题,则p 、q 均为假命题9.命题“已知直线1l :10ax y ++=和2l :20x by ++=,若1ab =,则12l l //”,该命题的逆命题、否命题、逆否命题中正确的个数为( ) A .0B .1C .2D .310.已知点A ,B ,C 不共线,则“AB 与AC 的夹角为3π”是“AB AC BC +>”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件11.已知x 、y R ∈,则“221x y +<”是“()()110x y -->”成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件12.下列三个命题:①设命题p :若m 是质数,则m 一定是奇数.那么p ⌝真命题;②在ABC 中,“sin sin A B =”是“cos cos A B =”的充要条件; ③“若1x >,则1x >”的否命题是“若1x >,则1x ≤”.其中真命题的个数为( ) A .3B .2C .1D .0二、填空题13.下列命题中假命题的序号是________.①若“1x >则21x >”的逆命题;②“若1sin 2α≠,则6πα≠”;③“若0xy =,则0x =且0y =”的逆否命题;④“在ABC 中,若sin sin A B >,则A B >”. 14.已知1:123x p --≤,22:210q x x m -+-≤,若p ⌝是q ⌝的必要不充分条件,则实数m 的取值范围是______.15.设函数()f x 、()g x 的定义域均为R ,若对任意12,x x R ∈,且12x x <,具有12()()f x f x ≤,则称函数()f x 为R 上的单调非减函数,给出以下命题:① 若()f x 关于点(,0)a 和直线x b =(b a ≠)对称,则()f x 为周期函数,且2()b a -是()f x 的一个周期;② 若()f x 是周期函数,且关于直线x a =对称,则()f x 必关于无穷多条直线对称;③ 若()f x 是单调非减函数,且关于无穷多个点中心对称,则()f x 的图象是一条直线;④若()f x 是单调非减函数,且关于无穷多条平行于y 轴的直线对称,则()f x 是常值函数;以上命题中,所有真命题的序号是_________16.若命题“2,390x R x ax ∃∈-+≤”为假命题,则实数a 的取值范围是_______.17.设命题:p 函数()21lg 16f x ax x a ⎛⎫=-+ ⎪⎝⎭的值域为R ;命题:q 不等式39x x a -<对一切正实数x 均成立,若命题p 和q 不全为真命题,则实数a 的取值范围是__________.18.已知集合{}|A x x a =>,{}|22,B x x x R =-<∈,若“x A ∈”是“x B ∈”的必要不充分条件,则a 的取值范围_________.19.设:p 对任意的x ∈R 都有22x x a ->, q :存在0x R ∈,使20220x ax a ++-=,如果命题p q ∨为真,命题p q ∧为假,则实数a 的取值范围是______. 20.有下列命题:①“若0x y +>,则00x y >>且”的否命题; ②“矩形的对角线相等”的否命题;③“若m 1≥,则22(1)30mx m x m -+++>的解集是R ”的逆命题; ④“若7a +是无理数,则a 是无理数”的逆否命题. 其中正确命题的序号是____________三、解答题21.已知1:22x p x +>-,2:50q x ax -+>. (1)若p ⌝为真,求x 的取值范围;(2)若q ⌝是p ⌝的充分不必要条件,求实数a 的取值范围.22.已知函数()1-=+x af x a (0a >且1a ≠)过点1,22⎛⎫ ⎪⎝⎭.(1)求实数a ;(2)若函数()1322⎛⎫=+- ⎪⎝⎭g x f x ,求函数()g x 的解析式; (3)已知命题p :“任意x ∈R 时,()220++≤g ax ax ”,若命题p ⌝是假命题,求实数a 的取值范围.23.已知集合206x A x x +⎧⎫=<⎨⎬-⎩⎭,{}22|210,0B x x x m m =<+->-.(1)求集合,A B ;(2)请在:①充分不必要条件,②必要不充分条件,③充要条件这三个条件中任选一个,补充在下面的问题中,若问题中的实数m 存在,求出m 的取值范围;若不存在,说明理由.若x A ∈是x B ∈成立的___________条件,判断实数m 是否存在? (注:如果选择多个条件分别解答,按第一个解答计分)24.设命题:p 实数x 满足22430x ax a -+<,其中0a >.命题q :实数x 满足302x x-≥-. (1)若1a =,且p q ∧为真,求实数x 的取值范围.(2)p ⌝是q ⌝的充分不必要条件,求实数a 的取值范围.25.已知2:,2p x R x x a ∀∈+≥,()2:431q x -≤,2:(21)(1)0r x a x a a -+++≤. (1)若命题p 为真命题,求实数a 的取值范围; (2)若q 是r 的充分不必要条件,求实数a 的取值范围.26.已知命题p :不等式220ax ax -+>对一切实数x 恒成立,命题q :11m a m -≤≤+.(1)若p 是假命题,求实数a 的取值范围;(2)若⌝p 是q 的必要不充分条件,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】先解不等式2320x x -+<得12x <<,再根据基本关系判定即可得答案. 【详解】解:解不等式2320x x -+<得12x <<, 因为()()1,21,+∞,所以“1x >”是“2320x x -+<”的必要不充分条件.故选:B. 【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.2.B解析:B 【分析】根据对数的运算判断①;根据零点存在性定理判断②;根据对数函数的性质判断③,根据充分条件、必要条件判断④; 【详解】解:对于①,根据对数运算法则知正确;对于③,无论a 取何值都有()10f =,所以函数()f x 的图象过定点()1,0,故正确; 对于②,函数()f x 在()2019,2020上有零点时,函数()f x 在2019x =和2020x =处的函数值不一定异号,故其逆命题是错误的,所以否命题也是错误的;对于④,当1x =-时,2230x x --=,当2230x x --=时,1x =-或3x =,所以是充分不必要条件,故④错误. 故选:B 【点睛】本题考查命题真假性的判断以及相关知识点,属于中档题.3.C解析:C 【分析】 由不等式111333log log log 0x y xy +=>,求得01xy <<,结合充要条件的判定方法,即可求解. 【详解】由题意,实数0x >,0y >,不等式111333log log log 0x y xy +=>,解得01xy <<,所以实数0x >,0y >,则“1xy <”是“1133log log 0y +>”的充要条件. 故选:C. 【点睛】本题主要考查了充要条件的判定,以及对数的运算性质,其中解答中熟记充要条件的判定方法,以及熟练应用对数的运算性质是解答的关键,着重考查推理与运算能力,属于基础题.4.D解析:D 【分析】根据命题q 是假命题,命题p 是真命题,结合复合命题真假判断的真值表,可判断出复合命题的真假,进而得到答案. 【详解】∵命题q 是假命题,命题p 是真命题, ∴“p ∧q”是假命题,即A 错误; “¬p ∨q”是假命题,即B 误; “¬p ∧q”是假命题,即C 错误; “p q ⌝∨⌝ ”是真命题,故D 正确错; 故选D . 【点睛】本题考查的知识点是复合命题的真假,熟练掌握复合命题真假判断的真值表,是解答的关键.5.A解析:A 【分析】根据不等式性质,真命题,否命题,逆否命题性质逐一判断各个选项即可. 【详解】A 选项,若a b >,当0c ≤时,ac bc >不成立,所以命题为假命题,所以A 不正确B 选项,若220a b +=,则,a b 全为0正确,所以命题为真命题,正确C 选项,否命题否定结论和条件,本选项满足否命题形式,正确D 选项,命题“若0a =,则0ab =”的逆否命题是“若0ab ≠,则0a ≠”满足逆否命题的形式. 所以答案选A 【点睛】本题考查了不等式的性质,真命题的判断,否命题和逆否命题的知识.属于基础题目.6.B解析:B 【分析】利用概率统计中的系统抽样、平均数、众数、中位数及线性回归直线方程的概念及应用,对选项逐项判定,即可求解. 【详解】由题意,对于①中,7,,33,46x 的公差为4671341d -==-, 所以71320x =+=,即样本中另一位同学的编号为20,所以不正确; 对于②中,数据1,2,3,3,4,5的平均数为12344536x +++++==,众数为3,中位数为3332+=,所以数据的平均数、众数和中位数是相同的,所以是正确. 对于③中,数据a ,0,1,2,3的平均数为01236155a a x +++++===,解得1a =-,所以方差为2222221[(11)(01)(11)(21)(31)]25s =--+-+-+-+-=,对于④中,因为ˆ2b=,所以ˆˆ2y a x =+,根据回归直线方程ˆˆ2y a x =+必过样本中心点(1,3),即ˆ321a=+⨯,解答ˆ1a =,所以是正确的. 故选:B . 【点睛】本题主要考查了命题的真假判定及应用,着重考查了系统抽样、平均数、众数、中位数的概念与计算,以及线性回归方程的应用,属于中档试题.7.B解析:B 【分析】先求得命题,p q 为真命题时,a 的取值范围.根据“p q ∨”为真命题,“p q ∧”为假命题可知,p q 一真一假,由此进行分类讨论,求得a 的取值范围.【详解】当p 为真命题时,24160a ∆=-<,解得22a -<<. 当q 为真命题时,321,1a a -><.由于“p q ∨”为真命题,“p q ∧”为假命题,所以,p q 一真一假. 当p 真q 假时,221a a -<<⎧⎨≥⎩,解得12a ≤<;当p 假q 真时,221a a a ≤-≥⎧⎨<⎩或,解得2a ≤-.综上所述,实数a 的取值范围是(][),21,2-∞-.故选:B 【点睛】本小题主要考查一元二次不等式恒成立问题,考查根据含有逻辑联结词命题的真假性求参数的取值范围,考查分类讨论的数学思想方法,属于基础题.8.C解析:C 【分析】写出逆命题和否命题,判断正误,根据或和且的命题真假判断命题真假得到答案. 【详解】逆命题为:若a b <,则22am bm <,当0m =是不成立,故为假命题,A 正确; 否命题为:如果()()150x x +-≠2≠,为真命题,B 正确; 若p q ∧为假命题,则p 、q 不同时为真,C 错误; 若p q ∨为假命题,则p 、q 均为假命题,D 正确; 故选:C . 【点睛】本题考查了逆命题和否命题,或和且命题的判断,意在考查学生的推断能力.9.C解析:C 【分析】判断原命题为假命题得到逆否命题为假,逆命题为真得到否命题为真,得到答案. 【详解】取12a =,2b =,满足1ab =,两直线重合,故原命题为假,故逆否命题为假; 若12l l //,则1ab =,故逆命题为真,故否命题为真. 故选:C . 【点睛】本题考查了命题的真假判断,意在考查学生的推断能力.10.A解析:A 【分析】利用向量数量积的性质,可判断AB AC BC +>与AB 与AC 的夹角为3π的推出关系,即可求解. 【详解】当AB 与AC 的夹角为3π时 222=||+2+||2=2||||cos03AB AC AB AB AC AC AB AC AB AC π+⋅⋅⋅⋅>,,222222=||+2+||||2+||||AB AC AB AB AC AC AB AB AC AC AC AB ∴+⋅>-⋅=-,||AB AC AC AB BC ∴+>-=,当AB AC BC +>时,2222222=||+2+||||2+|||||AB AC AB AB AC AC AB AB AC AC AC AB BC +⋅>-⋅=-=,化简得:0AB AC ⋅>, A ,B ,C 不共线,∴AB 与AC 的夹角为锐角,所以“AB 与AC 的夹角为3π”是“AB AC BC +>”的充分不必要条件, 故选:A 【点睛】本题主要考查了数量积的运算性质,充分不必要条件,属于中档题.11.A解析:A 【分析】根据充分条件、必要条件的定义结合不等式的性质判断即可. 【详解】由221x y +<,可得11x -<<,且11y -<<,则可得到()()110x y -->,故充分性成立;反之若()()110x y -->,可取2x y ==,显然得到不等式221x y +<不成立,故必要性不成立. 故选:A . 【点睛】本题考查充分不必要条件的判断,同时也涉及了不等式基本性质的应用,考查推理能力,属于中等题.12.B解析:B 【分析】对各个命题分别判断. 【详解】命题p :若m 是质数,则m 一定是奇数.2是质数,但2是偶数,命题p 是假命题,那么p ⌝真命题;①正确;在ABC 中,sin sin A B a b A B =⇔=⇔=⇔cos cos A B =,②正确; “若1x >,则1x >”的否命题是“若1x ≤,则1x ≤”,③错. 因此有2个命题正确. 故选:B. 【点睛】本题考查命题的真假判断,这种问题难度较大,需要对每个命题进行判断,才能得出正确结论,这样考查的知识点可能很多,考查的能力要求较高.二、填空题13.①③【分析】根据四种命题的关系判断①②③由正弦定理判断④【详解】①若则的逆命题是若则这显然是假命题如;②若则的逆否命题是若则是真命题原命题也是真命题;③若则且的逆否命题是若或则是假命题④在中若则由得解析:①③ 【分析】根据四种命题的关系判断①②③,由正弦定理判断④. 【详解】①若“1x >则21x >”的逆命题是若21x >,则1x >,这显然是假命题,如2x =-; ②“若1sin 2α≠,则6πα≠”的逆否命题是若6πα=,则1sin 2α=,是真命题,原命题也是真命题;③“若0xy =,则0x =且0y =”的逆否命题是若0x ≠或0y ≠,则0xy ≠,是假命题, ④在ABC 中,若sin sin A B >,则由sin sin a bA B=得a b >,∴A B >,为真命题.故答案为:①③ 【点睛】关键点点睛:本题考查命题的真假判断,在一个命题不能或不易判断其真假时,可考虑其逆否命题,判断出逆否命题的真假后,原命题的真假随之而得.特别是对一些否定性命题,含有至少、至多等词语的命题.常常选择判断其逆否命题的真假来判断原命题的真假.14.【分析】先分别求出命题和命题为真命题时表示的集合即可求出和表示的集合根据必要不充分条件所表示的集合间关系即可求出【详解】对于命题由可解出则表示的集合为或设为A 对于命题则设表示的集合为B 是的必要不充分 解析:(][),99,-∞-⋃+∞【分析】先分别求出命题p 和命题q 为真命题时表示的集合,即可求出p ⌝和q ⌝表示的集合,根据必要不充分条件所表示的集合间关系即可求出. 【详解】 对于命题p ,由1123x --≤可解出210x -≤≤,则p ⌝表示的集合为{2x x <-或}10x >,设为A ,对于命题q ,22210x x m -+-≤,则110xm x m ,设q ⌝表示的集合为B ,p ⌝是q ⌝的必要不充分条件,B ∴ A ,当0m >时,110xm x m的解集为{}11x m x m -≤≤+,则{1B x x m =<-或}1x m >+,12110m m -≤-⎧∴⎨+≥⎩,解得9m ≥; 当0m =时,{}1B x x =≠,不满足题意; 当0m <时,110xm x m的解集为{}11x m x m +≤≤-,则{1B x x m =<+或}1x m >-,12110m m +≤-⎧∴⎨-≥⎩,解得9m ≤-, 综上,m 的取值范围是(][),99,-∞-⋃+∞. 故答案为:(][),99,-∞-⋃+∞. 【点睛】本题考查命题间关系的集合表示,以及根据集合关系求参数范围,属于中档题.15.②④【分析】根据题意依次分析题目中所给的4个命题综合即可得答案【详解】解:根据题意依次分析4个命题:①若f (x )关于点(a0)和直线x =b (b≠a )对称则f (x )为周期函数则函数f (x )的周期为4|解析:②④ 【分析】根据题意,依次分析题目中所给的4个命题,综合即可得答案. 【详解】解:根据题意,依次分析4个命题:①,若f (x )关于点(a ,0)和直线x =b (b ≠a )对称,则f (x )为周期函数, 则函数f (x )的周期为4|b ﹣a |,则2(b ﹣a )不一定是f (x )的一个周期;①错误; ②,若f (x )是周期函数,且关于直线x =a 对称,则每个周期中都至少一条对称轴,②正确;③,如图:f (x )满足f (x )是单调非减函数,且关于无穷多个点中心对称,其图象不是一条直线;③错误;④,若f (x )是单调非减函数,且关于无穷多条平行于y 的直线对称,则函数f (x )的图象只能是一条水平的直线,f (x )是常值函数,④正确; ②④正确; 故答案为:②④. 【点睛】本题考查抽象函数的性质,关键是理解单调非减函数的性质,考查推理能力与数形结合思想.16.【分析】先求出当命题为真命题时的范围其补集即为命题为假命题时的范围【详解】由题当命题为真命题时即或则当命题为假命题时故答案为【点睛】本题考查由命题的真假求参数范围问题考查转换思想考查运算能力解析:22a -<< 【分析】先求出当命题为真命题时a 的范围,其补集即为命题为假命题时a 的范围 【详解】由题,当命题“2,390x R x ax ∃∈-+≤”为真命题时,()223499360a a ∆=--⨯=-≥,即2a ≥或2a ≤-,则当命题“2,390x R x ax ∃∈-+≤”为假命题时, 22a -<< 故答案为22a -<< 【点睛】本题考查由命题的真假求参数范围问题,考查转换思想,考查运算能力17.【分析】根据对数型复合函数值域可知是的值域的子集根据二次函数图象分析可得不等关系求得命题为真时;利用换元法将转化为求解的最值可求得命题为真时;求出当全为真时的范围取补集得到结果【详解】若命题为真即值 解析:(,0)(2,)-∞+∞【分析】根据对数型复合函数值域可知()0,∞+是2116y ax x a =-+的值域的子集,根据二次函数图象分析可得不等关系,求得命题p 为真时,02a ≤≤;利用换元法将39x x a -<转化为()21a t tt >->,求解2t t-的最值可求得命题q 为真时,0a ≥;求出当,p q 全为真时a 的范围,取补集得到结果.【详解】 若命题p 为真,即()21lg 16f x ax x a ⎛⎫=-+ ⎪⎝⎭值域为R当0a =时,0x ->,解得:0x <,满足题意当0a ≠时,21104a a >⎧⎪⎨∆=-≥⎪⎩,解得:02a <≤ 综上所述:若命题p 为真,则02a ≤≤若命题q 为真,即不等式39x x a -<对()0,x ∈+∞恒成立 令31x t =>,则2a t t >-1t > 2110t t ∴-<-= 0a ∴≥即若命题q 为真,则0a ≥∴当命题,p q 全为真命题时,02a ≤≤命题,p q 不全为真命题 a ∴的取值范围为:()(),02,-∞+∞故答案为:()(),02,-∞+∞【点睛】本题考查根据命题的真假性求解参数范围,涉及到根据对数型复合函数的值域求解参数范围、不等式恒成立问题的求解等知识.18.【分析】根据必要不充分条件得到集合之间的关系从而求解出参数的取值范围【详解】因为是的必要不充分条件所以又因为所以因为所以即的取值范围是:【点睛】集合:若是的必要不充分条件则有:;若是的充分不必要条件 解析:0a ≤【分析】根据必要不充分条件得到集合,A B 之间的关系,从而求解出参数的取值范围. 【详解】因为“x A ∈”是“x B ∈”的必要不充分条件,所以BA ,又因为{}|22,B x x x R =-<∈,所以()0,4B =,因为(),A a =+∞,所以0a ≤,即a 的取值范围是:0a ≤. 【点睛】集合()(){|},{|}A x x p x B x x q x =∈=∈: 若“x A ∈”是“x B ∈”的必要不充分条件,则有:B A ;若“x A ∈”是“x B ∈”的充分不必要条件,则有:AB .19.【解析】【分析】分别求出命题为真命题的的范围由为真为假可得一真一假再由集合运算求解【详解】由题意:对于命题对任意的即恒成立△得即;对于命题存在使△得解得或即或为真为假一真一假①真假时得;②假真时得综 解析:(2,1)[1,)--+∞【解析】 【分析】分别求出命题,p q 为真命题的a 的范围,由p q ∨为真,p q ∧为假,可得,p q 一真一假,再由集合运算求解. 【详解】由题意:对于命题p ,对任意的x ∈R ,22x x a ->,即220x x a -->恒成立,∴△440a =+<,得1a <-,即:1p a <-;对于命题q ,存在0x R ∈,使20220x ax a ++-=, ∴△244(2)0a a =--,得220a a +-,解得1a 或2a -,即:1q a 或2a -.p q ∨为真,p q ∧为假, p ∴,q 一真一假,①p 真q 假时,121a a <-⎧⎨-<<⎩,得21a -<<-;②p 假q 真时,112a a a -⎧⎨-⎩或,得1a .综上,(2,1)[1a ∈--,)+∞. 故答案为:(2,1)[1--,)+∞.【点睛】本题主要考查复合命题真假关系的应用,求出命题为真命题的a 的范围是解决本题的关键,是中档题.20.①③④【解析】对于①若则的逆命题为若则故逆命题为真命题则否命题也为真故①正确;对于②矩形的对角线相等的逆命题为对角线相等的四边形是矩形为假命题故其逆命题也为假故②错误;对于③其逆命题为:若的解集是则解析:①③④ 【解析】对于①“若0x y +>,则00x y >>且”的逆命题为“若00x y >>且,则0x y +>”故逆命题为真命题,则否命题也为真,故①正确;对于②“矩形的对角线相等”的逆命题为“对角线相等的四边形是矩形”为假命题,故其逆命题也为假,故②错误;对于③其逆命题为:若()22130mx m x m -+++>的解集是R ,则1m ≥,当该不等式解集为R 时,1.0m =时,不合题意,2.()()241430m m m m >⎧⎪⎨=+-+<⎪⎩解得1m ,故逆命题为真,即③正确;对于④,原命题为真,故逆否命题也为真,故④正确,即正确的序号为①③④,故答案为①③④.三、解答题21.(1)2x ≤或5x ≥(2)a <【分析】(1)先解分式不等式得出25x <<,再由p 与p ⌝的关系得出p ⌝为真时x 的取值范围; (2)由题意得出q 是p 的必要不充分条件,从而得到5a x x<+对于任意25x <<恒成立,由基本不等式求出5x x+的最小值,即可得出实数a 的取值范围. 【详解】 (1)122x x +>-等价于()()12220x x x ⎧+->⎨-≠⎩,解得25x << :25p x ∴<<,由p ⌝为真知:2x ≤或5x ≥;(2)q ⌝是p ⌝的充分不必要条件,则q 是p 的必要不充分条件.故2:50q x ax -+>对于任意25x <<恒成立 故5a x x <+,由基本不等式可知5x x+≥x =故a < 【点睛】本题主要考查了根据非命题的真假求参数,根据充分不必要条件求参数,属于中档题.22.(1)12a =(2)11()22xg x ⎛⎫=- ⎪⎝⎭(3)[0,4] 【分析】(1)因为函数()1-=+x af x a (0a >且1a ≠)过点1,22⎛⎫⎪⎝⎭,可得1212a a -+=,即可求得答案;(2)因为()121121x x a f x a --=+=+,13()22g x f x ⎛⎫=+- ⎪⎝⎭,即可求得答案; (3)命题p ⌝是假命题,故命题p 是真命题,当x ∈R 时,()220++≤g ax ax 恒成立,函数11()22xg x ⎛⎫=- ⎪⎝⎭,不等式2211022++⎛⎫-≤ ⎪⎝⎭ax ax 在R 上恒成立,即可求得答案. 【详解】 (1)函数()1-=+x af x a(0a >且1a ≠)过点1,22⎛⎫⎪⎝⎭.1212a a-∴+= ,即121a a-=解得:12a =, (2)由(1)12a =∴()121121x x a f x a --=+=+1122131311()1222222x xg x f x ⎛⎫+- ⎪⎝⎭⎛⎫⎛⎫⎛⎫∴=+-=-+=- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭ 11()22xg x ⎛⎫∴=- ⎪⎝⎭(3)命题p ⌝是假命题,故命题p 是真命题,∴当x ∈R 时,()220++≤g ax ax 恒成立, 函数11()22xg x ⎛⎫=- ⎪⎝⎭ ∴不等式2211022++⎛⎫-≤ ⎪⎝⎭ax ax 在R 上恒成立, 即221122++⎛⎫≤⎪⎝⎭ax ax 在R 上恒成立根据指数函数单调可知:12xy ⎛⎫= ⎪⎝⎭是减函数 ∴221ax ax ++≥在R 上恒成立即210ax ax ++≥在R 上恒成立, 当0a =时,不等式化为10≥成立;当0a ≠时,则需满足240a a a >⎧⎨-≤⎩, 解得04a <≤,综上所述,实数a 的取值范围是[0,4].【点睛】本题主要考查了求解函数解析式和根据不等式恒成立求参数范围,解题关键是掌握函数的基础知识和含参数一元二次不等式恒成立的解法,属于难题.23.(1){}26A x x =-<<,{}11B x m x m =-<<+;(2)答案见解析. 【分析】(1)根据一元二次不等式的解法求解即可得答案;(2)选:①充分不必要条件,则集合A 是集合B 的真子集,再根据集合关系求解即可; 选:②必要不充分条件,则集合B 是集合A 的真子集,再根据集合关系求解即可; 选:③充要条件,则B A =,再根据集合关系求解即可; 【详解】 解:(1)不等式()()202606x x x x +<⇔+-<-,故{}26A x x =-<<, 不等式()()22011021x x m x m x m <⇔+----+<-,由于0m >, 故{}11B x m x m =-<<+ (2)选:①充分不必要条件由(1)知{}26A x x =-<<,{}11B x m x m =-<<+, 因为若x A ∈是x B ∈成立的充分不必要条件, 所以集合A 是集合B 的真子集; 所以6121mm ≤+⎧⎨-≥-⎩,解得5m ≥,所以实数m 的取值范围为:[)5,+∞ 选:②必要不充分条件由(1)知{}26A x x =-<<,{}11B x m x m =-<<+, 因为若x A ∈是x B ∈成立的必要不充分条件, 所以集合B 是集合A 的真子集;所以6121m m ≥+⎧⎨-≤-⎩,解得3m ≤,又因为0m >,故03m <≤所以实数m 的取值范围为:(]03,; 选:③充要条件由(1)知{}26A x x =-<<,{}11B x m x m =-<<+, 因为若x A ∈是x B ∈成立的充要条件,所以B A =,所以6121m m =+⎧⎨-=-⎩,方程组无解.所以不存在实数m 使得x A ∈是x B ∈成立的充要条件; 【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断: (1)若p 是qq 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)若p 是qq 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)若p 是qq 的充分必要条件,则p 对应集合与q 对应集合相等;(4)若p 是qq 的既不充分又不必要条件,则q 对应的集合与p 对应集合互不包含. 24.(1)()2,3;(2)(]1,2. 【分析】(1)分别求解两个命题为真命题时x 的取值范围,再求交集;(2)首先根据命题的等价性转化为q 是p 的充分不必要条件,得到B A ≠⊂,再求参数a 的取值范围. 【详解】()1由()224300x ax a a -+<>,得3a x a <<即p 为真命题时3a x a << 由302x x-≥-, 得()()3202x x x ⎧--≥⎨≠⎩即23x <≤,即q 为真命题时,23x <≤1a =时,:13p x <<由p q ∧为真,知,p q 均为真命题,则1323x x <<⎧⎨<≤⎩得23x <<,所以实数x 的取值范围为()2,3()2设{}{}3,23A x a x a B x x =<<=<≤由题意知q 是p 的充分不必要条件,所以B A ≠⊂有0233a a <≤⎧⎨>⎩12a ∴<≤所以实数a 的取值范围为(]1,2.25.(1)(],1-∞-;(2)10,2⎡⎤⎢⎥⎣⎦.【分析】(1)由全称命题为真,结合一元二次不等式恒成立即可得解; (2)由一元二次不等式结合命题间的关系可转化条件为112x x ⎧⎫≤≤⎨⎬⎩⎭{}1x a x a ≤≤+,即可得解. 【详解】(1)若命题p 为真,则不等式220x x a +-≥对x R ∀∈恒成立, 所以440a ∆=+≤,1a ≤-, 所以实数a 的取值范围为(],1-∞-; (2)命题q 等价于112x ≤≤,命题r 等价于1a x a ≤≤+, 因为q 是r 的充分不必要条件,所以112xx ⎧⎫≤≤⎨⎬⎩⎭{}1x a x a ≤≤+, 所以1211a a ⎧≤⎪⎨⎪+≥⎩且上述等号不同时成立,所以102a ≤≤,所以实数a 的取值范围为10,2⎡⎤⎢⎥⎣⎦.【点睛】解决本题的关键是合理转化条件:将全称命题为真转化为一元二次不等式恒成立,将命题间的关系转化为集合间的关系.26.(1)()[)08-∞⋃+∞,,;(2)()[)19-∞-⋃+∞,,. 【分析】(1)根据假命题的定义,进行转化求解即可;(2)根据充分条件和必要条件的定义和关系建立不等式关系进行求解即可. 【详解】解:(1)当命题p 是真命题时:当0a =时,220ax ax -+>可化为20>,成立;当0a ≠时,2()420a a a >⎧⎨∆=--⋅<⎩,解得08a <<,综上所述,实数a 的取值范围是[)08,, 当命题p 是假命题时,实数a 的取值范围是()[)08-∞⋃+∞,,, ()2⌝p 是q 的必要不充分条件,则[]11m m -+,是()[)08-∞⋃+∞,,的真子集, 即10+<m 或18m -≥, 解得 1m <-或9m ≥,∴实数m 的取值范围是()[)19-∞-⋃+∞,,.【点睛】关键点睛:本题的解题关键在于,应用命题真假的定义和充分必要条件的定义分别列出相应的不等式进行求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章综合能力检测时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.△ABC中,sinA=sinB是∠A=∠B的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件[答案]C[解析]△ABC中,sinA=sinB?A=B.2.如果命题“綈(p或q)”为假命题,则()A.p、q均为真命题B.p、q均为假命题C.p、q中至少有一个为真命题D.p、q中至多有一个为真命题[答案]C[解析]∵綈(p或q)假,∴p或q真,∴p与q至少一真.3.与命题“若a∈M,则b?M”等价的命题是()A.若a?M,则b?MB.若b?M,则a∈MC.若a?M,则b∈MD.若b∈M,则a?M[答案]D[解析]即原命题的逆否命题,结论的否定b∈M作条件,条件的否定a?M作结论,故选D. 134.如果不等式|x-a|<1成立的充分非必要条件是<x<,则实数a的取值范围是()2213A.<a<22.13B.≤a≤2231C.a>或a< 2231D.a≥或a≤22[答案]B[解析]|x-a|<1?a-1<x<a+11?≤1a-23113??,,且等号不同时成立解得≤a+1)?≥1a+2选B.则有≤由题意知,故(a-1,a??222235.设集合U={(x,y)|x∈R,y∈R},A={(x,y)|2x-y+m>0},B={(x,y)|x+y-n≤0},那么点P(2,3)∈A∩(?B)的充要条件是()U A.m>-1,n<5B.m<-1,n<5C.m>-1,n>5D.m<-1,n>5[答案]A[解析]∵P∈A∩?B,U∴P∈A且P?B,?>0m3+2×2-??∴,?>0-n2+3??1-m>?A. ∴,故选?<5n) 是空间四个不同的点,在下列命题中,不正确的是(A、B、C、D6.设与BC共面.若AC与BD共面,则ADA BC 是异面直线与ACBD是异面直线,则AD与B.若BCDC=,则AD=C.若AB=AC,DB AD,则⊥BCAB.若=AC,DB=DCDC答案][*为{a}上”是“+3y)an(N n}a.已知数列7{,“对任意的∈,点P,都在直线=x2nnnn) (等差数列”的.A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件A][答案是等差数列;}2,则能推出{a+x2上,即有a=3n+][解析点P(n,a)在直线y=3nnnn A. 未必成立,所以是充分不必要条件,故选3n+2但反过来,{a}是等差数列,a=nn) ”的(”是“|a|=5=8)若向量a=(x,3)(x∈R),则“x4.8(2010·福建文,A.充分而不必要条件B.必要而不充分条件.充要条件 C D.既不充分又不必要条件A答案][ ]本题主要考查充分必要条件问题.[解析22=5|=+43当x=4时,|a2+9==5时,解得x=±4.x当|a|所以“x=4”是“|a|=5”的充分而不必要条件.22+bx+c<0}≠则集合{x|ax?”的逆命9.在命题“若抛物线y=ax+bx+c的开口向下,题,否命题,逆否命题的真假结论是()A.都真B.都假C.否命题真D.逆否命题真[答案]D22+bx+c<0. x的开口向下,又x∈R,则必存在,使ax=][解析若抛物线yaxbx++c2+bx+c<0}≠?,则抛物线{故原命题真,其逆否命题也为真,其逆命题为“若x|axy=2+bx+c的开口向下.ax”当a=0时,显然为假命题,则其否命题也为假,故选D.有四个关于三角函数的命题:)宁夏海南理(09·.10.1xx22 cos R,sin=+p:?x∈1222 siny)=sinx-R?x、y∈,sin(x-yp:2xcos21-x,=p:?x ∈[0,π]sin32π=+ycosy?xp:sinx=42) (其中假命题的是p A.p,41,pB.p42.p,pC31,pD.p43A][答案πxx22时,=xy==1;pR解析]p是假命题,∵?x∈,sin是真命题,例如:当+cos[ 212220. =-siny-y)=sinxsin(x 是真命题,p3,x>0,∈[0,π]sin∵?x1-cos2x=|sinx|=sinx. ∴2π7ππp是假命题,例如:sin=cosx+y=.4326π2π??+θ”的(=”是“tanθ=2cos) θ11.“??23A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件[答案]Aπ2π??+θ的解,θ=2cos 解法一:解析]∵θ=为方程tan[??23π2π??+θ成立的充分条件;是tanθ=2cos∴θ=??23π8π??+θ的解,2cosθ也是方程θ又∵=tan =??23.π2π??+θ的必要条件,故选=2cosA. ∴θ=不是tanθ??23π??+θ,2cos 解法二:∵tanθ=??21∴sinθ=0或cosθ=-,2π??+θ的解集为2cos ∴方程tanθ=??22???Z k∈2kπ±π,kθ=π或θ=θ,=A???3??2π?? A.,故选显然??3??12.设a、b、c表示三条直线,α、β表示两个平面,则下列命题中逆命题不成立的是()A.已知c⊥α,若c⊥β,则α∥βB.已知b?β,c是a在β内的射影,若b⊥c,则b⊥aC.已知b?β,若b⊥α,则β⊥αD.已知b?α,c?α,若c∥α,则b∥c[答案]C[解析]A的逆命题是:c⊥α,若α∥β,则c⊥β,真命题;B的逆命题是b?β,c是a在β内的射影,若b⊥a,则b⊥c.二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上)x是减函数,m)=-(7-3R的解集为;q:函数f(x)+13.设有两个命题:p:|x||x-1|≥m若这两个命题中有且只有一个真命题,实数m的取值范围是________.[答案]1<m<2[解析]若p为真命题,则根据绝对值的几何意义可知m≤1.若q为真命题,则7-3m>1,所以m<2,若p真q假,则m∈?.若p假q真,则1<m<2.综上所述,1<m<2.14.把下面不完整的命题补充完整,并使之成为真命题:若函数f(x)=3+logx的图象2与g(x)的图象关于________对称,则函数g(x)=________.(注:填上你认为可以成为真命题的一种情形即可,不必考虑所有可能的情形).[答案]可以填以下几种情形之一:①x轴,-3-logx 2②y轴,3+log)x-(2.) x(-③原点,-3-log23x-y=x,2④直线________条件.p是q的或:a≠2b≠3,则15.已知p:a+b≠5,q 充分不必要[答案],=32且b3”的逆否命题为“如果a=≠命题:“如果a+b≠5,则a2或b≠[解析] ”,显然是真命题.b=5则a+的充分条件.p即有:是q∴p?q 的必要条件.p 不是q同理:的充分条件,但不是必要条件.p是q∴x,+y,都有,y∈Sx16.(2010·四川文,16)设S为实数集R的非空子集,若对任意x 为封闭集.下列命题:,则称Sy,xy∈S-b3.a,b 为整数}为封闭集;①集合S={a+②若S为封闭集,则一定有0∈S;③封闭集一定是无限集;④若S为封闭集,则满足S?T?C的任意集合T也是封闭集.其中的真命题是________.(写出所有真命题的序号)[答案]①②[解析]本题考查根据所给信息解决实际问题的能力,要注意从基本概念,基本公式着手,理解题目中给出的信息是什么.对于①②都正确,对于③,封闭集不一定是无限集,例如当S={0}时,S是有限集,对于④不正确,例如当S={0},M是自然数集N时,M不是封闭集.三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分12分)将下列命题改写为“若p,则q”的形式.并判断真假.(1)偶数能被2整除;(2)奇函数的图象关于原点对称;(3)在同圆或等圆中,同弧或等弧所对的圆周角不相等.[解析](1)若一个数是偶数,则它能被2整除.真命题.(2)若一个函数是奇函数,则它的图象关于原点对称.真命题.(3)在同圆或等圆中,若两个角是同弧或等弧所对的圆周角,则它们不相等.假命题.”的形式,q则p“菱形的对角线互相垂直”,将此命题写成“若)分12本题满分(.18.写出它的逆命题、否命题、逆否命题,并指出其真假.[解析]“若p则q”形式:“若一个四边形是菱形,则它的对角线互相垂直”逆命题:“若一个四边形的对角线互相垂直,则它是菱形”,假.否命题:“若一个四边形不是菱形,则它的对角线不垂直”,假.逆否命题:“若一个四边形的对角线不垂直,则它不是菱形”,真.x2-2x-2)≥0;命题xq:|1-|<1.若p是真命题,19.(本小题满分12分)已知命题p:lg(2q 是假命题,求实数x的取值范围.222-2x-3≥0-2≥1,即x,lg(x-2x-2)≥0得x -2x[解析]由即(x-3)(x+1)≥0,∴x≥3或x≤-1.xx由|1-|<1,-1<1-<122∴0<x<4.∵命题q为假,∴x≤0或x≥4,则{x|x≥3或x≤-1}∩{x|x≤0或x≥4}={x|x≤-1或x≥4},∴满足条件的实数x的取值范围为(-∞,-1]∪[4,+∞).222>0,若p是qx+1-a的充分p:x--8x20>0,q:x2-已知本小题满分20.(12分)不必要条件,求实数a的取值范围.[解析]p:A={x|x<-2或x>10},q:b={x|x<1-a或x>1+a,a>0}如图AB,则有/ p,说明qp依题意,?q,但?>0a??2≥1-a-3≤a0<且等号不同时成立,解得?10≤a+1.∴实数a的取值范围是0<a≤322-4(a-1)xx+3的图象全在xf(x)=(a轴上方+4a-5)21.(本小题满分12分)求使函数成立的充要条件.[解析]要使函数f(x)的图象全在x轴上方的充要条件是:22??0-5=-5>0a+4aa+4a????或22??1)a-Δ=16(01=×3<0,a--4(a+4a-5)??解得1<a<19或a=1,故1≤a<19.所以使函数f(x)的图象全在x轴的上方的充要条件是1≤a<19.2+bx+c(a≠0)x)=ax的两个零点在点(m,0)的两22.(本小题满分14分)证明二次函数f(侧的充要条件是af(m)<0.2bb222222x(+)-+ac=a=则af(x)=ax+abx+aca(x4解析[]充分性:设Δ=b-ac≤04a2b122-4ac)≥0-(b,+)a422-4bac>0.af(m)<0矛盾,即)所以af(m≥0,这与2+bx+c(a≠0)有两个不等的零点,设为x,x,且x<x,从而f(f故二次函数(x)=axx)2112=a(x-x)(x-x),212(m-x)(m-x)<0,所以x<m(afm)=a<x. 2112必要性:设x,x是方程的两个零点,且x<x,由题意知x<m<x,22112因为f(x)=a(x-x)(x-x),且x<m<x. 21122(m-x)(m-a=x)<0,即af(m)<0.)(∴afm21综上所述,二次函数f(x)的两个零点在点(m,0)的两侧的充要条件是af(m)<0.。