数学建模选修课策略模型
lingo实现 建立选课策略多目标模型

数学模型实验—实验报告9一、实验项目:选课策略模型建立和求解二、实验目的和要求a.根据题目要求建立优化模型b.通过Lingo软件求解模型三、实验内容1.根据教材4.4节内容建立选课策略多目标模型。
目标一:课程数最少;目标二:学分最多,1)课程数最少前提下,学分最多模型.即在选修6门课的条件下使得总学分尽可能的多,这样应在原规划问题中增加约束条件x1+x2+x3+x4+x5+x6+x7+x8+x9=6;2)引入权重将两目标转化为单目标模型一般的,将权重记为λ1,λ2,且令λ1+ λ2=1, 0≤λ1,λ2≤1,则0—1规划模型的新目标为 min Y= λ1Z-λ2W2. 编写lingo程序求解:1)以课程数最少为单目标的优化模型(注意xi为0-1变量)min x1+x2+x3+x4+x5+x6+x7+x8+x9x1+x2+x3+x4+x5>=2;x3+x5+x6+x8+x9>=3;x4+x6+x7+x9>=2;2*x3-x1-x2<=0;x4-x7<=0;2*x5-x1-x2<=0;x6-x7<=0;x8-x5<=0;2*x9-x1-x2<=0;@BIN(X1);@BIN(X2);@BIN(X3);@BIN(X4);@BIN(X5);@BIN(X6);@BIN(X7);@BIN(X8);@BIN(X9);运行结果如下:Global optimal solution found.Objective value: 6.000000Objective bound: 6.000000Infeasibilities: 0.000000Extended solver steps: 0Total solver iterations: 0Variable Value Reduced CostX1 1.000000 1.000000X2 1.000000 1.000000X3 1.000000 1.000000X4 0.000000 1.000000X5 0.000000 1.000000X6 1.000000 1.000000X7 1.000000 1.000000X8 0.000000 1.000000X9 1.000000 1.000000Row Slack or Surplus Dual Price1 6.000000 -1.0000002 1.000000 0.0000003 0.000000 0.0000004 1.000000 0.0000005 0.000000 0.0000006 1.000000 0.0000007 2.000000 0.0000008 0.000000 0.0000009 0.000000 0.00000010 0.000000 0.0000002)求解以上方法建立的多目标模型,并调整权重值,观察模型结果的变化。
高中数学建模教学策略研究

高中数学建模教学策略研究高中数学建模教学策略研究是一项重要的研究工作,旨在探索有效的数学建模教学方法,以提高学生在数学建模方面的能力和解决问题的能力。
以下是一些可能有用的高中数学建模教学策略:1. 建立数学建模意识和兴趣。
学生应该被鼓励去探索数学建模的本质,并认识到数学建模在实际应用中的重要性。
教师可以通过展示实际问题,或者通过编写有趣的数学公式和题目等方式激发学生的兴趣。
2. 强调数学建模过程的独立性。
数学建模需要学生独立思考和解决问题,不应该被限制在对已有知识的简单再现中。
教师可以鼓励学生自主学习,探究问题的本质,从而提高学生的独立思考能力。
3. 利用多媒体教室进行教学。
多媒体教室可以提供更加丰富和多元化的教学资源,如视频,图片和动画等,以帮助学生更好地理解和记忆数学建模的概念和公式。
4. 进行案例教学。
教师可以选取一些实际问题,通过数学建模的方法解决这些问题,以展示数学建模的实际应用场景和效果。
案例教学可以帮助学生更好地理解数学建模的概念和方法。
5. 加强团队合作能力的培养。
数学建模通常需要多个学生合作完成,因此教师可以通过分组合作,竞赛等方式提高学生的团队合作能力。
6. 利用在线资源进行学习。
学生可以通过互联网上的各种资源进行学习,如在线课程,网上论坛和博客等。
教师可以利用这些资源引导学生学习数学建模的知识和技能。
7. 鼓励学生进行实践操作。
数学建模需要学生在解决实际问题时进行实践操作,因此教师应该为学生提供实践操作的机会,如实验室操作,模拟实验等,以提高学生的实践能力。
以上是一些可能有用的高中数学建模教学策略,但具体的教学方法还需要根据学生的学习特点和问题进行选择和调整。
数学建模 选修课策略模型

黑龙江科技大学题目:选课策略数学模型班级:姓名:学号:摘要本问题要求我们为了解决学生最优选课问题,本文利用0-1规划模型先找出目标函数,再列出约束条件,分三步得出对最终问题逐层分析化多目标规划为单目标规划,从而建立模型,模型建立之后,运用LINGO软件求解,得到最优解,满足同学选修课程的数量少,又能获得的学分多。
特点:根据以上分析,特将模型分成以下几种情况,(1)考虑获得最多的学分,而不考虑所选修的课程的多少;(2)考虑课程最少的情况下,使得到的学分最多;(3)同时考虑学分最多和选修科目最少,并且所占比例三七分。
在不同的情况下建立不同的模型,最终计算出结果。
关键词 0-1规划选修课要求多目标规划模型一:同时要求课程最少而且获得的学分最多,并按3:7的重要性建立模型。
模型二:要求选修课的课程最少,学分忽略;约束条件只有,每人至少学习2门数学,3门运筹学,2 门计算机,和先修课的要求建立模型一。
模型三:要求科目最少的情况下,获得的学分尽可能最多,只是目标函数变了,约束条件没变。
一.问题的重述某学校规定,运筹学专业的学生毕业时必须至少学过两门数学课,三门运筹学课,两门计算机。
这些课程的编号,名称,学分,所属类别和选修课的要求如表所示。
那么,毕业时最少可以学习这些课程中的哪些课程。
如果某个学生即希望选修课程的数量最少,又希望所获得的学分最多,他可以选修哪些课程?二.模型的假设及符号说明1.模型假设1)学生只要选修就能通过;2)每个学生都必须遵守规定;2. 符号说明1)xi:表示选修的课程(xi=0表示不选,xi=1表示选i=1,2,3,4,5,6,7,8,9);三.问题分析对于问题一,在忽略所获得学分的高低,只考虑课程最少,分析题目,有先修课要求,和最少科目限制,建立模型一,计算求出结果;对于问题二,在模型一的条件下,考虑分数最高,把模型一的结果当做约束条件,建立模型二,计算求出结果;对于问题三,同时考虑两者,所占权重比一样,建立模型三;四.模型的建立及求解模型一目标函数:min=0.7*(x1+x2+x3+x4+x5+x6+x7+x8+x9)-0.3*(5*x1+4*x2+4*x3+3*x4+4*x5+3*x6+2*x 7+2*x8+3*x9)约束条件:x1+x2+x3+x4+x5>=2;x3+x5+x6+x8+x9>=3;x4+x6+x7+x9>=2;2*x3-x1-x2<=0;x4-x7<=0;2*x5-x1-x2<=0;x6-x7<=0;x8-x5<=0;2*x9-x1-x2<=0;模型的求解:输入:min=0.7*(x1+x2+x3+x4+x5+x6+x7+x8+x9)-0.3*(5*x1+4*x2+4*x3+3*x4+4*x5+3*x6+2*x 7+2*x8+3*x9;x1+x2+x3+x4+x5>=2;x3+x5+x6+x8+x9>=3;x4+x6+x7+x9>=2;2*x3-x1-x2<=0;x4-x7<=0;2*x5-x1-x2<=0;x6-x7<=0;x8-x5<=0;2*x9-x1-x2<=0;@bin(x1);@bin(x2);@bin(x3);@bin(x4);@bin(x5);@bin(x6);@bin(x7);@bin(x9); 输出:Global optimal solution found.Objective value: -2.800000Extended solver steps: 0Total solver iterations: 0Variable Value Reduced CostX1 1.000000 -0.8000000X2 1.000000 -0.5000000X3 1.000000 -0.5000000X4 1.000000 -0.2000000X5 1.000000 -0.5000000X6 1.000000 -0.2000000X7 1.000000 0.1000000X8 0.000000 0.1000000X9 1.000000 -0.2000000Row Slack or Surplus Dual Price1 -2.800000 -1.0000002 3.000000 0.0000003 1.000000 0.0000004 2.000000 0.0000005 0.000000 0.0000006 0.000000 0.0000007 0.000000 0.0000008 0.000000 0.0000009 1.000000 0.00000010 0.000000 0.0000001.模型二:目标函数:min z=x1+x2+x3+x4+x5+x6+x7+x8+x9约束条件:X1+x2+x3+x4+x5>=2X3+x5+x6+x8+x9>=3X4+x6+x7+x9>=22*x3-x1-x2<=0x4-x7<=02*x5-x1-x2<=0x6-x7<=0x8-x5<=02*x9-x1-x2<=0模型的求解本文运用lingo运算球的结果:输入min=x1+x2+x3+x4+x5+x6+x7+x8+x9;x1+x2+x3+x4+x5>=2;x3+x5+x6+x8+x9>=3;x4+x6+x7+x9>=2;2*x3-x1-x2<=0;x4-x7<=0;2*x5-x1-x2<=0;x6-x7<=0;x8-x5<=0;2*x9-x1-x2<=0;@bin(x1);@bin(x2);@bin(x3);@bin(x4);@bin(x5);@bin(x6);@bin(x7);@bin(x9);输出:Global optimal solution found.Objective value: 6.000000Extended solver steps: 0Total solver iterations: 1Variable Value Reduced CostX1 1.000000 1.000000X2 1.000000 1.000000X3 1.000000 1.000000X4 0.000000 1.000000X5 0.000000 1.000000X6 1.000000 1.000000X7 1.000000 1.000000X8 0.000000 1.000000X9 1.000000 1.000000Row Slack or Surplus Dual Price1 6.000000 -1.0000002 1.000000 0.0000003 0.000000 0.0000004 1.000000 0.0000005 0.000000 0.0000006 1.000000 0.0000007 2.000000 0.0000008 0.000000 0.0000009 0.000000 0.00000010 0.000000 0.000000模型三:目标函数:Max W=5*x1+4*x2+4*x3+3*x4+4*x5+3*x6+2*x7+2*x8+3*x9;约束条件:X1+x2+x3+x4+x5>=2X3+x5+x6+x8+x9>=3X4+x6+x7+x9>=22*x3-x1-x2<=0x4-x7<=02*x5-x1-x2<=0x6-x7<=0x8-x5<=02*x9-x1-x2<=0x1+x2+x3+x4+x5+x6+x7+x8+x9=6运用lingo解题:输入:max=5*x1+4*x2+4*x3+3*x4+4*x5+3*x6+2*x7+2*x8+3*x9;x1+x2+x3+x4+x5>=2;x3+x5+x6+x8+x9>=3;x4+x6+x7+x9>=2;2*x3-x1-x2<=0;x4-x7<=0;2*x5-x1-x2<=0;x6-x7<=0;x8-x5<=0;2*x9-x1-x2<=0;x1+x2+x3+x4+x5+x6+x7+x8+x9=6;@bin(x1);@bin(x2);@bin(x3);@bin(x4);@bin(x5);@bin(x6);@bin(x7);@bin(x9); 输出:Global optimal solution found.Objective value: 22.00000Extended solver steps: 0Total solver iterations: 0Variable Value Reduced CostX1 1.000000 -3.000000X2 1.000000 -2.000000X3 1.000000 -2.000000X4 0.000000 -1.000000X5 1.000000 -2.000000X6 1.000000 -1.000000X7 1.000000 0.000000X8 0.000000 0.000000X9 0.000000 -1.000000Row Slack or Surplus Dual Price1 22.00000 1.0000002 2.000000 0.0000003 0.000000 0.0000004 0.000000 0.0000005 0.000000 0.0000006 1.000000 0.0000007 0.000000 0.0000008 0.000000 0.0000009 1.000000 0.00000010 2.000000 0.00000011 0.000000 2.000000五.结果的检验与分析经过检验输入式子正确,结果多次验证一样。
数学建模与教学策略

数学建模与教学策略
数学建模是现代数学的重要分支之一,它是将数学理论和方法应用到实际问题中去,
使用数学工具进行建模、分析和求解的过程。
数学建模不仅可以帮助解决现实问题,还可
以培养学生的创新能力和解决实际问题的能力。
在数学教学中,我们应该注重培养学生的数学建模能力。
如何实现这一目标呢?首先,我们应该让学生学会如何构建数学模型,这需要学生掌握课本中的基本数学知识和技能。
其次,我们应该让学生接触到真正的实际问题,鼓励他们主动思考,搜集信息,并从建模、分析和求解的角度来思考问题。
在教学中,我们可以通过项目式教学的方式来培养学生的数学建模能力。
比如,让学
生选择一个自己感兴趣的话题,如环保、交通、金融等,然后根据相关的信息,构建一个
数学模型,并用数学方法求解问题。
这样的教学方式不仅可以提高学生的学习兴趣和参与度,还可以使学生深入了解实际问题,并将数学知识应用到实际问题中去。
除了教学策略上的调整,我们还应该注意培养学生的数学思维方式。
数学建模需要学
生具备创新性、探究性和解决问题的能力。
因此,我们应该通过教学来培养学生的数学思
维方式,让他们学会如何独立思考,如何探索未知问题,并且教会他们如何利用数学知识
和方法进行问题求解。
总之,数学建模是一个当代数学重要分支,培养学生的数学建模能力是当今数学教育
的重要任务之一。
在教学中,我们应该采用更加灵活多样的教学策略,使学生能够学到实
用的数学知识,激发学生的探究精神和创造力,培养学生的解决实际问题的能力,让学生
在数学学科中取得更好的成绩。
基于模型思想的中考数学建模题的教学策略

基于模型思想的中考数学建模题的教学策略随着社会的不断发展,数学建模在教学中变得越来越受到重视。
中考数学建模题作为数学教学新的一种形式,在教学中需要采用不同的教学策略,来引导学生学习并掌握建模的基本思想和方法。
本文将针对基于模型思想的中考数学建模题的教学策略进行探讨,希望可以为教师在教学中提供一些参考和借鉴。
一、教学目标在进行中考数学建模题的教学中,首先应明确教学目标。
教师应该明确引导学生掌握基础的数学知识、建立数学模型的能力和运用数学模型解决实际问题的方法。
教师还应该培养学生的数学思维能力、创新能力和团队合作精神。
只有明确了教学目标,教师才能有目标地进行教学设计和教学实施。
二、教学内容在教学中,教师需要将数学建模题与中考数学知识相结合,设计合理的教学内容。
教师应该让学生掌握建模的基本思想和方法,比如问题抽象、建立模型和模型求解等基本步骤。
教师还需要选取一些具体的中考数学建模题,让学生进行实际练习,通过实际操作,巩固所学的知识和方法。
三、教学策略1.引导学生主动学习在教学中,应该引导学生主动学习,主动探究。
教师不再是传统教学中的“灌输者”,而是变成了学生学习的引导者和指导者。
教师可以利用案例教学、问题解决等方式,让学生从实际问题中找到学习的动力和目标,激发学生的学习兴趣和学习动力。
2.培养学生的团队合作精神在数学建模教学中,学生通常会被组成小组,进行团队合作。
这对学生来说是一个很好的锻炼机会,可以培养学生的团队合作能力、沟通能力和组织协调能力。
教师可以通过团队讨论、分工合作的方式,让学生在合作中共同成长,发现问题、解决问题。
3.提供多样化的问题情境在教学中,教师可以提供多样化的问题情境,让学生有机会在不同的情境下进行建模实践,提高学生的建模能力和解决实际问题的能力。
通过多样化的问题情境,可以激发学生的求知欲,培养学生的探究精神。
4.结合实际、生动呈现在教学中,教师可以结合实际生活中的问题来设计建模题,让学生从实际问题出发,建立模型、解决问题。
数学建模-选课问题

选课问题小组成员:李桥鸽李嘉仪陈清珂一、摘要大学生在学习中常会遇到选课问题,既要使自己所选择的课程符合自己的兴趣,又要用最少的课程达到最好的效果,最重要是满足学校所修课程的要求以达到毕业,有些课程必须在具备基础科目学习经历的前提下才能进行选择,,在这多种因素引导下选课过程往往发生矛盾。
因此只有对各种因素进行周密考虑,最终方可得出最优化的结果。
选课所得到的结果必然为整数,因此本题可以可归结为整数线性规划的最优化问题。
二.问题重述某学校规定,其运筹学专业的学生想要毕业,就至少要修过两门数学课,三门运筹学课和两门计算机课。
而其备选课程供有9种,按1到9编号,都有其各自对应的学分,以及对于先修课程的要求。
在满足题设要求的前提下,提出问题:1.学生毕业时最少可以学习哪些课程;2.学生选择哪些课程可以使自己选修的课程数量少而所获总学分多?3. 对课程数目和学分具不同的比例偏好的人,如何选择?(以偏好比例课程数比总学分=7:3为例)三、问题分析根据题目要求,学生选修课程必须同时满足下列条件:(1)任何一个学生所选择的所有课程中,至少应包括两门属于数学类的课程,三门属于运筹学类的课程以及两门属于计算机类的课程;(2)课程编号为3、4、5、6、8、9的六门课选修前都必须先学过其他几门课。
要选3号或5号、9号课程就必须先学1、2号课程,要选4号或6号课程就必须先学7号课程,要学8号课程就必须先学5号课程。
因此,针对目标一,要求所选符合上述要求的课程数量最少,我们选择了以下方案首先选择1,2再选择课程5,8,其次选择课程课程7,6;如此来看这样只用选择六个课程就可以完成所也需要的要求,粗略的估计出选择1,2,5,8,7,6这几个课程是最好的结果;针对目标二,要求选择的符合要求的课程数量最少的同时其累计学分最多,我们也认为这个方案可以获得的学分为22分即是最好的结果。
但这都是主观上的判断,难免有偏差。
由于本题研究的是选课过程的最优化结果,因此首先必须根据所给条件,分析出各个课程之间的关系,并用清晰的数学表达式描述。
my数学建模课件对策与决策模型

石头 剪子 布
例3 (囚犯的困惑) 警察同时逮捕了两人并分开关押,逮捕的原因是他们持有大 量伪币,警方怀疑他们伪造钱币,但没有找到充分证据,希 望他们能自己供认,这两个人都知道:如果他们双方都不供 认,将被以使用和持有大量伪币罪被各判刑18个月;如果双 方都供认伪造了钱币,将各被判刑3年;如果一方供认另一方 不供认,则供认方将被从宽处理而免刑,但另一方面将被判 刑7年。将嫌疑犯A、B被判刑的几种可能情况列表如下: 表2
故烧鸡的最佳制作量为28只。 最佳平均利润为 28 5 7.5(28 ) P( ) 133.1(元)
25
28
2。3不确定型决策问题
只知道有几种可能自然状态发生,但各种自然状态发生的概率未知的决 策问题称为不确定型决策问题,由于概率未知,期望值方法不能用于这 类决策问题。下面结合一个例子,介绍几种处理这类问题的方法。 例10 设存在五种可能的自然状态,其发生的概率未知。有四种可供选择 的行动方案,相应的收益值见下表 表8
m
( m, 1)
( m, 2)
…
( m, j)
…
( m , n)
(3)赢得函数(或称支付函数)。 赢得函数F为定义在局势集合S上的矢值函数,对于S中的每一 纯局势S,F(S)指出了每一局中人在此对策结果下应赢得 (或支付)的值。综上所述,一个对策模型由局中人、策略 集合和赢得函数三部分组成。记局中人集合为I = {1,„,k}, 对每一i∈I,有一策略集合Si,当I中每一局中人i选定策略 后得一个局势s;将s代入赢得函数F,即得一矢量F(s) = ( F1(s),„,Fk(s)),其中Fi(s)为在局势s下局中人i的赢得 (或支付)。 本节讨论只有两名局中人的对策问题,即两人对策,其结果可 以推广到一般的对策模型中去。对于只有两名局中人的对策问 题,其局势集合和赢得函数均可用表格表示。
数学建模选课问题

1.问题提出对于问题一,我们必须考虑在学校和院系的规定的条件下对同学选课最少进行求解。
所以我们先从已知条件入手,把他们转化为约束条件,然后建立0-1整数优化模型,利用LINGO软件对其进行求解。
对于问题二,我们同样考虑在选修学分最少的情况下对同学选课最多进行求解。
但两者不能同时都满足,所以我们必须把这个双优化模型转化为单优化模型,然后再利用LINGO对其进行求解。
问题三则是考虑了选修课程限选人数的问题,所以必须针对不同的学生类型设计相应的选择方案。
同时考虑到选修的课程能否如愿选上,需要在已只知不同课程限选人数的情况下,利用对不同目标加权的方法对问题进行优化。
2符号说明与模型假设2.1符号说明表2:符号说明表注:其它符号在文中另加说明2.2模型假设(1):各个同学在选修课程时不受其他因素影响,只受学分和选修课程门数影响。
(2):学生选课是独立的,相互之间不影响。
(3):选课的学生有两种类型,一类是对这门课真正感兴趣的,另一类是“混学分”的,且这两类各占选课学生人数的一半。
(4):学生的信息是不公开的。
(5):问题三中没有提到的课程表示人数没有限制。
3模型建立和求解3.1问题一的解决3.1.1模型的建立用xi表示选修表中按照编号顺序的18门课程的选择(i=1,2,…18),其中xi 取值为1或者0。
其定义如下:采用目标规划的方法,考虑到学校的各种约束条件,将约束条件用数学表达式表示为一下几点:1:要使选修课程的总学分数不少于18,既有下面的不等式:2:任选课程的比例不能少于所修总学分的1/6,也不能超过1/3:3:课程号为5、6、7、8的课程必须至少选一门:4:选修某些课程必须同时选修其他课程,可以表示为:在达到以上要求的情况下,只考虑选修课程最少的情况,相应的目标函数为:在Lingo[1]中可以对该目标函数进行优化,其中约束条件为①②③④,由于上述条件中有大于关系,可以在两边乘以—1将约束条件全部转换成小于关系,这样便于在Lingo中求解.最后本文建立了如下的优化模型3.1.2模型的求解利用LINGO软件求解可以得到3.1.3问题一的结果最后本文得到了在学校和院系的要求下选课最少是选五门,选择方案是选择课程1,2,6,10,14。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
科技大学题目:选课策略数学模型班级:姓名:学号:摘要本问题要求我们为了解决学生最优选课问题,本文利用0-1规划模型先找出目标函数,再列出约束条件,分三步得出对最终问题逐层分析化多目标规划为单目标规划,从而建立模型,模型建立之后,运用LINGO软件求解,得到最优解,满足同学选修课程的数量少,又能获得的学分多。
特点:根据以上分析,特将模型分成以下几种情况,(1)考虑获得最多的学分,而不考虑所选修的课程的多少;(2)考虑课程最少的情况下,使得到的学分最多;(3)同时考虑学分最多和选修科目最少,并且所占比例三七分。
在不同的情况下建立不同的模型,最终计算出结果。
关键词0-1规划选修课要求多目标规划模型一:同时要求课程最少而且获得的学分最多,并按3:7的重要性建立模型。
模型二:要求选修课的课程最少,学分忽略;约束条件只有,每人至少学习2门数学,3门运筹学,2 门计算机,和先修课的要求建立模型一。
模型三:要求科目最少的情况下,获得的学分尽可能最多,只是目标函数变了,约束条件没变。
一.问题的重述某学校规定,运筹学专业的学生毕业时必须至少学过两门数学课,三门运筹学课,两门计算机。
这些课程的编号,名称,学分,所属类别和选修课的要求如表所示。
那么,毕业时最少可以学习这些课程中的哪些课程。
如果某个学生即希望选修课程的数量最少,又希望所获得的学分最多,他可以选修哪些课程?二.模型的假设及符号说明1.模型假设1)学生只要选修就能通过;2)每个学生都必须遵守规定;2. 符号说明1)xi:表示选修的课程(xi=0表示不选,xi=1表示选i=1,2,3,4,5,6,7,8,9);三.问题分析对于问题一,在忽略所获得学分的高低,只考虑课程最少,分析题目,有先修课要求,和最少科目限制,建立模型一,计算求出结果;对于问题二,在模型一的条件下,考虑分数最高,把模型一的结果当做约束条件,建立模型二,计算求出结果;对于问题三,同时考虑两者,所占权重比一样,建立模型三;四.模型的建立及求解模型一目标函数:min=0.7*(x1+x2+x3+x4+x5+x6+x7+x8+x9)-0.3*(5*x1+4*x2+4*x3+3*x4+4*x5+3*x6+ 2*x7+2*x8+3*x9)约束条件:x1+x2+x3+x4+x5>=2;x3+x5+x6+x8+x9>=3;x4+x6+x7+x9>=2;2*x3-x1-x2<=0;x4-x7<=0;2*x5-x1-x2<=0;x6-x7<=0;x8-x5<=0;2*x9-x1-x2<=0;模型的求解:输入:min=0.7*(x1+x2+x3+x4+x5+x6+x7+x8+x9)-0.3*(5*x1+4*x2+4*x3+3*x4+4*x5+3*x6+ 2*x7+2*x8+3*x9;);x1+x2+x3+x4+x5>=2;x3+x5+x6+x8+x9>=3;x4+x6+x7+x9>=2;2*x3-x1-x2<=0;x4-x7<=0;2*x5-x1-x2<=0;x6-x7<=0;x8-x5<=0;2*x9-x1-x2<=0;bin(x1);bin(x2);bin(x3);bin(x4);bin(x5);bin(x6);bin(x7);bin(x9);输出:Global optimal solution found.Objective value: -2.800000Extended solver steps: 0Total solver iterations: 0Variable Value Reduced CostX1 1.000000 -0.8000000X2 1.000000 -0.5000000X3 1.000000 -0.5000000X4 1.000000 -0.2000000X5 1.000000 -0.5000000X6 1.000000 -0.2000000X7 1.000000 0.1000000X8 0.000000 0.1000000X9 1.000000 -0.2000000Row Slack or Surplus Dual Price1 -2.800000 -1.0000002 3.000000 0.0000003 1.000000 0.0000004 2.000000 0.0000005 0.000000 0.0000006 0.000000 0.0000007 0.000000 0.0000008 0.000000 0.0000009 1.000000 0.00000010 0.000000 0.0000001.模型二:目标函数:min z=x1+x2+x3+x4+x5+x6+x7+x8+x9约束条件:X1+x2+x3+x4+x5>=2X3+x5+x6+x8+x9>=3X4+x6+x7+x9>=22*x3-x1-x2<=0x4-x7<=02*x5-x1-x2<=0x6-x7<=0x8-x5<=02*x9-x1-x2<=0模型的求解本文运用lingo运算球的结果:输入min=x1+x2+x3+x4+x5+x6+x7+x8+x9;x1+x2+x3+x4+x5>=2;x3+x5+x6+x8+x9>=3;x4+x6+x7+x9>=2;2*x3-x1-x2<=0;x4-x7<=0;2*x5-x1-x2<=0;x6-x7<=0;x8-x5<=0;2*x9-x1-x2<=0;bin(x1);bin(x2);bin(x3);bin(x4);bin(x5);bin(x6);bin(x7);bin(x9);输出:Global optimal solution found.Objective value: 6.000000 Extended solver steps: 0 Total solver iterations: 1Variable Value Reduced Cost X1 1.000000 1.000000X2 1.000000 1.000000X3 1.000000 1.000000X4 0.000000 1.000000X5 0.000000 1.000000X6 1.000000 1.000000X7 1.000000 1.000000X8 0.000000 1.000000X9 1.000000 1.000000Row Slack or Surplus Dual Price1 6.000000 -1.0000002 1.000000 0.0000003 0.000000 0.0000004 1.000000 0.0000005 0.000000 0.0000006 1.000000 0.0000007 2.000000 0.0000008 0.000000 0.0000009 0.000000 0.00000010 0.000000 0.000000模型三:目标函数:Max W=5*x1+4*x2+4*x3+3*x4+4*x5+3*x6+2*x7+2*x8+3*x9;约束条件:X1+x2+x3+x4+x5>=2X3+x5+x6+x8+x9>=3X4+x6+x7+x9>=22*x3-x1-x2<=0x4-x7<=02*x5-x1-x2<=0x6-x7<=0x8-x5<=02*x9-x1-x2<=0x1+x2+x3+x4+x5+x6+x7+x8+x9=6运用lingo解题:输入:max=5*x1+4*x2+4*x3+3*x4+4*x5+3*x6+2*x7+2*x8+3*x9;x1+x2+x3+x4+x5>=2;x3+x5+x6+x8+x9>=3;x4+x6+x7+x9>=2;2*x3-x1-x2<=0;x4-x7<=0;2*x5-x1-x2<=0;x6-x7<=0;x8-x5<=0;2*x9-x1-x2<=0;x1+x2+x3+x4+x5+x6+x7+x8+x9=6;bin(x1);bin(x2);bin(x3);bin(x4);bin(x5);bin(x6);bin(x7);bin(x9);输出:Global optimal solution found.Objective value: 22.00000Extended solver steps: 0Total solver iterations: 0Variable Value Reduced CostX1 1.000000 -3.000000X2 1.000000 -2.000000X3 1.000000 -2.000000X4 0.000000 -1.000000X5 1.000000 -2.000000X6 1.000000 -1.000000X7 1.000000 0.000000X8 0.000000 0.000000X9 0.000000 -1.000000Row Slack or Surplus Dual Price1 22.00000 1.0000002 2.000000 0.0000003 0.000000 0.0000004 0.000000 0.0000005 0.000000 0.0000006 1.000000 0.0000007 0.000000 0.0000008 0.000000 0.0000009 1.000000 0.00000010 2.000000 0.00000011 0.000000 2.000000五.结果的检验与分析经过检验输入式子正确,结果多次验证一样。
结果分析:模型一分析:模型一的结果为x1=x2=x3=x6=x7+x9=1即选修编号为1,2,3,6,7,9的选修课时达到了,在选修课的课程最少。
最少为6门。
模型二分析:模型二的结果为x1=x2=x3=x5=x6=x7=1即选修编号为1,2,3,5,6,7的选修课时达到了,在选修课程最少的情况下,尽可能的分数最多,最多为22学分。
模型三分析:课程数与学分数按权重三七分,结果为x1+x2+x3+x4+x5+x6+x7+x9=1即只有编号为8的不用选修,共28学分。
六.模型的评价与推广本文运用了0-1规划解决了学修课选择的难题,但是还没有建立满足不同需要的学生,还需要进一步的建立模型和计算。
如建立以学分最多为目标的模型,或建立以课程数和学分数等权重的模型。
解决不同的问题。