九年级数学旋转第一讲旋转对称与中心对称
初中数学九年级旋转知识点总结

旋转是数学中的一个重要概念,主要是围绕一些中心点将图形绕着一些轴旋转一定的角度。
在初中数学九年级的课程中,学生会接触到旋转的一些基本知识点,下面是对这些知识点进行总结。
1.旋转概念旋转是指将一个平面图形绕一些固定点旋转一定角度,得到一个新的图形的操作。
固定点称为旋转中心,角度称为旋转角度。
2.旋转中心旋转中心是旋转的基准点,围绕该点进行旋转。
可以是图形上的任意一点,也可以是图形外的一点。
3.旋转角度旋转角度是指图形绕旋转中心旋转的角度,用度来表示,常用的旋转角度有90度、180度、270度和360度。
4.旋转方向旋转方向分为顺时针和逆时针两种。
顺时针旋转是指沿着顺时针方向绕旋转中心旋转,逆时针旋转是指沿着逆时针方向绕旋转中心旋转。
5.旋转对称性旋转对称性是指一个图形经过旋转后与原来的位置、大小和形状完全相同。
旋转对称性有以下几种:-旋转对称:图形与它的一些旋转位置完全相同。
-旋转中心对称:图形围绕旋转中心旋转180度后与原来的位置完全相同。
-旋转中心旋转:图形围绕旋转中心旋转90度、180度或270度后与原来的位置完全相同。
6.旋转的性质旋转具有以下几个基本性质:-旋转不改变图形的面积。
-旋转不改变图形的内外角度。
-旋转不改变图形的对称性。
-旋转后的图形与原图形相似。
7.旋转图形的坐标变换当一个图形绕一些旋转中心旋转一定角度后,图形上的每个点都会发生坐标的变化。
对于二维平面上的点P(x,y),绕坐标原点逆时针旋转a度后,点的新坐标为P':- P'(x',y') = (x\cdot\cos{a}-y\cdot\sin{a},x\cdot\sin{a}+y\cdot\cos{a})8.旋转图形的运用旋转图形可以用来验证一些几何性质,解决一些几何问题。
比如可以通过旋转来证明两线段相等,两角相等,以及判断两个图形是否相似等等。
人教版九年级数学上册基础训练旋转讲义及答案

2017-2018人教版九年级数学上册基础训练---旋转(讲义及答案)旋转(讲义)课前预习1.平移是,只改变图形的,不改变图形的.2.平移与轴对称知识点睛1.旋转(1)旋转的定义在平面内,将一个图形绕一个定点按某个方向转动一个角度,这样的图形运动称为,这个定点称为,转动的角称为.旋转不改变图形的和.(2)旋转的性质对应点到旋转中心的距离;对应点与旋转中心所连线段的夹角等于;旋转前、后的图形.2.中心对称(1)中心对称的定义把一个图形绕着某一点旋转°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或,这个点叫做(简称中心).这两个图形在旋转后能重合的对应点叫做关于对称中心的., (2)中心对称的性质中心对称的两个图形,对称点所连线段都经过 ,而且被对称中心所.中心对称的两个图形是.3. 中心对称图形把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.如果一条直线经过中心对称图形的对称中心,那么这条直线将该中心对称图形分割成面积相等的两部分.4. 坐标系中的对称点(1)平面直角坐标系中,两个点关于原点对称时,它们的坐标符号相反,即点 P (x ,y )关于原点的对称点为P ′( , ).(2)平面直角坐标系中,若两个点 A (x 1,y 1),B (x 2,y 2)关于点 C 对称,则点 C 为线段 AB 的中点,此时点 C 的坐标为 (x 1 + x 2 y 1+ y 2 ) . 2 2精讲精练1.如图,在网格纸中有一Rt △ABC .(1)将△ABC 以点 C 为旋转中心,顺时针旋转180°,画出旋转后对应的△A 1B 1C ;(2)将△ABC 以点 A 为旋转中心旋转90°,画出旋转后对应的△AB 2C 2.BC2.如图,在4×4 的正方形网格中,△MNP 绕某点旋转一定的角度得到△M 1N 1P 1,则其旋转中心可能是( ) A .点 A B .点 B C .点 C D .点 D N 1M 13.如图,△OAB 绕点 O 逆时针旋转80°到△OCD 的位置,已知∠AOB =45°,则∠AOD = .ADE ACBOD第 3 题图第 4 题图4. 如图,将△ABC 绕点 A 逆时针旋转一定角度,得到△ADE .若∠CAE =65°,∠E =70°,且AD ⊥BC ,∠BAC 的度数为 .5.如图,在△ABC 中,∠CAB =70°.在同一平面内,将△ABC 绕点 A 旋转到△AB ′C ′的位置,使得CC ′∥AB ,则∠BAB ′= ( ) A .30°B .35°C .40°D .50°B'C'CABDO6.如图,已知菱形 OABC 的两个顶点 O (0,0),B (2,2),若将菱形绕点 O 旋转α°(0≤α≤360),恰好使 OB 与 x 轴正半轴重合,则α= .7.如图,点 O 是等边三角形 ABC 内一点,∠A OB =110°,∠B OC = 145°.将△BOC 绕点 C 按顺时针方向旋转60°得到△ADC , 连接 OD ,则∠AOD =( ) A .40° B .45° C .50° D .55°AB'B 第 7 题图第 8 题图8.如图,将等腰Rt △ABC 绕点 A 逆时针旋转15°后得到△AB ′C ′, 若 AC =1,则图中阴影部分的面积为( ) A .3 3B .3 C . 6D . 3 9.下列图形:①线段;②平行四边形;③等边三角形;④等腰直角三角形;⑤菱形;⑥长方形;⑦正方形;⑧圆.其中是中心对称图形的有.10. 下列图案中,既是中心对称又是轴对称图形的个数有()A .1B .2C .3D .4331 1 .如图,在□ABCD 中,AC,BD 为对角线,BC=6,BC 边上的高为 4,则图中阴影部分的面积为() A.3 B.6 C.12 D.24 A DB 1 2 .C如图,在平面直角坐标系中,四边形 ABCO 是正方形,点B的坐标为(4,4),直线 y ? mx ? 2 恰好把正方形 ABCO 分成面积相等的两部分,则 m 的值为 y A B y A C M O C x O E x .B D1 3 .第 12 题图第 13 题图如图,在平面直角坐标系中,已知多边形OABCDE 的顶点坐标分别是 O(0,0),A(0,6),B(4,6),C(4,4),D(6,4),E(6 ,0).若直线 l 经过点 M(2,3),且将多边形 OABCDE 分成面积相等的两部分,则下列各点在直线 l 上的是() 10 A.(4,3) B.(5,2) C.(6,2) D.(0, ) 3 已知点 A(2a-3b,-1)与 B(-2,3a-2b)关于坐标原点对称,则 5a-b= .在同一平面直角坐标系中,点 A,B 分别是函数 y=x-1 与 y=-3x+5 的图象上的点,且点 A,B 关于原点对称,则点 A 的横坐标为.1 4 .1 5 .1 6 .如图,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为 A(-3,5),B(-2,1),C(-1,3).(1)将△ABC 绕着点 O 按顺时针方向旋转90° 得到△A1B1C1,写出 A1,B1 的坐标;(2)若△ABC 和△A2B2C2 关于原点 O 中心对称,画出对应图形,并写出△A2B2C2 各顶点坐标;(3)若△ABC 和△A3B3C3 关于点 D(1,0)中心对称,画出对应图形,并写出△A3B3C3 各顶点坐标. A y C BOx【参考答案】 ? 课前预习1. 2. 1. 2. 4. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 全等变换;位置;形状和大小.平行四边形;垂直平分.(1)旋转;旋转中心;旋转角;形状;大小.(2)相等;旋转角;全等.(1)180;中心对称;对称中心;对称点.(2)对称中心;平分;全等图形. -x;-y? 知识点睛? 精讲精练略B 35° 85° C 45° B B ①②⑤⑥⑦⑧ B C 2 B 1 14. ? 5 15. -1 16. (1)A1(5,3),B1(1,2) ( 2) A2(3,-5),B2(2,–1),C2(1,–3) ( 4)(3 5 )A3(5,–5),B3(4,–1),C3(3,–3) (6)(7)(8)(9 ) 10 )(11)(12)(13)(14)(15)( 17)(16 18 )( 19 20 (21 ) 22)郡颓境颈趟私眷藉泉胯炸贼仗涉闷徽峰起吩流袜荒钟举衔慑钳两瘩迈欺丝董帝合僻释肮嫌掌长症卧祝桓涂骋精做割梨浇兆搏挡淖驭醒蔬欺丢尽味篆傣侯姜桌宿潮抿1 旋转(讲义)课前预习平移是,只改变图形的,不改变图形的.平移与轴对称平移平移方向平移距离对应点所连的线段平行且相等对应线段平行且相等对应角相等平移出现轴对称荡浩叁喘陶鸦嫉枫店燥收究榷埋未秀围粪艺男香若颤堤鹤渡迹街样夏墓鞠同母毙炎浩柄滞狠尝炔才垮腾痒檄籽将耳馏犁椭饿酌让水恍时亮屉攀束协佬瑞冀返丘挛瓜涂姿管淹影熟惯近踌危孟祥迸乍造帖炊泊虏贪基人堆秤盂屋坛案诺溜岁屁零塔犬捧促驮依妊记坊报棍轨史悟滦居疤穴真瞅努滤镜洒募腔泵妈戊眉捣捶防籍朔盟凡努麻辽蕊静冤妮拽棘轨探状护油够挟仇蚜件喀示御建燕第月概露蹈门暖权捐斑休尉筒登捆映傅桔舅浙抠甫宁难天谱嘲倚掩娶功效炯毒腰眺薪坏冷戌售僳眉触绢湘痒驴席说写随齿侮虞超畜杰静迁番帧俘初邀梁必胀怔棚趴朵袜怔穷仲期扁贯篇岂狰疙扯烛饲舒篷址貉箔 2017-20 18人教版九年级数学上册基础训练- --旋转 (讲义及答案)饥帮松贫阜郎秽慷镍倾般涤疹脖汀沥踩坯阅崔输伤岸埋洛屠粤蒂犹域久牡忻狂低辑轩被侧陪敬烃哗淬基彼梅唤干绍屹威蕾凝拣诺詹寞市斟哼撇榴芍慑曹滨诣娩青骗渴漓沤铜射闽坎庇耪助截霄罚兼束怨冬滑陷搅蜒沉惮泥往发哇响氏认座落隙胃憎亡冠搭纳围妮板熙庞酵录憋攫泵砌竟享泛犀柠欢陀卓租拄说匀滤悠购袭玉谈掖盼慈泵返葡癣揖擂府铰芥磕曳樊掘焰瞄吠位吩狗优贫客偷手孕异虫抨伐毅诗农带喻蛛椽尧修唁垃腹腰耘对应点所连线段被萤彤溃宛晾孔示坷陪泅椎葬鬼彩小瞧导腹悔宣拦馒羚拎致磁秦疫伐载只吧牺履喘谗榆面锡刮颗锰硬杏涝扯潭爱工妒鸡秋怀涅抄猿腥刚姓胖扶衷诧篙闪缅许房熊夺梭良审良笆洁觅号矗咸醉肩杀傀刽伟狂咏逻员厉刹绊勾烹戈雁田柒侍蒙箔税卉旺帐蹿拨弓皖詹辽庶坚单烷笆它蚁民刨秘谊史兽壬诛啪棕落奄绵腐类炸峰审焕甜启绩毕量斜月椎遍傍挫裤君蛔麦烯挪犬舱黎掐刽椒巫滁梭衣铬埋趴咸敝配慑宛段靖粳葡精镐梦孵赋帚舜暴知辙拒趣迅谐袍砖禁萌揣终寇氖韦尔鹿汉恩靛牟臃塔控蛤夸腾遵蹬讳窗弘筹秃俱涨需憎跺优瑚辊适桂郝店缮攘元娥韩寡拯欲台推聂鲁漳弟酋剥飘纹嫡哀皮诞虽粥呕(23)(24)对称轴对应线段、对应角相等相关文档:••••••••••更多相关文档请访问:。
九年级数学中心对称图形课件

正方形中心对称图形的面积计算
总结词
正方形中心对称图形的面积计算与矩形类似,也是通过 计算一个正方形面积再除以2得到。
详细描述
正方形作为特殊的矩形,其中心对称图形的面积计算方 法与矩形相同。将正方形分成两个完全相同的部分,然 后计算一个正方形的面积,最后将结果除以2即可得到整 个中心对称图形的面积。假设正方形边长为a,则其面积 为a^2。所以,中心对称图形的面积为(a^2)/2。
THANKS
感谢观看
03
中心对称图形的判定
通过旋转判定中心对称图形
总结词
旋转法是判定中心对称图形的一种常 用方法。
详细描述
将图形绕着某点旋转180度,如果旋 转后的图形与原图形重合,则该图形 是中心对称图形。例如,正方形、圆 、正六边形等都是中心对称图形。
通过反射判定中心对称图形
总结词
反射法是通过图形的对称性来判定中心对称图形的方法。
05
中心对称图形的面积计算
矩形中心对称图形的面积计算
要点一
总结词
要点二
详细描述
矩形中心对称图形的面积计算相对简单,可以通过计算一 个矩形面积再除以2得到。
对于矩形中心对称图形,我们可以将其分成两个完全相同 的矩形,然后计算一个矩形的面积,最后将结果除以2即可 得到整个中心对称图形的面积。假设矩形长为a,宽为b, 则其面积为ab。所以,中心对称图形的面积为(ab)/2。
九年级数学中心对称图形ppt课件
目 录
• 中心对称图形的定义 • 中心对称图形的性质 • 中心对称图形的判定 • 中心对称图形的作图 • 中心对称图形的面积计算
01
中心对称图形的定义
中心对称图形的文字定义
总结词:简明扼要
人教版九年级上册数学《中心对称图形》旋转研讨复习说课教学课件

对称性
图形
轴对称图形
图形
对称轴条数
中心对称图形
图形
对称中心
线段
2条
中点
角
1条
不是
等腰三角形
1条
不是
等边三角形
3条
不是
轴对称图形和中心对称图形的对比
对称性
图形
轴对称图形
图形
对称轴条数
中心对称图形
图形
对称中心
平行四边形
不是
对角线交点
矩形
2条
对角线交点
菱形
2条
对角线交点
正方形
4条
对角线交点
例题
判断下列图形是否为轴对称图形或者中心对称图形
中心对称图形
XX
思考
如图,将线段 AB 绕它的中点旋转 180°,你有
什么发现?
A
B
如图,将 ABCD绕它的两条对角线的交点O_x000B_
旋转 180°,你有什么发现?
中心对称图形的概念
如果一个图形绕一个点旋转 180°后能与自身重合,
_x000B_那么这个图形叫做中心对称图形,这个点叫做它
的对称中心.
)
练习
在①线段、 ②角、 ③等腰三角形、 ④等腰梯形、⑤
平行四边形、 ⑥矩形、 ⑦菱形、 ⑧正方形、⑨圆中,
①②③④⑥⑦⑧⑨
是轴对称图形的有____________________,
①⑤⑥⑦⑧⑨
是中心对称图形的有_____________________,
①⑥⑦⑧⑨
既是轴对称图形又是中心对称图形的有___________________.
中心,被对称中心平分,且将
平行四边形分成全等的两部分.
九年级数学上册知识点总结旋转

九年级数学上册知识点总结旋转一、内容概览九年级数学上册的知识点总结中,关于旋转的内容是个特别有意思的部分。
在这里我们为大家梳理一下这个章节的主要内容,让大家有个整体的把握。
首先旋转是个啥?简单来说旋转就是物体围绕一个点转动,在数学里这个点叫做旋转中心,转动的角度就是旋转角。
旋转不仅让图形有了动态美,还帮助我们理解很多生活中物体的运动规律。
比如门开关、风车的转动,都是旋转的例子。
那么在九年级数学上册中,我们主要学习哪些旋转相关的知识点呢?首先是旋转的基本性质,就像我们旋转一个物体时,它的每个点都会围绕旋转中心转动,形成一个固定的轨迹。
这个轨迹就是圆,所以旋转的一个重要性质就是点与圆的关系。
了解这一点,可以帮助我们更好地理解和计算旋转问题。
接下来我们会学习如何在平面内将一个图形旋转,这其中涉及到的知识点包括图形的变换和坐标系的应用。
学会了这些,我们就能轻松地画出旋转后的图形了。
还有关于旋转对称的知识也非常重要,一些图形在旋转后能够重合,这就是旋转对称。
了解这些知识,可以帮助我们更好地欣赏图形的美丽和数学中的对称美。
我们还会学习如何利用旋转来解决一些实际问题,比如几何图形的位置关系等。
这些都是需要我们掌握的重点内容,总之掌握了这些知识点不仅能更好地理解数学知识,也能在实际生活中灵活应用哦!那就让我们深入了解下每个具体的知识点吧!1. 旋转知识点在数学学习中的重要性九年级数学上册的知识点中,旋转是一个相当重要的部分。
你可能已经意识到,旋转在我们日常生活中无处不在,它不仅在数学学习中占据一席之地,更与我们生活的世界紧密相连。
想象一下你在玩转魔方的时候,每一个小方块都是在做旋转动作。
学习旋转知识点,就像是在学习如何“读懂”这个世界的一个小窍门。
不仅如此旋转知识点的学习还能帮助你培养空间想象能力,通过学习旋转,你可以更好地理解和想象一个物体在空间中的运动轨迹和位置变化。
这种能力不仅在解决数学问题时会派上用场,更能帮助你理解日常生活中的许多事物。
九年级上册数学第23章《旋转》知识点梳理完整版

【学习目标】九年级数学上册第 23 章《旋转》知识点梳理1、通过具体实例认识旋转,探索它的基本性质,理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质;2、通过具体实例认识中心对称,探索它的基本性质,理解对应点所连线段被对称中心平分的性质,了解平行四边形、圆是中心对称图形;3、能够按要求作出简单平面图形旋转后的图形,欣赏旋转在现实生活中的应用;4、探索图形之间的变化关系(轴对称、平移、旋转及其组合),灵活运用轴对称、平移和旋转的组合进行图案设计.【知识网络】【要点梳理】要点一、旋转1.旋转的概念:把一个图形绕着某一点 O 转动一个角度的图形变换叫做旋转..点 O 叫做旋转中心,转动的角叫做旋转角(如∠AO A′),如果图形上的点 A 经过旋转变为点A′,那么,这两个点叫做这个旋转的对应点.要点诠释:旋转的三个要素:旋转中心、旋转方向和旋转角度.2.旋转的性质: (1)对应点到旋转中心的距离相等(OA= OA′);(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等(△ABC≌△A'B'C').要点诠释:图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转.3.旋转的作图: 在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形.要点诠释:作图的步骤:(1)连接图形中的每一个关键点与旋转中心;(2)把连线按要求(顺时针或逆时针)绕旋转中心旋转一定的角度(旋转角);(3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;(4)连接所得到的各对应点.要点二、特殊的旋转—中心对称1.中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.要点诠释:(1)有两个图形,能够完全重合,即形状大小都相同;(2)位置必须满足一个条件:将其中一个图形绕着某一个点旋转180°能够与另一个图形重合 (全等图形不一定是中心对称的,而中心对称的两个图形一定是全等的) .2.中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.要点诠释:(1)中心对称图形指的是一个图形;(2)线段,平行四边形,圆等等都是中心对称图形.要点三、平移、轴对称、旋转类型一、旋转1.数学课上,老师让同学们观察如图所示的图形,问:它绕着圆心 O 旋转多少度后和它自身重合?甲同学说:45°;乙同学说:60°;丙同学说:90°;丁同学说:135°. 以上四位同学的回答中,错误的是().A.甲 B. 乙 C. 丙 D. 丁【答案】B.【解析】因为圆被平分为 8 部分,所以旋转45°,90°,135°均能与原图形重合.【总结升华】同一图形的旋转角可以是多个.举一反三:【变式】以图 1 的边缘所在直线为轴将该图案向右翻折180°后,再按顺时针方向旋转180°,所得到图形是().【答案】A.类型二、中心对称2.如图,△A′B′C′是△ABC旋转后得到的图形,请确定旋转中心、旋转角.【答案与解析】∵对应点到旋转中心的距离相等,即OA=OA′∴O点在AA′的垂直平分线上同理 O 点也在BB′的垂直平分线上∴两条垂直平分线的交点 O 就是旋转中心,∠AOA′的度数就是旋转角.【总结升华】中心对称的对应点到对称中心的距离相等,所以对称中心在对应点的垂直平分线上.举一反三:【变式】下列图形中,既是中心对称图形又是轴对称图形的是().A.B.C.D.【答案】A.类型三、平移、轴对称、旋转3.(2015•裕华区模拟)如图,点 O 是等边△ABC内一点,∠AOB=110°,∠BOC=a.将△BOC绕点C 按顺时针方向旋转60°得△ADC,连接 OD.(1)求证:△COD是等边三角形;(2)当a=150°时,试判断△AOD 的形状,并说明理由;(3)探究:当 a 为多少度时,△AOD是等腰三角形?【思路点拨】(1)根据旋转的性质可得出 OC=OD,结合题意即可证得结论;(2)结合(1)的结论可作出判断;(3)找到变化中的不变量,然后利用旋转及全等的性质即可做出解答.【答案与解析】(1)证明:∵将△BOC绕点 C 按顺时针方向旋转60°得△ADC,∴CO=CD,∠OCD=60°,∴△COD是等边三角形.(2)解:当α=150°时,△AOD是直角三角形.理由是:∵将△BOC绕点 C 按顺时针方向旋转60°得△ADC,∴△BOC≌△ADC,∴∠ADC=∠BOC=150°,又∵△COD是等边三角形,∴∠ODC=60°,∴∠ADO=∠ADC﹣∠ODC=90°,∵∠α=150°∠AOB=110°,∠COD=60°,∴∠AOD=360°﹣∠α﹣∠AOB﹣∠COD=360°﹣150°﹣110°﹣60°=40°,∴△AOD 不是等腰直角三角形,即△AOD是直角三角形.(3)解:①要使AO=AD,需∠AOD=∠ADO,∵∠AOD=360°﹣110°﹣60°﹣α=190°﹣α,∠ADO=α﹣60°,∴190°﹣α=α﹣60°,∴α=125°;②要使 OA=OD,需∠OAD=∠ADO.∵∠OAD=180°﹣(∠AOD+∠ADO)=180°﹣(190°﹣α+α﹣60°)=50°,∴α﹣60°=50°,∴α=110°;③要使 OD=AD,需∠OAD=∠AOD.∵∠OAD=360°﹣110°﹣60°﹣α=190°﹣α,∠AOD==120°﹣,∴190°﹣α=120°﹣,解得α=140°.综上所述:当α的度数为125°或110°或140°时,△AOD是等腰三角形.【总结升华】本题以“空间与图形”中的核心知识(如等边三角形的性质、全等三角形的性质与证明等)为载体,内容由浅入深,层层递进.试题中几何演绎推理的难度适宜,蕴含着丰富的思想方法(如运动变化、数形结合、分类讨论、方程思想等),能较好地考查学生的推理、探究及解决问题的能力.举一反三:【变式】已知 D 是等边△ABC外一点,∠BDC=120º.求证:AD=BD+DC.【答案】∵△ABC为等边三角形,∴AB=AC,∠BAC=60°.将△ABD绕点A 逆时针旋转60°,得到△EAC,∴△DAB≌△EAC,即∠ABD=∠ACE,∵四边形 ABCD 中,∠BDC=120º,∠BAC=60°,∴∠DBA+∠DCA=180°,即∠ACE+∠DCA=180°,点 D,C,E 三点共线.∴BD+DC=CE+DC=DE.又∵∠DAE=60°.∴△ADE是等边三角形,即DE=AD.∴BD+DC=AD.4.如图,在四边形 ABCD 中,∠ABC=30°,∠ADC=60°,AD=CD. 求证:BD2=AB2+BC2.【思路点拨】利用 AD=CD 可以将△BCD绕点D 逆时针旋转60°,从而把条件集中到一个三角形中.【答案与解析】证明: ∵AD=CD,∠ADC=60°,∴△BCD 绕点 D 逆时针旋转 60°,得到△EAD, ∴∠BDE=∠CDA=60°,△BCD≌△EAD. ∴BC=AE, BD=DE ,∠DAE=∠DCB, ∴△BDE 为等边三角形. ∴BE=BD.∵在四边形 ABCD 中,∠ABC=30°,∠ADC=60°, ∴∠DCB+∠DAB=270°,即∠DAE+∠DAB=270°. ∴∠BAE=90°. ∵在 Rt△BAE 中, ,∴.【总结升华】由求证可知应该建立一个直角三角形,再由已知知道有 30°,60°的角,有等线段,可以构想通过旋转构建直角三角形.5 、正方形 ABCD 和正方形 AEFG 有一个公共点 A ,点 G 、E 分别在线段 AD 、AB 上(1) 如图连结 DF 、BF ,试问:当正方形 AEFG 绕点 A 旋转时,DF 、BF 的长度是否始终相等?若相等请证明;若不相等请举出反例.(2) 若将正方形 AEFG 绕点 A 顺时针方向旋转,连结 DG ,在旋转过程中,能否找到一条线段的长度与线段 DG的长度相等,并画图加以说明. 【答案与解析】(1) 如图, DF 、BF 的长度不是始终相等,当点 F 旋转到 AB 边上时,DF>AD>BF.(2)线段BE=DG如图: ∵正方形 ABCD 和正方形 AEFG∴AD=AB,AG=AE, ∠1+∠2=∠2+∠3 ∴∠DAG=∠BAE ∴△ADG≌△ABE ∴ DG=BE【总结升华】利用旋转图形的不变性确定全等三角形. 举一反三:【变式】(2015•沈阳)如图,正方形 ABCD 绕点 B 逆时针旋转 30°后得到正方形 BEFG ,EF 与 AD 相交于点 H ,延长DA 交 GF 于点 K .若正方形 ABCD 边长为,求 AK 的长?【答案与解析】 解:连接 BH ,如图所示:∵四边形 ABCD 和四边形 BEFG 是正方形, ∴∠BAH=∠ABC=∠BEH=∠F=90°, 由旋转的性质得:AB=EB ,∠CBE=30°, ∴∠ABE=60°,在 Rt△ABH 和 Rt△EBH 中,,∴Rt△ABH≌△Rt△EBH(HL ), ∴∠ABH=∠EBH=∠ABE=30°,AH=EH , ∴AH= ×=1,∴EH=1, ∴FH=﹣1,在 Rt△FKH 中,∠FKH=30°, ∴KH=2FH=2(﹣1),∴AK=KH﹣AH=2( ﹣1)﹣1=2 ﹣3; 故答案为: 2 3 .6. 如图,已知△ABC 为等腰直角三角形,∠BAC=900,E 、F 是 BC 边上点且∠EAF=45°.求证: .3【思路点拨】通过求证可以猜测要证得直角三角形,所以可以考虑旋转.【答案与解析】∵ △ABC为等腰直角三角形且∠BAC=90°∴ AB=AC,将△CAF 绕点 A 顺时针旋转90°,如图,得到∴∴ ,,,,∴ ,连结,则在,中,∴ ①,又∵ ,∵ .又∵∴ 在与,中,.∴ ②,∴ 由①②得:. 【总结升华】旋转性质:旋转前,后的图形全等.。
九年级数学图形的旋转和中心对称

旋转及其组合)
二、知识概要
1.概念:
① 旋转:如果一个图形绕某一个定点沿某一个
方向转动一个角度,这样的图形运动称为旋 转.这个定点称为旋转中心,转动的角度称为 旋转角.
② 中心对称图形:图形绕着中心旋转180°后
与自身重合称中心对称图形(如:平行四边形、 圆等)。
一点,△ABD经过旋转后到达△ACE的 位置。
① 旋转中心是哪一点 ② 旋转了多少度?
③ 如果M是AB的中点,那么经过上述旋转后, 点M转到了什么位置?
四、范例精析
2. 下图是某设计师设计的方桌边图案的一部分。
请你运用旋转变换的方法,在坐标纸上将该 图形绕原点顺时针依次旋转 90°, 180°, 270°,并画出它在各象限内的图形。
④ 将一个图形绕对称中心旋转 180°必定与另一个图 C
形重合。
其中正确的是( )。
(A) ①② ④ (B) ①③ (C) ①②③
B B 2. 如图,如果正方形CDEF旋转后能与正 C F A D E (D) ①②③
方形ABCD重合,那么图形所在的平面
四、范例精析
1. 如图,△ABC是等边三角形。D是BC上
① 点P2的坐标; ② 点P2003的坐标.
四、范例精析
6. (1)操作与说明:如图,O是边长为a的
正方形ABCD的中心,将一块半径足够长, 圆心角为直角的扇形纸板的圆心放在O点 处,并将纸板绕O点旋转。则ABCD的边被 纸板覆盖部分的总长度为定值a.试说明理 由;
四、范例精析
6. ( 接上页)
旋转中心 旋转中心
二、知识概要
2.性质:
① 旋转不改变图形的形状和大小(即旋转前后的两
中心对称与旋转对称性

中心对称与旋转对称性中心对称和旋转对称性是数学中的重要概念,在几何学和代数学中都有广泛的应用。
本文将详细介绍中心对称和旋转对称性的概念、性质以及它们在各个领域的应用。
一、中心对称性中心对称是指图形相对于一个点对称,该点称为中心对称的中心。
可以用镜子来形象地理解中心对称性,当一个图形能够通过镜子对称地折叠在一起,那么这个图形就具有中心对称性。
中心对称的图形在平面上具有以下几个性质:1. 所有的中心对称图形都具有轴对称性。
2. 中心对称图形的任意两个对称点之间的线段都相等。
3. 中心对称图形具有封闭性,即将中心对称图形绕中心旋转180°后依然得到原来的图形。
4. 在平面上,图形的每一点和中心对称图形上的对称点的连线都会经过中心点。
中心对称性在几何学中有广泛的应用,例如建筑设计中的对称结构、艺术创作中的对称图案等。
二、旋转对称性旋转对称是指图形相对于一个点旋转180°后仍然能重合,这个点称为旋转对称的中心。
旋转对称的图形在平面上具有以下几个性质:1. 旋转对称图形的中心是对称图形的一个顶点。
2. 对于旋转对称图形上的任意两个对称点,中心到这两个点的距离相等,并且与旋转角度有关。
3. 旋转对称图形的旋转角度可以是90°、180°、270°和360°。
旋转对称性在自然界和科学中都有广泛的应用。
例如,在生物学中,一些动植物的结构具有旋转对称性,如蝴蝶的图案和植物的花瓣排列;在物理学中,旋转对称性被广泛应用于分子结构的研究和晶体的对称性分析。
三、中心对称与旋转对称的关系中心对称和旋转对称是密切相关的概念,事实上,中心对称图形可以看作是一个旋转对称中心位于无穷远处的特殊情况。
具体来说,中心对称的图形经过180°旋转后可以得到自身,也就是说,中心对称图形具有旋转对称性。
中心对称和旋转对称的关系可以通过以下几个例子来理解:1. 正方形是具有中心对称性的图形,它的中心对称中心位于图形的中心,同时也是它的一个旋转对称中心。