材料学导论陶瓷材料

合集下载

陶瓷材料介绍课件

陶瓷材料介绍课件

原料加工
将基础原料进行破碎、粉 碎、筛选等加工,制备成 适合成型工艺的细粉料。
成型工 艺
塑形
将细粉料混合一定量的水、 粘土等添加剂,制成具有 一定形状和强度的坯体。
干燥
将坯体放入干燥室内进行 干燥,去除水分,提高坯 体强度。
修整
对干燥后的坯体进行修整, 去除毛刺、裂纹等缺陷。
烧成工艺
装窑
将干燥修整后的坯体放入窑炉中 进行烧成。
氧化锆陶瓷是一种以氧化锆(ZrO2)为主 要成分的陶瓷材料。它具有高硬度、高韧性 和优异的耐磨性、耐腐蚀性,可在极端环境 下保持稳定的性能。氧化锆陶瓷广泛应用于 航空航天、石油化工、汽车等领域,作为密
封件、轴承、切削工具等产品的制造材料。
优势
陶瓷材料的优势在于其优良的绝缘性能、耐磨性能、耐高温性能以及生物相容 性等,使其在电子、通讯、航空航天、生物医疗等领域得到广泛应用。
02
陶瓷材料的生
原料制 备
01
02
03
原料选择
根据陶瓷产品的性能要求, 选择合适的天然矿物或工 业原料作为基础原料。
配料计算
根据产品配方进行原料配 比,确保原料成分符合要 求。
低毒性和无致敏性
陶瓷材料在正常使用过程中释放的物质对生物体无毒性和致敏性, 因此对生物体安全无害。
04
陶瓷材料的未来展与 挑
新料研 发
高温陶瓷
随着工业技术的发展,对能在高温环境下保持优良性能的陶 瓷材料的需求越来越大。新材料研发将致力于提高陶瓷的耐 热性、抗氧化性和抗蠕变性,以满足各种高温应用的需求。
陶瓷材料介
• 陶瓷材料概述 • 陶瓷材料的生产工艺 • 陶瓷材料的性能与应用 • 陶瓷材料的未来发展与挑战 • 案例分析:几种典型陶瓷材料介

材料学导论陶瓷材料

材料学导论陶瓷材料

材料学导论陶瓷材料《材料科学导论》课程学习报告—关于陶瓷材料学习的体会 1. 陶瓷材料概论说到陶瓷,在许多人的印象中,是一种坚硬易碎的物体,缺乏韧性,缺乏塑性。

许多陶瓷学家把陶瓷看成是用无机非金属化合物粉体,经高温烧结而成,以多晶聚集体为主的固态物。

这一定义虽然同时指出了材料的制备特征和结构特征,但却把玻璃、搪瓷、金属陶瓷等摒除在外。

所以,陶瓷材料是用天然或合成化合物经过成形和高温烧结制成的一类无机非金属材料。

它具有高熔点、高硬度、高耐磨性、耐氧化等优点。

可用作结构材料、刀具材料,由于陶瓷还具有某些特殊的性能,又可作为功能材料。

2. 陶瓷材料的发展陶瓷是人类最早利用自然界提供的原料制造而成的材料。

旧石器时代,人们就发现经火煅烧过的粘土,其硬度和强度都大大提高,而且不再被水瓦解。

于是,就有了利用粘土的可塑性,将其加工成所需的形状,然后用火烧制成的陶器。

随着金属冶炼术的发展,人类掌握了通过鼓风机提高燃烧温度的技术,并且发现,有一些经高温烧制的陶器,由于局部熔化变得更加致密坚硬,完全改变了陶器多孔,透水的缺点。

经过长期的摸索和经验积累,以粘土,石英,长石等矿物原料配制而成的瓷器出现了。

从陶器发展到瓷器,是陶瓷发展过程中的一次重大飞跃。

这种传统的瓷器,从结构上来看,是由玻璃相结合在一起的、由许多微小的晶粒构成的物体。

随着科学技术的高速发展,人们迫切需要大量强度很高,绝缘性能良好的陶瓷材料。

此时,人们发现,尽管陶瓷中的玻璃相使陶瓷变得坚硬、致密,然而它却妨碍了陶瓷强度的提高。

同时,玻璃相也是陶瓷绝缘性能,特别是高频绝缘性能不好的根源。

于是,玻璃相含量比传统陶瓷低的一些强度高,性能好的材料不断涌现。

现在,许多科学与技术方面使用的高性能陶瓷(High performance Ceramics)都是几乎不含有玻璃相的结晶态陶瓷。

为了有别于传统陶瓷,称之为先进陶瓷(Advanced Ceramics)或高技术陶瓷(High Tech Ceramics);有时也称为精细陶瓷(Fine Ceramics)或工程陶瓷(Engineering Ceramics)。

无机非金属材料导论3章陶瓷

无机非金属材料导论3章陶瓷

传统陶瓷
品种 水泥等胶凝材料 陶瓷 耐火材料 玻璃 搪瓷 铸石 研磨材料 多孔材料 碳素材料 非金属矿
品种示例 硅酸盐水泥、铝酸盐水泥、石灰、石膏等 粘土质、长石质、滑石质和骨灰质陶瓷等 硅质、硅酸铝质、高铝质、镁质、铬镁质等 硅酸盐 钢片、铸铁、铝和铜胎等 辉绿岩、玄武岩、铸石等 氧化锆、氧化铝、碳化硅等 硅藻土、蛭石、沸石、多孔硅酸盐和硅酸铝等 石墨、焦炭和各种碳素制品等 粘土、石棉、石膏、云母、大理石、水晶和金刚石 等
新型陶瓷
品种 绝缘材料
铁电和压电材料 磁性材料
导体陶瓷 半导体陶瓷
光学材料
高温结构陶瓷 超硬材料 人工晶体 生物陶瓷 无机复合材料
品种示例
氧化铝、氧化铍、滑石、镁橄榄石质陶瓷、石英玻璃 和微晶玻璃等
钛酸钡系、锆钛酸铅系材料等
锰—锌、镍—锌、锰—镁、锂—锰等铁氧体、磁记录 和磁泡材料等 钠、锂、氧离子的快离子导体和碳化硅等
钛酸钡、氧化锌、氧化锡、氧化钒、氧化锆等过滤金 属元素氧化物系材料等 钇铝石榴石激光材料,氧化铝、氧化钇透明材料和石 英系或多组分玻璃的光导纤维等 高温氧化物、碳化物、氮化物及硼化物等难熔化合物
碳化钛、人造金刚石和立方氮化硼等
铝酸锂、钽酸锂、砷化镓、氟金云母等
长石质齿材、氧化铝、磷酸盐骨材和酶的载体材料等
4. 钡长石的熔点更高,其熔融稳定范围不宽,普通陶瓷产品不采 用它。
(三)长石在陶瓷生产中的作用
长石在高温下熔融,形成粘稠的玻璃熔体,是坯料中碱金属氧化物 (K2O,Na2O)的主要来源,能降低陶瓷坯体组分的熔化温度,有利于成瓷 和降低烧成温度。
熔融后的长石熔体能熔解部分高岭土分解产物和石英颗粒。
是粘土中常见的粘土矿物,主要由高岭石组成的粘土称为高岭土。

工程材料学第9章 陶瓷材料

工程材料学第9章 陶瓷材料

四、陶瓷的典型组织结构
包括三种相:晶体相、玻璃相、 包括三种相:晶体相、玻璃相、气相 1.晶体 1.晶体 晶体相是陶瓷的主要组成相, 晶体相是陶瓷的主要组成相,主要有 硅酸盐、氧化物和非氧化合物等。 硅酸盐、氧化物和非氧化合物等。它们 的结构、数量、形态和分布, 的结构、数量、形态和分布,决定陶瓷 的主要性能和应用。 的主要性能和应用。硅酸盐是是陶瓷组 织中重要的晶体相, 织中重要的晶体相,结合为离子键与共 价键的混合键。 价键的混合键。 陶瓷在室温下的组织
(1)原料制备 矿物原料经拣选、粉粹后配料、混合、磨细得到坯料。 矿物原料经拣选、粉粹后配料、混合、磨细得到坯料。 (2)坯料成形 ) 将坯料加工成一定形状和尺寸并有一定机械强度和致密度的半成 包括可塑成形(如传统陶瓷) 注浆成形(如形状复杂、 品 。 包括可塑成形 ( 如传统陶瓷 ) , 注浆成形 ( 如形状复杂 、 精 度要求高的普通陶瓷)和压制成形(如特种陶瓷和金属陶瓷) 度要求高的普通陶瓷)和压制成形(如特种陶瓷和金属陶瓷)。 (3)烧成与烧结 ) 干燥后的坯料加热到高温,进行一系列的物理、 干燥后的坯料加热到高温,进行一系列的物理、化学变化而成瓷 的过程。 烧成是使坯件瓷化的工艺( 的过程 。 烧成是使坯件瓷化的工艺 ( 1250℃~ 1450℃) ; 烧结是 ℃ ℃ 指烧成的制品开口气孔率极低、而致密度很高的瓷化过程。 指烧成的制品开口气孔率极低、而致密度很高的瓷化过程。 (4) 陶瓷烧结的后处理 ) 表面施釉:是通过高温加热, 表面施釉:是通过高温加热,在陶瓷表面烧附一层玻璃状物质使 其表面具有光亮、美观、绝缘、防水等优异性能的工艺方法。 其表面具有光亮、美观、绝缘、防水等优异性能的工艺方法。 (5)陶瓷的加工 ) 为改善烧结后的陶瓷制件的表面光洁度、 为改善烧结后的陶瓷制件的表面光洁度、精确尺寸或去除表面 缺陷等,常利用磨削、激光以及超声波等加工方法对其进行处理 工方法对其进行处理。 缺陷等 , 常利用磨削 、 激光以及超声波等加 工方法对其进行处理 。

《陶瓷材料》PPT课件

《陶瓷材料》PPT课件

硅酸盐结构
结构很复杂,但基 本结构单元为[SiO4]硅氧 四面体,结合键为离子 键、共价键的混合键;
每个氧原子最多只 有被两个[SiO4]所共有;
Si-O-Si的键角为145°; [SiO4]既可孤立存在,亦可通过共用顶点连接成
链状、平面或三维网状结构,故硅酸盐材料有无机高 聚物之称。
硅酸盐结构特点与结构分类
敲击声
沉浊
清脆
陶瓷分类(2)
按用途分类
结构陶瓷 功能陶瓷 陶瓷耐火材料 玻璃
结构陶瓷主要是用于耐磨损、高强度、耐热、耐热冲击、硬质、高刚性、 低热膨胀性和隔热等结构陶瓷材料;
不同形状的特种结构陶瓷件
功能陶瓷中包括电磁功能、光学功能和生物-化学功能等陶瓷制品和材料, 此外还有核能陶瓷和其它功能材料等。
E E 01 f1p f2p 2
– 式中p为材料气孔率;E0为p=0时的弹性模量; – f1 、 f2 为 由 气 孔 形 状 决 定 的 常 数 。 对 于 球 形 气 孔 ,
f1=1.9 ,f2=0.9。
⑷晶体结构
–。
– 对于多晶材料来说,则可认为E是各向同性的(统计性 的)。
泽,为施釉或无釉制品,基本不吸水。
• 炻器:其性质介于陶器和瓷器之间。断口致密,即使无
釉,也不透过液体和气体,坯体透气性差或无透光性。
陶器和瓷器
性能及特征 吸水性/%
透光性
陶器 一般大于3
不透光
瓷器 一般不大于3
透光
坯体特征
未玻化或玻化程度差、断面 玻化程度高、结构致密、细
粗糙
腻,断面呈石状或贝壳状
建筑陶瓷-地砖
电瓷
广义的陶瓷概念:用陶瓷生产方法制造的无机非金属固体材料和制品的通称。

陶瓷材料PPT课件

陶瓷材料PPT课件
生物陶瓷
具有良好的生物相容性、力学性能和耐腐蚀性,用于人工关节、 牙齿等医疗器械。
陶瓷涂层
通过喷涂、浸渍等工艺在金属基体上形成陶瓷涂层,提高医疗器 械的耐磨性和耐腐蚀性。
陶瓷生物传感器
利用陶瓷材料的压电、热电等效应,制作生物传感器,用于生物 体内生理参数的实时监测。
07
总结与展望
本次课程重点内容回顾
生物医用陶瓷材料的研究 与应用
生物医用陶瓷材料在人体植入 、修复和替代等方面具有广阔 的应用前景,未来将继续研究 和开发具有更好生物相容性和 力学性能的生物医用陶瓷材料 。
环保型陶瓷材料的研究与 开发
随着环保意识的提高,未来将 继续研究和开发低污染、低能 耗、可回收利用的环保型陶瓷 材料。
感谢您的观看
多功能化与智能化
发展具有多种功能(如骨修复、药物缓释等)和智能化的生物医用 陶瓷材料。
复合陶瓷材料设计思路
增强增韧机制
通过引入第二相、晶须等 增强增韧元素,提高复合 陶瓷材料的力学性能。
多功能化设计
实现复合陶瓷材料的多功 能化,如力学、热学、电 学等性能的协同提升。
结构与性能调控
通过微观结构设计、界面 优化等手段,调控复合陶 瓷材料的性能。
原料处理
原料需经过破碎、筛分、除铁、陈腐等处理,以保证原料的粒度、纯度及均匀性 。
成型方法及设备简介
成型方法
陶瓷成型方法主要有压制成型、注浆成型、可塑成型等。
设备简介
成型设备包括压机、注浆机、真空练泥机等,可实现陶瓷坯 体的自动化、连续化生产。
烧结过程控制及优化
烧结温度与时间
烧结温度和时间直接影响陶瓷的 致密化程度和性能,需根据原料
分类
按照化学成分可分为氧化物陶瓷 、非氧化物陶瓷;按照程

材料科学中的陶瓷材料研究

材料科学中的陶瓷材料研究

材料科学中的陶瓷材料研究陶瓷材料作为一种重要的功能材料,在材料科学中拥有广泛的应用和研究价值。

本文将从陶瓷材料的定义、特性、制备方法及应用等方面进行讨论,展示材料科学中陶瓷材料研究的重要性和前沿进展。

一、陶瓷材料的定义与特性1.定义陶瓷材料通常指的是由非金属元素构成的无机非金属材料。

它们具有高熔点、硬度高、电绝缘性好、化学稳定性强、摩擦系数低等特点,广泛用于制陶、建筑、电子、化工、航空航天等领域。

2.特性陶瓷材料的特性主要包括高耐热性、高硬度、耐磨性、耐腐蚀性等。

由于其晶体结构中存在大量离散的化学键,使其具有良好的电绝缘性和良好的化学稳定性,适用于高温、高压、强腐蚀环境下的应用。

二、陶瓷材料的制备方法陶瓷材料的制备方法多种多样,常见的制备方法包括烧结法、溶胶-凝胶法、电化学法等。

1.烧结法烧结法是一种常见的陶瓷材料制备方法,通过将原料粉末在高温条件下加热,使颗粒间发生熔结,形成致密的陶瓷体。

这种方法制备的陶瓷材料具有高密度、高强度和良好的机械性能。

2.溶胶-凝胶法溶胶-凝胶法是一种通过溶胶形成凝胶,再通过热处理使凝胶转变为固体材料的方法。

这种方法可以制备出纳米级陶瓷材料,具有较高的比表面积和良好的化学均匀性。

3.电化学法电化学法是利用电化学反应在电极表面沉积或形成陶瓷材料的方法。

通过控制电解液的成分和工艺条件,可以得到具有特定结构和性能的陶瓷材料。

三、陶瓷材料的应用陶瓷材料在众多领域中都有广泛的应用,以下介绍几个典型的领域。

1.建筑领域陶瓷材料在建筑领域中主要应用于地砖、墙砖、卫生洁具等。

其硬度高、耐磨性好、易清洁等特性使得其能够满足建筑物的美观和功能性要求。

2.电子领域陶瓷材料在电子领域中被广泛用于制造电子元件,如电容器、电阻器、压电陶瓷等。

陶瓷材料的电绝缘性和压电效应使其成为电子元件的理想材料。

3.化工领域陶瓷材料在化工领域中常用于催化剂的载体和反应容器。

其稳定的化学性质和耐高温性使其能够适应各种苛刻的化学反应条件,并发挥良好的催化效果。

材料学导论:陶瓷材料.

材料学导论:陶瓷材料.

《材料科学导论》课程学习报告—关于陶瓷材料学习的体会1.陶瓷材料概论说到陶瓷,在许多人的印象中,是一种坚硬易碎的物体,缺乏韧性,缺乏塑性。

许多陶瓷学家把陶瓷看成是用无机非金属化合物粉体,经高温烧结而成,以多晶聚集体为主的固态物。

这一定义虽然同时指出了材料的制备特征和结构特征,但却把玻璃、搪瓷、金属陶瓷等摒除在外。

所以,陶瓷材料是用天然或合成化合物经过成形和高温烧结制成的一类无机非金属材料。

它具有高熔点、高硬度、高耐磨性、耐氧化等优点。

可用作结构材料、刀具材料,由于陶瓷还具有某些特殊的性能,又可作为功能材料。

2. 陶瓷材料的发展陶瓷是人类最早利用自然界提供的原料制造而成的材料。

旧石器时代,人们就发现经火煅烧过的粘土,其硬度和强度都大大提高,而且不再被水瓦解。

于是,就有了利用粘土的可塑性,将其加工成所需的形状,然后用火烧制成的陶器。

随着金属冶炼术的发展,人类掌握了通过鼓风机提高燃烧温度的技术,并且发现,有一些经高温烧制的陶器,由于局部熔化变得更加致密坚硬,完全改变了陶器多孔,透水的缺点。

经过长期的摸索和经验积累,以粘土,石英,长石等矿物原料配制而成的瓷器出现了。

从陶器发展到瓷器,是陶瓷发展过程中的一次重大飞跃。

这种传统的瓷器,从结构上来看,是由玻璃相结合在一起的、由许多微小的晶粒构成的物体。

随着科学技术的高速发展,人们迫切需要大量强度很高,绝缘性能良好的陶瓷材料。

此时,人们发现,尽管陶瓷中的玻璃相使陶瓷变得坚硬、致密,然而它却妨碍了陶瓷强度的提高。

同时,玻璃相也是陶瓷绝缘性能,特别是高频绝缘性能不好的根源。

于是,玻璃相含量比传统陶瓷低的一些强度高,性能好的材料不断涌现。

现在,许多科学与技术方面使用的高性能陶瓷(High performance Ceramics)都是几乎不含有玻璃相的结晶态陶瓷。

为了有别于传统陶瓷,称之为先进陶瓷(Advanced Ceramics)或高技术陶瓷(High Tech Ceramics);有时也称为精细陶瓷(Fine Ceramics)或工程陶瓷(Engineering Ceramics)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料学导论陶瓷材料《材料科学导论》课程学习报告—关于陶瓷材料学习的体会 1. 陶瓷材料概论说到陶瓷,在许多人的印象中,是一种坚硬易碎的物体,缺乏韧性,缺乏塑性。

许多陶瓷学家把陶瓷看成是用无机非金属化合物粉体,经高温烧结而成,以多晶聚集体为主的固态物。

这一定义虽然同时指出了材料的制备特征和结构特征,但却把玻璃、搪瓷、金属陶瓷等摒除在外。

所以,陶瓷材料是用天然或合成化合物经过成形和高温烧结制成的一类无机非金属材料。

它具有高熔点、高硬度、高耐磨性、耐氧化等优点。

可用作结构材料、刀具材料,由于陶瓷还具有某些特殊的性能,又可作为功能材料。

2. 陶瓷材料的发展陶瓷是人类最早利用自然界提供的原料制造而成的材料。

旧石器时代,人们就发现经火煅烧过的粘土,其硬度和强度都大大提高,而且不再被水瓦解。

于是,就有了利用粘土的可塑性,将其加工成所需的形状,然后用火烧制成的陶器。

随着金属冶炼术的发展,人类掌握了通过鼓风机提高燃烧温度的技术,并且发现,有一些经高温烧制的陶器,由于局部熔化变得更加致密坚硬,完全改变了陶器多孔,透水的缺点。

经过长期的摸索和经验积累,以粘土,石英,长石等矿物原料配制而成的瓷器出现了。

从陶器发展到瓷器,是陶瓷发展过程中的一次重大飞跃。

这种传统的瓷器,从结构上来看,是由玻璃相结合在一起的、由许多微小的晶粒构成的物体。

随着科学技术的高速发展,人们迫切需要大量强度很高,绝缘性能良好的陶瓷材料。

此时,人们发现,尽管陶瓷中的玻璃相使陶瓷变得坚硬、致密,然而它却妨碍了陶瓷强度的提高。

同时,玻璃相也是陶瓷绝缘性能,特别是高频绝缘性能不好的根源。

于是,玻璃相含量比传统陶瓷低的一些强度高,性能好的材料不断涌现。

现在,许多科学与技术方面使用的高性能陶瓷(High performance Ceramics)都是几乎不含有玻璃相的结晶态陶瓷。

为了有别于传统陶瓷,称之为先进陶瓷(Advanced Ceramics)或高技术陶瓷(High Tech Ceramics);有时也称为精细陶瓷(Fine Ceramics)或工程陶瓷(Engineering Ceramics)。

3. 陶瓷材料的定义陶瓷的传统定义:陶器和瓷器的总称,包括玻璃,搪瓷,耐火材料,砖瓦,水泥,石膏等。

陶瓷的狭义定义:以粘土为主要原料,经高温烧制而成的制品。

陶瓷的广义定义:经高温烧制而成的无机非金属材料的总称。

陶瓷的精确定义:用天然原料或人工合成的粉状化合物,经过成型和高温烧结制成的,由无机化合物构成的多相固体材料。

4. 陶瓷材料的分类陶瓷材料按照性能可大致分为普通陶瓷和特种陶瓷。

1. 普通陶瓷:原料: 粘土、石英和长石。

特点:坚硬而脆性较大、绝缘性和耐腐蚀性极好;制造工艺简单,成本低廉,各种陶瓷中用量极大。

分类:普通陶瓷又分为普通日用陶瓷和普通工业陶瓷。

(1) 普通日用陶瓷:特点:作日用器皿和瓷器,具有良好的光泽度、透明度,热稳定性和机械强度较高。

分类:长石质瓷(国内外常用的日用瓷,作一般工业瓷制品)、绢云母质瓷(我国的传统日用瓷)、骨质瓷(近些年得到广泛应用,主要作为高级日用瓷制品)和滑石质瓷(我国发展的综合性能好的新型高质瓷)。

(2) 普通工业陶瓷:特点:普通工业陶瓷有炻器和精陶。

炻器是陶器和瓷器之间的一种瓷。

分类:工业陶瓷按用途分为:建筑卫生瓷(用于装饰板,卫生间装置和器具等,通常尺寸较大,要求强度和热稳定性好)、化学工业瓷(用于化工、制药、食品等工业及实验室中的管道设备、耐腐蚀容器及实验器皿等,通常要求耐各种化学介质腐蚀的能力要强)、电工瓷(主要指电器绝缘用瓷,也叫高压陶瓷,要求机械性能高、介电性和热稳定性好)。

2. 特种陶瓷,也叫现代陶瓷、精细陶瓷或高性能陶瓷。

一般认为,特种陶瓷是“采用高精度的原材料,具有精确控制的化学组成、按照便于控制的制作技术加工的、便于进行结构设计,并具有优异特性的陶瓷”。

特种陶瓷按照显微结构和基本性能,可分为结构陶瓷、功能陶瓷、智能陶瓷、纳米陶瓷和陶瓷基复合材料。

(1) 结构陶瓷:用于高压高温、抗辐射、抗冲击、耐腐蚀、耐磨等环境下的陶瓷材料,可分为氧化物陶瓷、氮化物陶瓷、碳化物陶瓷、硼化物陶瓷等。

(2) 功能陶瓷:具有接受特殊敏感功能的陶瓷制品,可分为电功能陶瓷、磁功能陶瓷、光功能陶瓷、生物功能陶瓷。

(3) 智能陶瓷:能够接受外部环境的信息而自动改变自身状态的一种新型陶瓷材料,主要有压电陶瓷、形状记忆陶瓷和电流陶瓷。

(4) 纳米陶瓷:晶粒或颗粒处于纳米范围(1-100nm)的陶瓷,包括纳米陶瓷粉体、纳米陶瓷纤维、纳米陶瓷薄膜、纳米陶瓷块体。

(5) 陶瓷基复合材料:由陶瓷基体和增强体所组成的复合材料,其性能比单一材料的性能优越。

初具有陶瓷的高强度、高硬度,良好的耐磨性、耐热性、耐腐蚀性等特点外,还使陶瓷的韧性大大提高,强度和模量也有一定提高。

主要有纤维增强、晶须增强、颗粒增强陶瓷基复合材料。

根据陶瓷的性能,把它们分为高强度陶瓷、高温陶瓷、高韧性陶瓷、铁电陶瓷、压电陶瓷、电解质陶瓷、半导体陶瓷、电介质陶瓷、光学陶瓷(既透明陶瓷)、磁性瓷、耐酸陶瓷等。

按照陶瓷的化学组成划分有: 1、氧化物陶瓷:氧化铝、氧化锆、氧化镁、氧化钙、氧化铍、氧化锌、氧化钇、二氧化钛、二氧化钍、三氧化铀等。

2、氮化物陶瓷:氮化硅、氮化铝、氮化硼、氮化铀等。

3、碳化物陶瓷:碳化硅、碳化硼、碳化铀等。

4、硼化物陶瓷:硼化锆、硼化镧等。

5、硅化物陶瓷:二硅化钼等。

6、氟化物陶瓷:氟化镁、氟化钙、三氟化镧等。

7、硫化物陶瓷:硫化锌、硫化铈等。

其它还有砷化物陶瓷,硒化物陶瓷,碲化物陶瓷等。

除了主要由一种化合物构成的单相陶瓷外,还有由两种或两种以上的化合物构成的复合陶瓷。

例如,由氧化铝和氧化镁结合而成的镁铝尖晶石陶瓷,由氮化硅和氧化铝结合而成的氧氮化硅铝陶瓷,由氧化铬、氧化镧和氧化钙结合而成的铬酸镧钙陶瓷,由氧化锆、氧化钛、氧化铅、氧化镧结合而成的锆钛酸铅镧(PLZT)陶瓷等等。

此外,有一大类在陶瓷中添加了金属而生成的金属陶瓷,例如氧化物基金属陶瓷,碳化物基金属陶瓷,硼化物基金属陶瓷等,也是现代陶瓷中的重要品种上。

5.陶瓷的结构性质5.1 密度与孔隙率陶瓷的密度具有特殊的含义。

,当我们描述陶瓷的密度时,就必须说明是什么密度。

因为陶瓷一般是由微小的颗粒烧结而成的,颗粒之间必然存在孔隙,于是就有了表观体积与真实体积之别,显然,表观体积为真实体积与材料内孔隙体积之和(这里“孔隙”的概念不是指晶格中原子排列的空隙,而是由于球形颗粒堆积时必然留下的孔隙,尺寸在微米或纳米级)。

陶瓷的重量除以表观体积就得到表观密度,除以真实体积就得到真实密度。

但所谓“真实”密度并不等于理论密度(ρ),理论密度是计算得到的晶格密度,而真实密度是用某种测定方法得到的不含孔隙的密度。

孔隙体积占表观体积的百分数称为孔隙度。

如果我们说某一陶瓷的孔隙度为20%,那么其表面密度就应是理论密度的80%。

在实际情况中,陶瓷的密度一般低于理论密度的60%。

要想提高陶瓷的密度,可采取很多措施。

如使用宽分布的颗粒,让小颗粒嵌入大颗粒的缝隙中;或采用机械振动,拍打等手段。

即使如此,也很难使陶瓷的表观密度达到理论密度的80%以上。

要想进一步提高密度,就不能使用颗粒烧结的方法,必须采用新技术。

气相渗滤法、定向氧化法就可以大大降低孔隙度,使表观密度达到95%以上。

陶瓷中的孔隙分为开孔和闭孔。

开孔指孔隙与外部相通,可以注入液体。

闭孔则是完全被陶瓷基体包围的孔隙。

闭孔只有通过理论计算,从表观密度与理论密度的差别来判断其存在,得到真实孔隙率。

开孔可以采用ASTM C373 的标准进行测定。

这一标准的依据是阿基米德定律:物体在液体中的重量等于该物体的干重量减去所受的浮力。

5.2 磨损阻力磨损的定义是表面物质的减少。

磨损是机械故障或坏损的主要原因之一。

我国每年因磨损而造成的损失在几十亿元以上。

而使用陶瓷材料则是降低这项庞大开支的有效办法。

造成磨损的机理很多。

两个表面的粘结会使一部分表面物质被带走;表面粗糙则会使凸出部分被磨掉;如果两个表面硬度相差悬殊会产生切割;含硬颗粒的流体冲击或冲刷表面会造成磨蚀,等等。

测定材料的抗磨损性能有许多方法。

最新的一种方法是用一种长方体样品(100×25×6mm。

将样品装在一根轴上,轴带动样品在一个装满磨料的容器中转动。

测定磨擦前和磨擦后样品的重量差,可以得出样品的抗磨损性能。

据说这种方法最能代表实际使用情况。

还可以用磨擦寿命因子来表征抗磨损性能。

因子值越高,寿命越长。

5.3 抗热冲击性热冲击指材料经历温度突变。

由于陶瓷传热系数很低,局部受热会引起较大的应力。

加之陶瓷的脆性,很容易造成开裂。

如果一种材料具有同素异构性且在温度变化过程中会发生相转变,热冲击就会直接转化为机械冲击。

因为相转变必须伴随着体积的变化,这一变化往往比热膨胀要大。

例如二氧化锆在1000?C 以上为正交晶系,在1000?C 时转变为单斜晶系,并伴随剧烈的体积膨胀。

这一膨胀往往会使材料崩裂。

考虑材料的抗热冲击性能时,必须同时考虑弹性模量(E)、线膨胀系数(α)、导热系数(k)、拉伸强度(σ)与断裂韧性(K1C)。

例如,硅酸锂铝(LAS)就具有极低的热胀系数,尽管其导热性很低,强度与模量都很低,韧性也差,却是理想的抗热冲击材料。

此外,陶瓷的孔隙率、颗粒尺寸等都是值得考虑的因素。

如上所述,陶瓷中的孔隙是造成应力集中的隐患,对抗热冲击性能的影响最大。

陶瓷材料也并非抗热冲击性能都差。

结构比较简单的陶瓷如碳化硅,由于碳与硅的原子尺寸差不多,具有较高的导热系数,基本不受热冲击的影响。

5.4 断裂韧性陶瓷是典型的脆性材料。

陶瓷不仅脆,而且对裂缝非常敏感。

我们都看见过用玻璃刀划玻璃。

只要玻璃上有一道划痕,就可以从这道划痕开始使玻璃断成两半。

即使是从表面上看不出裂纹,内部细小的裂纹也足以使陶瓷制品断裂。

缺乏韧性是限制陶瓷应用的最大障碍,所以陶瓷的韧性受到了较多的关注。

图5-3金属与陶瓷的典型应力-应变曲线同其它材料一样,陶瓷韧性的度量也是用临界应力强度因子K1C。

K1C 有时也称作断裂韧性。

1 的含义指外力作用于x 轴,产生正应力。

如果外力作用的结果是产生剪应力,断裂韧性就应是K2C。

测定陶瓷断裂韧性的方法如图5-4 所示,使用的样品有两种:单缺口试样和Chevron 试样。

二者的区别仅在于开缺口的方式不同。

单缺口试样是平缺口,如图5-4(b)所示。

Chevron 试样开的是Chevron 缺口,如图5-4(a)所示。

Chevron 缺口的好处是裂缝在扩展过程中的扩展速率越来越慢,因为阻力越来越大。

两种样品都能够直接测定断裂韧性。

5.5 辐射系数当一个表面受到照射时,它会吸收部分或全部辐射(能量),也会反射部分或全部辐射。

相关文档
最新文档