收敛例1判断下列级数的敛散性P
第三节绝对收敛与条件收敛

一、交错级数及其审敛法 二、级数的绝对收敛与条件收敛
一、交错级数及其审敛法
1、定义: 正、负项相间的级数称为交错级数.
(1)n1an 或 (1)nan (其中an 0)
n1
n1
2、莱布尼茨定理 如果交错级数满足条件:
(i) an an1 (n 1,2,3, );
n an
n 2
(3)
lim
n
n
|
an
|
lim
n
1 (1 2
1 )n n
e 2
1,
故原级数发散.
例2
判别级数 (1)n
n1
1 np
的收敛性.
(1) 当 p 0 时,级数发散 ; (2) 当 0<p 1 时,
级数条件收敛 ; (3) 当 p >1 时,级数绝对收敛 .
例3
判别级数 (1)n
n1
xn n
.
发散
收敛
收敛
例2
判别级数
n2
( 1)n n
1
n
的收敛性
.
解
(
x
x 1
)
2
(1 x ) x ( x1)2
0,
( x 2)
故函数
f (x)
x x1
单调递减,
an
an1 ,
又
lim
n
an
lim n n n 1
0.
故原级数收敛.
判断 an an1 常用方法有:
(1)
证明 an
an1
0
或
an an1
1
.
(2) 令 an f (n) , 对 f ( x)( x 1) 求导 ,由 f ( x) 的
证明数项级数发散以及函数项级数非一致收敛的方法 终

1 1 1 1 = 原级数 I= , 前者是收敛的, 后者是发散的, 2 2 2n n 1 (2n 1) n 1 2n n 1 ( 2n 1)
n n n 1 2n 1
(2) (n 2 2) ln(
n 1
n2 1 ) n2
第一个级数的通项 an =
1 n n .由极限的知识,我们很容易知道 lim an = 0. n 2 2n 1
故(1)中的级数是发散的.而(2)中的通项可先进行化简,使之成为我们熟知
1 n n
n
在(1)中我们注意通项中有 n 次幂的存在,首先就会想到用根值判别法,而通 项的分母又有阶乘,我们又会联想到用比值判别法.其实,这个题目用这两种方 法 都 可以 求解 . 在这 里, 我用比 值判 别法来 解一下 :记 通项 an =
nn ,则 有 n!
an 1 (n 1) n 1 (n 1) n 1 n! = lim =e>1.由柯西判别法可知,该级 an 1 = ,故 lim n n n an (n 1)! n (n 1)!
0 就行.
三、对正项级数,利用判别法. 这里的判别法主要指的是根值判别法(柯西判别法) 、比值判别法(达朗贝尔判 别法)以及比较判别法.其中都有对级数发散情况的讨论.因此,在解决正项级数 的敛散性方面,这种方法也比较常见. 例3 判断下列级数的敛散性.
nn n 1 n!
(1)
(2)
n 1
n2 2 1 2 的可求极限的形式. bn = 2 ln(1 2 ) n 1(n ).故此级数是发散的. n n
7考研数学大纲知识点解析(第七章无穷级数(数学一)和傅里叶级数(数学一))

,
使
,于是
.令
,当 充分大时,有
因为
收敛,所以级数
绝对收敛.
【综合题】(04 年,数学一)设有方程
,其中 为正整数.证明此方程存
在唯一正实根 ,并证明当
时,级数
收敛.
【证明】记
.当
时,
,
故
在
上单调增加.
由于
,根据连续函数的零点存在定理知方程
存在唯一正实根 ,且
.从而当
时,有
,
而正项级数
收敛,所以当
在其收敛域 上可以逐项积分,即
, 且积分后的幂级数的收敛半径与原级数的收敛半径相同.
【函数展开成幂级数】
设
在
点的邻域
存在任意阶导数,则称幂级数
为
在
点处的泰勒级数.
特别地,当
时,称幂级数
【泰勒级数收敛充要条件】设函数
敛于
的充要条件为
,为
的麦克劳林级数.
在
内存在任意阶导数,则其泰勒级数收
,
其中
.
【常见麦克劳林级数】
(A)发散.
(C)绝对收敛. 【答案】(C).
收敛,则级数 (B)条件收敛. (D)收敛性与 有关.
【解析】由于
,
又级数
与
均收敛,所以由级数的运算性质得级数
收敛,
由正项级数的比较判别法,得级数
绝对收敛.故选(C).
【例题】(03 年,数学三)
设
,则下列命题正确的是 .
(A)若
条件收敛,则
与
都收敛.
【解析】因
当
时,因级数
设
,所以收敛半径
.
及
发散,故收敛域为
高数-任意项级数敛散性判别法

x)
.
所以当x ≥ 1时 , f ( x) ≤ 0 .
即函数
f
(x)
2x 1 x2
单调减小.
即 un un+1 (n = 1 , 2 , 3 , ) .
(
n1
1 )n1
2n 1 n2
又
lim
n
un
lim
n
2n 1 n2
0
.
因此交错级数 (1)n1
n1
2n 1 n2
收敛
.
二、绝对收敛与条件收敛
高等数学第十二章 第三节
任意项级数敛散性判别法
第三节 任意项级数敛散性判别法
一、交错级数及其审敛法 二、绝对收敛与条件收敛 三、小结 提高题
一、交错级数收敛性判别法
在级数 un 中,总含有无穷多个正项和负项 n1
叫任意项级数.
1.定义: 如果级数的各项是正、负交错的,即
(-1)n-1 un = u1 - u2 + u3 - u4 +
如下:
u1v1, u1v2, u1v3, u2v1, u2v2, u2v3,
u3v1, u3v2, u3v3,
,
u1v
,
n
,
u2v
,
n
,
u3v
,
n
unv1, unv2, unv3,
,
un
v
,
n
将它们排成下面形状的数列.
对角线法
u1v1
u2v1
u3v1
u4v1
u1v 2 u2v 2 u3v2 u4v2
定义2 如果级数 un 收敛,则称级数 un 绝对收敛;
n=1
n=1
(优选)级数的敛散性判别习题课.

性质4:收敛级数加括弧后所成的级数仍然收敛于 原来的和.
级数收敛的必要条件:
lim
n
un
0.
第3页,共33页。
常数项级数审敛法
一般项级数 正 项 级 数
任意项级数
1. 若 Sn S ,则级数收敛; 2. 当 n , un 0, 则级数发散; 3.按基本性质;
4.绝对收敛
4.充要条件 5.比较法 6.比值法 7.根值法
x0
x2
2
lim n2[ 1 ln(1 1 )] 1
x0
n
n2
第24页,共33页。
例6 判别级数 (cos 1 )n3 的收敛性
n1
n
解
lim n
n
un
lim(cos 1 )n2
n
n
lim
n
n2
ln
cos
1 n
lim
ln(1
cos
1 n
1)
e lim n
n2
ln
cos
1 n
n
1
n2
lim
则称 x0为级数 un ( x)的收敛点,否则称为发散点.
n1
函数项级数 un( x)的所有收敛点的全体称为收敛域, n1
所有发散点的全体称为发散域.
(3) 和函数
在收敛域上,函数项级数的和是x 的函数s( x) ,
称s( x)为函数项级数的和函数.
第12页,共33页。
二、典型例题
例1 判断级数敛散性 :
cos
1 n
1
1
e
1 2
1
n
1
n2
2
所以级数 (cos 1 )n3 收敛
收敛函数

(1)
n
的敛散性
2n
解: lim n n
un
lim n n
2 (1)n 2n
lim 1 n 2 (1)n n 2
1 2
所给级数收敛
例6. 证明级数
收敛于S , 并估计以部分和 Sn 近
似代替和 S 时所产生的误差 .
解:
n un
n
1 nn
由定理5可知该级数收敛 令. rn S Sn , 则所求误差为
(2) 当 1 或 时, 级数发散 .
(2) 当 1 时, 级数可能收敛 可能发散; 证明 当为有限数时, 对 0,
N , 当n N时, 有 un1 ,
un
即 un1 (n N )
un
(1) 当 1时, un1 1
un
收敛 , 由比较审敛法可知 un 收敛.
n un
n 1 np
但 p 1, 级数收敛 ; p 1, 级数发散 .
比值审敛法的优点: 不必找参考级数.
两点注意:
1.当 1,或不存在,且不是无穷大 时不能用
比值审敛法;
例
级数
1 发散,
n1 n
级数
n1
1 n2
收敛,
(
1)
2.条件是充分的,而非必要.
例
un
2
(1)n 2n
3 2n
即 un (n )
n1
定理2 (比较审敛法) 设
是两个正项级数,
且存在
对一切
有
(1) 若强级数 收敛 , 则弱级数
(常数 k > 0 ), 也收敛 ;
(2) 若弱级数 发散 , 则强级数 也发散 .
证:因在级数前加、减有限项不改变其敛散性, 故不妨
2 线性代数 级数的比值和根值判别法

设 un 0 (n 1, 2, ) ,则称
(1)
n1
n1
un u1 u2 u3 u4 (1) un
n1
为交错级数.
定理6(莱布尼兹判别法) 如果交错级数
n1 ( 1 ) un (un 0) n 1
满足条件:
(1) un1 un (n 1,2,);
n 1
n cos
2n
3 收敛.
2n (1) 3 n 1 n
nn (2) n n 1 3 n !
n2 ( 3) 1 n 1 (2 ) n n
例2 判断下列级数的敛散性.
n n (1) ( ) n 1 2n 1
(1)因为 lim n un lim n ( 解:
1 p 0 条件收敛. p n
例4 判断下列级数的敛散性.
sin n (1) 2 n 1 n
1 sin n 解:因为 n2 n 2
1 而级数 2 是收敛的p 级数, n 1 n sin n 由比较判别法知,正项级数 2 收敛. n 1 n 所以原级数 sin n 绝对收敛. 2 n 1 n
如果级数 un u1 u2 u3 un
n 1
的项 un 或正或负或为零,则称该级数为任意项级数. 定理7 定义2
n 1
若级数 | un |收敛,则级数 u n 一定收敛. 设 u n 为任意项级数,若
n 1 n 1
n 1
所以原级数 n tan
n 1
2
n
收敛.
an (5) a 0 k n 1 n
习题参考解答(第四部分) 收敛判定

无穷级数部分练习题参考解答1、 判断级数()()31ln ln ln pqn n n n ∞=∑的敛散性.解:考察反常积分()()3ln ln ln p q dx x x x +∞⎰()ln3ln tx eq pdt t t =+∞=⎰当1p >时,取充分小的0ε>,使1p ε->,则有()1lim 0ln p q p t tt t ε-→+∞=,从而()ln3ln q p dt t t +∞⎰收敛. 当1p <时,取充分小的0δ>,使1p δ+<,则有()1lim ln p q p t tt t δ+→+∞=+∞,从而()ln3ln q p dt t t +∞⎰发散.当1p =时,()ln3ln ln3ln ut eq qdt dt u t t =+∞+∞=⎰⎰,知1q >时,()ln3ln q dt t t +∞⎰ 收敛,1q ≤时()ln3ln q dt t t +∞⎰发散.又显然函数()()()1ln ln ln pqf x x x x =在()3,+∞上非负递减,于是由积分判别法知:当1p >或1p =且1q >时级数收敛,其余情况级数发散. 2、讨论级数111(1)n p n n-∞+=-∑的敛散性,如果收敛,讨论是绝对收敛还是条件收敛.解:当0p ≤时,通项不趋于零,发散;当1p >时,111p p n n n+<,原级数绝对收敛;当01p <≤时,11(1)n p n n -∞=-∑收敛,11nn 单调有界,由Abel 判别法知原级数收敛. 又 11(1)lim11n p nn pnn -+→∞-=,知111(1)n p n nn-∞+=-∑发散. 故原级数条件收敛.3、已知1221(1)12n n n π-∞=-=∑,计算10ln(1)x dx +⎰. 解:函数ln(1)x +在0x =点的Taylor 级数为123(1)ln(1)23n n x x x x x n--+=-+-++ ,(1,1)x ∈- 112ln(1)(1)123n n x x x x x n --+-=-+-++ ,1232220ln(1)(1)23n n x t x x x dt x t n -+-=-+-++⎰ 10ln(1)x dx x +⎰1232222011ln(1)(1)lim lim 1223n n x x x t x x x dt x t n π-→→+-⎛⎫==-+-++= ⎪⎝⎭⎰ . 4、证明(1)方程10nx nx +-=(n 为正整数)存在唯一正实根n x ;(2)级数1n n x α∞=∑当1α>时收敛.证:(1)令()1nn f x x nx =+-,[]0,1x ∈ 则()01n f =-,()10n f n =>,∴()0n f x =在()0,1内有根n x .由()10n n f x nx n -'=+>知()1n n f x x nx =+-在()0,+∞ .∴ ()0n f x =即10nx nx +-=存在唯一正实根n x .(2)由10nnn x nx +-=, 110nn n x x n n -<=<,当1α>时,10n x nαα<<, 而11n n α∞=∑是1p α=>的p 级数,收敛. ∴ 级数1nn x α∞=∑收敛.5、用多种方法求级数1212nn n∞=-∑的和S.解法1: 2n n n S S S =-=121111212121112122212n n n n n n -----++++-=+-- ,∴ lim 3n n S S →∞==. 解法2: ()112121222n n n n n n n ∞∞==-=-∑∑,而111211212n ∞===-∑;对12n n n ∞=∑:1211(1)n n nx x ∞-==-∑. 21,1(1)nn x n x x x ∞==<-∑.12x =时,12n n n ∞=∑=2 . ∴ 1214132n n n ∞=-=-=∑.解法3:考虑级数()()2021nn n xs x ∞=+=∑,从0到x 逐项积分,得()2121xn n x s t dt x x ∞+===-∑⎰,1x <.再求导,得()()22211x s x x +=-,1x <.令()1,1x =- 得()201121262112n n n s ∞=++===-∑ ∴ 1212nn n ∞=-∑= 100211213222n n n n n n ∞∞+==++==∑∑.6、证明函数项级数1(1)cos n n n x∞=-+∑在,22ππ⎡⎤-⎢⎥⎣⎦上一致收敛.证法1:记1()(1),()c o s nn n a x b x n x =-=+.显然1()n n a x ∞=∑的部分和函数列在[,22ππ-]上一致有界,{}()n b x 关于n 单调递减趋于零,且[,]22lim sup()00n n x b x ππ→∞∈--=.即,22()0n b x ππ⎡⎤-⎢⎥⎣⎦−−−−→−−−−→.由Dirichlet 判别法知()()1n n n a x b x ∞=∑在[,22ππ-]上一致收敛.证法2:记(1)(),()cos n n n n a x b x n n x -==+.1()n n a x ∞=∑是收敛的数项级数,当然在[,22ππ-]上一致收敛;{}()n b x 关于n 单调,且在[,22ππ-]上一致有界.由Abel 判别法知()()1n n n a x b x ∞=∑在[,22ππ-]上一致收敛.7、证明:① 1ln nn x x ∞=∑在(]0,1不一致收敛;② 2101ln 16n n x x dx π∞=⎛⎫=- ⎪⎝⎭∑⎰.证:① 级数1ln nn x x ∞=∑的每一项在(]0,1都连续,容易求出其和函数()()ln ,0,110,1x x x x S x x ⎧∈⎪-=⎨⎪=⎩由()10lim 1x S x →-=,知()S x 在(]0,1不是处处连续,所以1ln nn xx ∞=∑在(]0,1不一致收敛.② 对01x δ∀<<<,易知ln ln 1nn t tt t∞==-∑在[],x δ上一致收敛,有()110000ln ln ln 1x x nnxn n t dt t tdt t tdtt δδδ∞∞====---∑∑⎰⎰⎰⎰⎰ (*)∵ ()1201ln 1nt tdt n =-+⎰, ∴ 2100ln 6n n t tdt π∞==-∑⎰.又∵ ()21ln 1nt tdt n δ≤+⎰,()121ln 1n xt tdt n ≤+⎰∴ln nn t tdt δ∞=∑⎰和1ln n xn t tdt ∞=∑⎰分别在01δ≤≤和01x ≤≤上一致收敛.在(*)式两端令0,1x δ→→,得 210ln t dt π=-⎰,或 2101ln 16n n x x dx π∞=⎛⎫=- ⎪⎝⎭∑⎰. 8、给出1sinpn nx n∞=∑(0)p >一致收敛的区间,并证明之.证:当1p >时,sin 1p p nx n n ≤,(,),1,2,x n ∈-∞+∞= ,且11p n n∞=∑收敛. 由Weierstarss 判别法,知1sinpn nx n∞=∑在(,)-∞+∞上一致收敛.当01p <≤时,因对n N ∀∈,有 1212sin sin cos cos 222nk x n x kx x =+-=-∑.对(0,)επ∀∈,[,2]x επε∈-,有 121cos cos 2211sin 2sin 2sin sin 222nk n xx kx x x ε=++≤≤≤∑ 由Dirichlet 判别法知:1sinpn nx n∞=∑在[,2]επε-上一致收敛,即在(0,2)π上内闭一致收敛.同理可证:1sinpn nx n∞=∑在任意不包含2,0,1,2,k k π=±± 的闭区间上一致收敛.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定义 若级数
u
n 1
n
满足 un 0,(n 1, 2, 3,)
则称该级数为正项级数.
定理1 正项级数
u
n 1
n
收敛的充分必要条件是:
部分和数列 { Sn } 有上界.
1 例如 讨论级数 2 的敛散性. n 1 n
定理2(比较审敛法) 设 un和 vn均为正项级数,
则 (1) 当 0 l 时 , 二级数有相同的敛散性 ; (2) 当 l 0 时,若
比较审敛法的极限形式
v n 收敛 , 则 un 收敛 ; n 1
n 1
(3) 当 l 时 , 若
v n 发散 ,则 un 发散 .
n 1 n 1
备注:一般情况下,vn 取P-级数或几何级数 。
3. ( arctan n)cos n. n 1 2
思考题
( 1) n 1. n1 n 2 x (1 x ) 0 ( x 2) ) 解 ( 2 x 1 2 x ( x 1)
n
x 故函数 单调递减, un un1 , x 1 n 又 lim un lim 0. n n n 1
1 4. p n 1 n
( p 0)
P -级数
y
1 p x
0
1
2
3
4
n-1
n
n+1
x
5.
n 2
1
3
n2 1
练一练
1.
2. 3.
n 1
1 n 3 100
1 n4
n 1
n 1
1 2 (3n 1)
定理3
un l, 设 u n 与 v n 都是正项级数 , 如果 lim n v n n 1 n 1
故原级数收敛.
三、绝对收敛与条件收敛
定义1
对于级数 un ,若 un 收敛, 则称 un 为
n 1
n 1
n 1
绝对收敛;
若 un 发散,而 un 收敛, 则称 un 为条件收敛.
n 1 n 1 n 1
1 1 (( 1) 1) 2 例如 讨论级数 n n n 1 n 1
n
1 , 6
lim a2 n1
n
3 , 2
un1 lim lim an 不存在. n u n n
例3 判断下列级数的敛散性:
1 1. n 1 n!
n! 2. n n 1 10
1 3. n 1 (2n 1) 2n
un1 ( 2n 1) 2n lim 1, 解 lim n u n ( 2n 1) ( 2n 2) n
(1) 0 (2)
1 时级数收敛;
1 时级数发散; (3) 1 时级数可能收敛 , 也可
能发散.
比值审敛法的优点: 不必找参考级数. 两点注意: (1) 当 1时比值审敛法失效;
1 例 级数 发散, n 1 n
1 级数 2 收敛, n 1 n
( 1)
定理5(莱布尼兹判别法)
如果交错级数满足条件: (ⅰ) un un 1 ( n 1,2,3,) ; (ⅱ) lim un 0,
n
则级数收敛,且其和 s u1 .
例4 判断下列级数的敛散性:
( 1)n 1. n n 2
2.
(1)
n 1
n 1
n 3 n 1
(2)条件是充分的,而非必要.
2 ( 1) 3 例 un n vn , n 2 2
n
2 ( 1)n 级数 un 收敛, n 2 n 1 n 1
un1 2 ( 1)n1 但 an , n un 2( 2 ( 1) )
lim a2 n
(比值审敛法失效, 改用比较审敛法)
1 1 又 2 , 而级数 (2n 1) 2n n 1 级数 收敛. n 1 2n ( 2n 1)
1 收敛, 2 n 1 n
例3 判断下列级数的敛散性:
n 4. 2 n 1 ( n! )
解
n
( n 1) n 1 un 1 [(n 1)!]2 lim lim n n u n n n ( n! ) 2 1 1 n lim (1 ) 0 n n 1 n
使用比较审敛法常用的三个结论:
(1) 等比级数 aq n ,当 | q | 1时收敛; 当 | q | 1时发散.
n 0
1 ( 2) 调和级数 发散. n 0 n 1 (3) 2 ( p 0) 收敛 n 1 n
例1 判断下列级数的敛散性:
1 1. n 1 3n 2 n n 2. ( ) n 1 2n 3 1 3. n 1 (2n 1)(2n 3)
例2 判断下列级数的敛散性:
1 1. sin n n 1
1 2. n n 1 3 n
n 3. n1 ( n 1)(2n 5)
定理4
比值审敛法(达朗贝尔D’Alembert判别法)
un 1 设 un 是正项级数,如果 lim n u n 1 n ( 为常数或 ) ,则有
n 1
且 un v n ( n 1, 2,) ,若 vn 收敛,则 un 收敛;
反之,若 un 发散,则 vn 发散.
n 1 n 1
n 1
n 1
n 1
备注:1)若判断级数收敛,则需找比该级数大的级 数收敛,可通过适当放大方法解决。 2)若判断级数发散,则需找比该级数小的 级数发散,可通过适当缩小方法解决。
nn 级数 收敛. 2 n 1 ( n! )
练一练
ห้องสมุดไป่ตู้判断下列级数的敛散性:
n! 1. 2 ; n 1 n
二、交错级数及其审敛法
定义
正、负项相间的级数,即形如
n 1 n ( 1) u 或 ( 1) un n n 1 n 1
(其中un 0)
则称为交错级数.