动量典型例题

合集下载

高中物理动量定理题20套(带答案)含解析

高中物理动量定理题20套(带答案)含解析

【答案】(1)
(2)
(3)增大 S 可以通过减小 q、
U 或增大 m 的方法. 提高该比值意味着推进器消耗相同的功率可以获得更大的推力. 【解析】
试题分析:(1)根据动能定理有
解得:
(2)在与飞船运动方向垂直方向上,根据动量守恒有:MΔv=Nmv
解得:
(3)设单位时间内通过栅电极 A 的氙离子数为 n,在时间 t 内,离子推进器发射出的氙离 子个数为 N nt ,设氙离子受到的平均力为 F ,对时间 t 内的射出的氙离子运用动量定 理, Ft Nmv ntmv , F = nmv 根据牛顿第三定律可知,离子推进器工作过程中对飞船的推力大小 F= F = nmv 电场对氙离子做功的功率 P= nqU
﹣μ(m0+m)gt=(m0+m)(v2﹣v1) 解得:物块相对于木板滑行的时间
t v2 v1 1s g
3.甲图是我国自主研制的 200mm 离子电推进系统, 已经通过我国“实践九号”卫星空间飞 行试验验证,有望在 2015 年全面应用于我国航天器.离子电推进系统的核心部件为离子推 进器,它采用喷出带电离子的方式实现飞船的姿态和轨道的调整,具有大幅减少推进剂燃 料消耗、操控更灵活、定位更精准等优势.离子推进器的工作原理如图乙所示,推进剂氙 原子 P 喷注入腔室 C 后,被电子枪 G 射出的电子碰撞而电离,成为带正电的氙离子.氙离 子从腔室 C 中飘移过栅电极 A 的速度大小可忽略不计,在栅电极 A、B 之间的电场中加 速,并从栅电极 B 喷出.在加速氙离子的过程中飞船获得推力. 已知栅电极 A、B 之间的电压为 U,氙离子的质量为 m、电荷量为 q.
由动量定理 F Gt p
得小球受到地面的平均作用力是 F=12N
5.如图甲所示,足够长光滑金属导轨 MN、PQ 处在同一斜面内,斜面与水平面间的夹角 θ=30°,两导轨间距 d=0.2 m,导轨的 N、Q 之间连接一阻值 R=0.9 Ω 的定值电阻。金属杆 ab 的电阻 r=0.1 Ω,质量 m=20 g,垂直导轨放置在导轨上。整个装置处在垂直于斜面向上 的匀强磁场中,匀强磁场的磁感应强度 B=0.5 T。现用沿斜面平行于金属导轨的力 F 拉着金 属杆 ab 向上运动过程中,通过 R 的电流 i 随时间 t 变化的关系图像如图乙所示。不计其它 电阻,重力加速度 g 取 10 m/s2。

动量定理典型例题

动量定理典型例题

动量定理典型例题典型例题1——判断物体冲量变化甲、乙两个质量相同的物体在粗糙程度不同的水平面上以相同的初速度运动。

乙物体先停下来,甲物体经过较长时间才停下来。

正确的叙述是:甲物体受到的冲量与乙物体受到的冲量大小相等。

分析与解:在这个过程中,甲、乙两物体所受合外力均为摩擦力。

由动量定理可知,物体所受合外力的冲量等于动量的增量。

由题可知,甲、乙两物体初、末状态的动量都相同,所以所受的冲量均相同。

因此,答案为B。

典型例题2——判断外力大小质量为0.1kg的小球以10m/s的速度水平撞击竖直放置的厚钢板,撞击后以7m/s的速度被反向弹回,撞击时间为0.01s。

取撞击前钢球速度的方向为正方向。

求钢球受到的平均作用力大小。

分析与解:在撞击过程中,小球的动量发生了变化,这个变化等于小球所受合外力的冲量。

这个合外力的大小等于钢板对钢球作用力的大小。

此时可忽略小球的重力。

根据动量定理可得F×t=m×(v2-v1)。

代入数据可得F=-170N。

因此,答案为D。

典型例题3——判断冲量方向和大小质量为m的钢球自高处落下,以速率v1碰地,竖直向上弹回,碰撞时间极短离地的速率为v2.在碰撞过程中,地面对钢球的冲量的方向和大小为向上,m(v1+v2)。

分析与解:在小球碰撞到弹起的过程中,小球速度变化的方向是向上的,所以小球受到地面冲量的方向一定是向上的。

在忽略小球重力的情况下,地面对小球冲量的大小等于小球动量的变化。

因此,答案为D。

典型例题4——求小球下落到软垫时受到的平均作用力一个质量为0.1kg的小球在自由落体过程中,下落到软垫上,停止时间为0.02s。

求小球受到的平均作用力大小。

分析与解:在下落过程中,小球的速度会不断增加,直到触地瞬间速度达到最大值。

当小球落到软垫上时,受到的合外力是重力和软垫对小球的支持力。

由于小球在软垫上停留的时间极短,因此可以近似认为小球在软垫上的速度瞬间减为零。

根据动量定理可得F×t=mv,代入数据可得F=49N。

动量典型计算题(带答案)

动量典型计算题(带答案)

动量典型计算题1、质量m 1=10g 的小球在光滑的水平桌面上以v 1=30cm/s 的速率向右运动,恰好遇上在同一条直线上向左运动的另一个小球.第二个小球的质量为m 2=50g ,速率v 2=10cm/s .碰撞后,小球m 2恰好停止.那么,碰撞后小球m 1的速度是多大,方向如何?2、(6分)质量为M 的小车,如图所示,上面站着一个质量为m的人,以v 0的速度在光滑的水平面上前进。

现在人用相对于地面速度大小为u 水平向后跳出。

求:人跳出后车的速度?3、炮弹在水平飞行时,其动能为E k0=800J ,某时它炸裂成质量相等的两块,其中一块的动能为E k1=625J ,求另一块的动能E k24、一个质量M =1kg 的鸟在空中v 0=6m/s 沿水平方向飞行,离地面高度h =20m ,忽被一颗质量m =20g 沿水平方向同向飞来的子弹击中,子弹速度v =300m/s ,击中后子弹留在鸟体内,鸟立即死去,g =10m/s 2.求:(1)鸟被击中后的速度为多少?(2)鸟落地处离被击中处的水平距离.5、图中,轻弹簧的一端固定,另一端与滑块B 相连,B 静止在水平导轨上,弹簧处在原长状态。

另一质量与B 相同滑块A ,从导轨上的P 点以某一初速度向B 滑行,当A 滑过距离1l 时,与B 相碰,碰撞时间极短,碰后A 、B 紧贴在一起运动,但互不粘连。

已知最后A 恰好返回出发点P 并停止。

滑块A 和B 与导轨的滑动摩擦因数都为 ,运动过程中弹簧最大形变量为2l ,求A 从P 出发时的初速度0v 。

6、质量为1kg 的物体在倾角30º为的光滑斜面顶端由静止释放,斜面高5m ,求物体从斜面顶端滑到物体的动量变化底端过程中重力的冲量为多少?物体的动量变化为多少?7、质量为M 的火箭以速度v 0飞行在太空中,现在突然向后喷出一份质量为Δm 的气体,喷出的气体相对于火箭的速度是v ,喷气后火箭的速度是多少?8、(12分)跳起摸高是中学生进行的一项体育活动,某同学身高1.80 m ,质量65 kg ,站立举手达到2.20 m.此同学用力蹬地,经0.45 s 竖直离地跳起,设他蹬地的力的大小恒定为 1060 N ,计算他跳起可摸到的高度.(g =10 m/s 2)9、如图所示,光滑水平面上,质量为2m 的小球B 连接着轻质弹簧,处于静止;质量为m 的小球A 以初速度v 0向右匀速运动,接着逐渐压缩弹簧并使B 运动,过一段时间,A 与弹簧分离,设小球A 、B 与弹簧相互作用过程中无机械能损失,弹簧始终处于弹性限度以内。

高中物理动量经典大题练习(含答案)

高中物理动量经典大题练习(含答案)

1.如图所示,粗糙的水平面连接一个竖直平面内的半圆形光滑轨道,其半径为0.1R m=,半圆形轨道的底端放置一个质量为0.1m kg=的小球B,水平面上有一个质量为0.3M kg=的小球A以初速度04.0/sv m=开始向着木块B滑动,经过时间0.80t s=与B发生弹性碰撞,设两个小球均可以看作质点,它们的碰撞时间极短,且已知木块A与桌面间的动摩擦因数0.25μ=,求:(1)两小球碰前A的速度;(2)小球B运动到最高点C时对轨道的压力(3)确定小球A所停的位置距圆轨道最低点的距离。

2.如图所示,一质量为mB=2kg的木板B静止在光滑的水平面上,其右端上表面紧靠一固定斜面轨道的底端(斜面底端与木板B右端的上表面之间由一段小圆弧平滑连接),轨道与水平面的夹角θ=37°。

一质量也为mA=2kg的物块A由斜面轨道上距轨道底端x=8m处静止释放,物块A刚好没有从木板B的左端滑出。

已知物块A与斜面轨道间的动摩擦因数为μ1=0.25,与木板B上表面间的动摩擦因数为μ2=0.2,sinθ=0.6,cosθ=0.8,g取10m/s2,物块A可看作质点。

请问:(1)物块A刚滑上木板B时的速度为多大?(2)物块A从刚滑上木板B到相对木板B静止共经历了多长时间?(3)木板B有多长?3.如图所示,质量为M的平板车P高h,质量为m的小物块Q的大小不计,位于平板车的左端,系统原来静止在光滑水平面地面上.一不可伸长的轻质细绳长为R,一端悬于Q正上方高为R处,另一端系一质量也为m的小球(大小不计).今将小球拉至悬线与竖直位置成60°角,由静止释放,小球到达最低点时与Q的碰撞时间极短,且无能量损失,已知Q离开平板车时速度大小是平板车速度的两倍,Q与P之间的动摩擦因数为μ,M∶m=4∶1,重力加速度为g.求:(1)小物块Q离开平板车时速度为多大?(2)平板车P的长度为多少?4.如图所示,水平固定一个光滑长杆,有一个质量为m 小滑块A 套在细杆上可自由滑动。

动量经典例题及解析

动量经典例题及解析

动量经典例题及解析动量这玩意儿啊,在物理的世界里就像一个神秘的小魔法。

那咱就先看看一些经典例题,就像打开魔法盒子一样,可有趣了。

有这么一道题,一个小球以一定的速度去撞击另一个静止的小球,然后让你求碰撞之后两个小球各自的速度。

这就好比两个小伙伴在玩弹珠,一个弹珠飞快地冲向另一个安静待着的弹珠。

那怎么解呢?这里就用到动量守恒定律啦。

就像是两个小伙伴之间有一个看不见的能量天平,在碰撞之前的总动量,肯定等于碰撞之后的总动量。

比如说小球A的质量是m1,速度是v1,小球B的质量是m2,碰撞前B静止速度为0。

碰撞之后A的速度变成了v1',B的速度变成了v2',那根据动量守恒定律就是m1 * v1 = m1 * v1' + m2 * v2'。

这就像两个小伙伴之间交换了某种看不见的能量货币,总量是不变的。

再看一道题,一辆车在行驶过程中突然和另一辆静止的车撞上了,而且它们还粘在一起继续滑行一段距离。

这和咱们在路上看到的小刮擦有点像,只不过是更夸张的物理模型。

这里呢,我们还是用动量守恒。

车A质量M1,速度V1,车B质量M2速度为0,碰撞后它们共同的速度设为V。

那就是M1 * V1 = (M1 + M2) * V。

这里面的道理就像两个小水洼,一个有水在流动,一个是空的,突然它们之间的堤坝没了,水就混合在一起,总量还是那么多。

还有一种类型的题,是关于爆炸的。

一个物体原本静止,突然爆炸成好几个部分,让你求各个部分的速度。

这就像一个装满惊喜的大礼包突然炸开了,里面的小礼物朝各个方向飞去。

这个时候还是动量守恒,不过要注意方向。

比如说一个物体质量为M,爆炸后分成质量为m1、m2、m3等等的小部分,速度分别是v1、v2、v3等等。

因为原来物体静止,所以总动量为0,那就是m1 * v1 + m2 * v2 + m3 * v3 + … = 0。

这就像是从一个中心点向四面八方发射力量,但是这些力量的总和在动量这个层面上得是平衡的。

物理动量定理题20套(带答案)及解析

物理动量定理题20套(带答案)及解析

物理动量定理题20套(带答案)及解析一、高考物理精讲专题动量定理1. 2022年将在我国举办第二十四届冬奥会, 跳台滑雪是其中最具观赏性的项目之一. 某滑道示意图如下, 长直助滑道AB 与弯曲滑道BC 平滑衔接, 滑道BC 高h=10 m, C 是半径R=20 m 圆弧的最低点, 质量m=60 kg 的运动员从A 处由静止开始匀加速下滑, 加速度a=4.5 m/s2, 到达B 点时速度vB=30 m/s. 取重力加速度g=10 m/s2.(1)求长直助滑道AB 的长度L ;(2)求运动员在AB 段所受合外力的冲量的I 大小;(3)若不计BC 段的阻力, 画出运动员经过C 点时的受力图, 并求其所受支持力FN 的大小.【答案】(1)100m (2)1800N s ⋅(3)3 900 N【解析】(1)已知AB 段的初末速度, 则利用运动学公式可以求解斜面的长度, 即2202v v aL -=可解得:2201002v v L m a-== (2)根据动量定理可知合外力的冲量等于动量的该变量所以01800B I mv N s =-=⋅(3)小球在最低点的受力如图所示由牛顿第二定律可得:从B 运动到C 由动能定理可知:221122C B mgh mv mv =- 解得;3900N N =故本题答案是: (1) (2) (3)点睛:本题考查了动能定理和圆周运动, 会利用动能定理求解最低点的速度, 并利用牛顿第二定律求解最低点受到的支持力大小.2. 图甲为光滑金属导轨制成的斜面, 导轨的间距为 , 左侧斜面的倾角 , 右侧斜面的中间用阻值为 的电阻连接。

在左侧斜面区域存在垂直斜面向下的匀强磁场, 磁感应强度大小为 , 右侧斜面轨道及其右侧区域中存在竖直向上的匀强磁场, 磁感应强度为 。

在斜面的顶端e 、f 两点分别用等长的轻质柔软细导线连接导体棒ab, 另一导体棒cd 置于左侧斜面轨道上, 与导轨垂直且接触良好, ab 棒和cd 棒的质量均为 , ab 棒的电阻为 , cd 棒的电阻为 。

动量 新型情景题

动量 新型情景题

动量定理、动量守恒、动量实验情景题原创2024.6.30上海市位育中学伍秀峰《物体相互作用中的守恒量动量》补充习题1:1、看不见的碰撞I碰撞的特征包括物体间存在相互作用、过程时间很短、物体的Array运动状态发生改变等。

已知α粒子的速度一般约为光速的5%,由于强的电离作用,可以在云室中显示出很明显的径迹。

右图是用云室观察α粒子的照片,三条径迹中有一条存在明显的偏折,则这里是否存在α粒子与其他物体的碰撞,为什么?参考解答:是。

在径迹转折点附近的很小一段范围内,这个α粒子与别的(看不见的)物体发生了碰撞,因为:1、此粒子的运动方向明显改变,说明运动状态(瞬时速度)发生了明显变化。

2、运动状态的改变需要力,说明粒子在此与别的物体间存在明显的相互作用。

3、结合粒子速度,该转折过程所用时间是很短的。

综上,均符合碰撞的特征,所以这里径迹转折的粒子在转折点附近与别的物体发生了碰撞。

作业目标:1)物理观念水平2——物质观,运动和相互作用2)科学思维水平3——模型建构、科学推理。

(力学模型的建构,证据获取和特征分析)培养学生将真实情景转化为物理模型的能力,并运用运动和相互作用观作出解释,在学生的表述中体现其思维水平,在特征的对比上培养一定的证据意识,帮学生将对碰撞的认识拓展到微观领域。

速度的矢量观点。

设计说明:1)与配套练习的互补性:本章章首提到对碰撞现象研究的重要性,也是现代科学研究的重要手段,但是没有出现过对碰撞现象进行判断的练习。

2)设计特色与评价要点:依据特征对事物的属性进行判断是重要的科学研究方法,此为真实实验视频截图,综合矢量性,利用特征对比进行证据意识的培养,并且发挥学生的想象力建构模型,推理实际上看不见的微观领域的碰撞。

2、枪械中的动量I如图所示是我国某自动步枪的弹头速度随离枪口距离变化的图像,其实际的飞行轨迹很复杂,这里将其简化为水平直线运动,已知弹头质量为4.2g 。

(1)在100m 距离上,弹头速度为820m/s 时,将弹头与一个质量为50kg 、速度为5m/s 的跑步者相比,动能较大的是___________,动量较大的是_____________。

动量、冲量和动量定理·典型例题精析

动量、冲量和动量定理·典型例题精析

动量、冲量和动量定理例1、 下面关于冲量的说法中正确的是 ( )A.物体受到很大的冲力时,其冲量一定很大B.力F 的方向与位移的方向垂直时,则力F 的冲量为零C.不管物体做什么运动,在相同时间内重力的冲量相同D.只要力的大小恒定,其冲量就等于力与时间的乘积例2、质量m=1kg 的物体以v 0=10m/s 水平抛出空气阴力不计,取g=10m/s 2,则在第3s 内动量的变化量如何?例3、质量为m 的质量在半径为r 的圆周上以角速度 做匀速圆周运动,则:向心力大小为F=______________;周期为T=________________;向心力在一个周期内的冲量大小为I=______________。

例4 质量为m 的钢球自高处落下,以速战速决率v 1碰地,竖直向上弹回,碰掸时间极短,离地的速率为v 2。

在碰撞过程中,地面对钢球冲量的方向和大小为A 、向下,m(v 1-v 2)B 、向下,m(v 1+v 2)C 、向上,m(v1-v 2) D 、向上,m(v 1+v 2)例5、如图-2所示,长为L 、质量为 m 1的小船停在静水中。

一个质量为m 2的人立在船头,若不计水的阴力,当人从船头走到船尾声的过程中,船和人对地面的位移各是多少?例6.质量为2m 的物体A 以速度υ0碰撞静止m 物体B ,B 的质量为m ,碰后A 、B 的运动方向均与υ0的方向相同,则磁撞后B 的速度可能为( )A .υ0B .2υ0C .32υ0D .21υ0例7质量为m的物体,在倾角为θ的光滑斜面上由静止开始下滑.如图7-1所示.求在时间t内物体所受的重力、斜面支持力以及合外力给物体的冲量.[[例8一质量为100g的小球从0.80m高处自由下落到一厚软垫上.若从小球接触软垫到小球陷至最低点经历了0.20 s,则这段时间内软垫对小球的冲量为多少(取g=10 m/s2,不计空气阻力)?例9人从高台上跳下着地时,总是不自觉地先弯腿再站起来,为什么?例10质量m=5 kg的物体在恒定水平推力F=5 N的作用下,自静止开始在水平路面上运动,t1=2s后,撤去力F,物体又经t2=3 s停了下来,求物体运动中受水平面滑动摩擦力的大小.例11、以速度v0水平抛出一个质量为1kg的物体,若在抛出3s后它未与地面及其他物体相碰,求它在3s内动量的变化(g取10m/s2).例12、质量m1=10g的小球在光滑的水平桌面上以v1=30cm/s的速率向右运动,恰遇上质量m2=50g的小球以v2=10cm/s的速率向左运动,碰撞后,小球m2恰好停止.那么,碰撞后小球m1的速度是多大?方向如何?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 如图所示,已知A,B之间的质量关系是m B=1.5m A,拍摄共进行了4次,第一次是在两滑块相撞之前,以后的三次是在碰撞之后,A原来处于静止状态,设A、B滑块在拍摄闪光照片的这段时间内是在10 cm至105 cm这段范围内运动(以滑块上的箭头位置为准),试根据闪光照片(闪光时间间隔为0.4s),求出:
(1)A、B两滑块碰撞前后的速度各为多少?
(2)根据闪光照片分析说明:两滑块碰撞前后,两个物体各自的质量与自己的速度的乘积之和是不是不变量?
2 气垫导轨(如图)工作时,空气从导轨表面的小孔喷出,在导轨表面和滑块内表面之间形成一层薄薄的空气层,使滑块不与导轨表面直接接触,大大减小了滑块运动时的阻力.为了探究碰撞中的守恒量,在水平气垫导轨上放置两个质量均为a的滑块,每个滑块的一端分别与穿过打点计时器的纸带相连,两个打点计时器所用电源的频率均为b.气垫导轨正常工作后,接通两个打点计时器的电源,并让两滑块以不同的速度相向运动,两滑块相碰后粘在一起继续运动.右下图为某次实验打出的、点迹清晰的纸带的一部分,
在纸带上以同间距的6个连续点为一段划分纸带,用刻度尺分别量出其长度s1、s2和s3.若题中各物理量的单位均为国际单位,那么,碰撞前两滑块的质量和速度大小的乘积分别为
_______ 、_______ ,碰撞前两滑块的质量和速度乘积的矢量和为;碰撞后两滑块的总质量和速度大小的乘积为________.重复上述实验,多做几次寻找碰撞中的守恒量.
3 碰撞的恢复系数的定义为,其中v10和v20分别是碰撞前两物体的速度,v1和
v2分别是碰撞后两物体的速度。

弹性碰撞的恢复系数e=1,非弹性碰撞的e<1。

某同学借用验证动量守恒定律的实验装置(如图所示)验证弹性碰撞的恢复系数是否为1,实验中使用半径相等的钢质小球1和2,(它们之间的碰撞可近似视为弹性碰撞),且小球1的质量大于小球2的质量。

实验步骤如下:安装好实验装置,做好测量前的准备,并记下重垂线所指的位置O。

第一步:不放小球2,让小球1从斜槽上A点由静止滚下,并落在地面上。

重复多次,用尽可
能小的圆把小球的所有落点圈在里面,其圆心就是小球落点的平均位置。

第二步:把小球2放在斜槽前端边缘处的C点,让小球1从A点由静止滚下,使它们碰撞。

重复多次,并使用与第一步同样的方法分别标出碰撞后两小球落点的平均位置。

第三步:用刻度尺分别测量三个落地点的平均位置离O点的距离,即线段OM、OP、ON的长
度。

上述实验中:
(1)P点是_____________的平均位置,M点是_____________的平均位置,N点是
_____________的平均位置。

(2)请写出本实验的原理
______________________________________________________________________;写出用测量量表示的恢复系数的表达式_________________________。

(3)三个落地点距O点的距离OM、OP、ON与实验所用的小球质量是否有关?
______________________________________________________________________
4 一个铁球,从静止状态由10m高处自由下落,然后陷入泥潭中,从进入泥潭到静止用去0.4s,该铁球的质量为336g,求从开始下落到进入泥潭前,重力对小球的冲量为多少?从进入泥潭到静止,泥潭对小球的冲量为多少?(保留两位小数,g取10m/s2)
5 一个竖直向上发射的火箭,除燃料外重
6 000 kg,火箭喷气速度为1 000 m/s,在开始时每秒大约要喷出多少质量的气体才能支持火箭的重量?如果要使火箭开始时有19.6 m/s2向上的加速度,则每秒要喷出多少气体?
6 2009年中国女子冰壶队首次获得了世界锦标赛冠军,这引起了人们对冰壶运动的关注。

冰壶在水平冰面上的一次滑行可简化为如下过程:如图所示,运动员将静止于O点的冰壶(视
为质点)沿直线推到A点放手,此后冰壶沿滑行,最后停于C点。

已知冰面与各冰壶间的动摩擦因数为μ,冰壶质量为m,AC=L,=r,重力加速度为g,
(1)求冰壶在A 点的速率;
(2)求冰壶从O点到A点的运动过程中受到的冲量大小;
(3)若将段冰面与冰壶间的动摩擦因数减小为,原只能滑到C点的冰壶能停于点,求A点与B点之间的距离。

7 图中滑块和小球的质量均为m,滑块可在水平放置的光滑固定导轨上自由滑动,小球与滑块上的悬点O由一不可伸长的轻绳相连,轻绳长为l。

开始时,轻绳处于水平拉直状态,小球和滑块均静止。

现将小球由静止释放,当小球到达最低点时,滑块刚好被一表面涂有粘住物质的固定挡板粘住,在极短的时间内速度减为零。

小球继续向左摆动,当轻绳与竖直方向的夹角θ=60°时小球达到最高点。


(1)从滑块与挡板接触到速度刚好变为零的过程中,挡板阻力对滑块的冲量;
(2)小球从释放到第一次到达最低点的过程中,绳的拉力对小球做功的大小。

8 光滑水平面上放着质量为m A=1kg的物块A与质量m B=2kg的物块B,A与B均可视为质点,A靠在竖直墙壁上,A、B间夹一个被压缩的轻弹簧(弹簧与A、B均不拴接),用手挡住B不动,此时弹簧弹性势能E P=49J。

在A、B间系一轻质细绳,细绳长度大于弹簧的自然长度,如图所示。

放手后B向右运动,绳在短暂时间内被拉断,之后B冲上与水平面相切的竖直半圆光滑轨道,其半径R=0.5m,B恰能到达最高点C。

取g=10m/s2,求
(1)绳拉断后瞬间B的速度v B的大小;
(2)绳拉断过程绳对B的冲量I的大小;
(3)绳拉断过程绳对A所做的功W。

9 某兴趣小组用如图所示的装置进行实验研究。

他们在水平桌面上固定一内径为d的圆柱形玻璃杯,杯口上放置一直径为3d/2、质量为m的匀质薄圆板,板上放一质量为2m的小物块。

板中心、物块均在杯的轴线上。

物块与板间动摩擦因数为μ,不计板与杯口之间的摩擦力,重力加速度为g,不考虑板翻转。

(1)对板施加指向圆心的水平外力F,设物块与板间最大静摩擦力为f max,若物块能在板上滑动,求F应满足的条件。

(2)如果对板施加的指向圆心的水平外力是作用时间极短的较大冲击力,冲量为I。

① I应满足什么条件才能使物块从板上掉下?
②物块从开始运动到掉下时的位移s为多少?
③根据s与I的关系式说明要使s更小,冲量应如何改变。

10 在光滑水平面上AB两小车中间有一弹簧,如图16-2-1所示,用手抓住小车并将弹簧压缩后使小车处于静止状态.将两小车及弹簧看作一个系统,下面说法正确的是()
A.两手同时放开后,系统总动量始终为零
B.先放开左手,再放开右手后,动量不守恒
C.先放开左手,后放开右手,总动量向左
D.无论何时放手,两手放开后,在弹簧恢复原长的过程中,系统总动量都保持不变,但系统的总动量不一定为零
11 如图所示,设车厢长为L,质量为M,静止于光滑水平面上,车厢内有一质量为m的物体以初速度v0向右运动,与车厢壁来回碰撞n次后,静止在车厢中,求这时车厢的速度。

12 如图所示,质量为m的子弹,以速度v水平射入用轻绳悬挂在空中的木块,木块的质量为M,绳长为L,子弹射入木块即停留在木块中,求子弹射入木块的瞬间绳子张力的大小
13 如图所示,一质量m2=0.25 kg的平顶小车,车顶右端放一质量m3=0.2 kg的小物体,小物体可视为质点,与车顶之间的动摩擦因数=0.4,小车静止在光滑的水平轨道上。

现有
一质量m1=0.05 kg的子弹以水平速度12 m/s射中小车左端,并留在车中。

子弹与车相互作用时间很短。

若使小物体不从车顶上滑落,求:
(1)小车的最小长度应为多少?最后物体与车的共同速度为多少?
(2)小木块在小车上滑行的时间。

(g取10m/s2)
14 质量为M,半径为R的光滑半圆槽静止在光滑水平面上,现将质量为m的小球放于半圆形槽的边缘上,并由静止开始释放,求小球滑到半圆形槽的最低位置时,槽移动的距离为多少?
15 如图所示,一个质量为m的玩具蛙,蹲在质量为M的小车的细杆上,小车放在光滑的水平桌面上,若车长为L,细杆高为h,且位于小车的中点,试求:当玩具蛙最小以多大的水平速度v跳出,才能落到桌面上。

16目前滑板运动受到青少年的追捧。

如图是某滑板运动员在一次表演时的一部分赛道在竖直平面内的示意图,赛道光滑,FGI 为圆弧赛道,半径 R =6 .5m , G为最低点并与水平赛道 BC 位于同一水平面, KA、DE 平台的高度都为 h = 18m。

B、C、F处平滑连接。

滑板a 和 b 的质量均为m, m= 5kg ,运动员质量为M , M= 45kg 。

表演开始,运动员站在滑板 b 上,先让滑板 a 从 A 点静止下滑,t1=0.1s后再与 b 板一起从 A 点静止下滑。

滑上 BC 赛道后,运动员从 b 板跳到同方向运动的 a 板上,在空中运动的时间 t2=0.6s。

(水平方向是匀速运动)。

运动员与 a 板一起沿CD 赛道上滑后冲出赛道,落在EF赛道的P 点,沿赛道滑行,经过G点时,运动员受到的支持力 N = 742.5N。

(滑板和运动员的所有运动都在同一竖直平面内,计算时滑板和运动员都看作质点,取 g= 10m/s)
(1)滑到G点时,运动员的速度是多大?
(2)运动员跳上滑板 a 后,在 BC 赛道上与滑板 a 共同运动的速度是多大?
(3)从表演开始到运动员滑至 I 的过程中,系统的机械能改变了多少?。

相关文档
最新文档