典型例题动量守恒考试

合集下载

动量守恒定律测试题(含答案)

动量守恒定律测试题(含答案)

... .word.zl.第16章?动量守恒定律?测试题一、单项选择题〔每题只有一个正确答案〕1.质量为m ,速度为v 的棒球,与棒相互作用后以被原速率弹回,那么小球动量的变化量为〔取作用前的速度方向为正方向〕〔〕A .0B .-2mvC .2mvD .mv2.相向运动的A 、B 两辆小车相撞后,一同沿A 原来的方向前进,那么碰撞前的瞬间〔 〕A .A 车的动量一定大于B 车的速度 B .A 车的速度一定大于B 车的动量C .A 车的质量一定大于B 车的质量D .A 车的动能一定大于B 车的动能3.将质量为m 的铅球以大小为v 0、仰角为θ的初速度抛入一个装着沙子的总质量为m '的静止小车中,如以下图,小车与地面间的摩擦力不计,那么最后铅球与小车的共同速度等于〔〕A .0cos mv m m θ+'B .0sin mv m m θ+'C .0mv m m+' D .0tan mv m m θ+' 4.物体在恒定合力F 作用下做直线运动,在1t ∆速度由0增大到1E ,在2t ∆速度由v 增大到2v.设2E 在1t ∆做功是1W ,冲量是1I ;在2t ∆做功是2W ,冲量是2I ,那么( )A .1212I I W W <=,B .1212I I W W <<,C .1212,I I W W ==D .1212I I W W =<,5.沿光滑水平面在同一条直线上运动的两物体A 、B 碰撞后以共同的速度运动,该过程的位移—时间图象如以下图。

那么以下判断错误的选项是〔〕A .碰撞前后A 的运动方向相反B .A 、B 的质量之比为1:2C .碰撞过程中A 的动能变大,B 的动能减小D .碰前B 的动量较大6.如以下图,质量M=3kg 的滑块套在水平固定着的轨道上并可在轨道上无摩擦滑动。

质量m=2kg 的小球(视为质点)通过长L=0.5m 的轻杆与滑块上的光滑轴O 连接,开场时-滑块静止,轻杆处于水平状态,现让小球从静止开场释放,取g=10m/s2,以下说确的的是〔〕A.小球m从初始位置到第一次到达最低点的过程中,轻杆对小球的弹力一直沿杆方向B.小球m从初始位置到第一次到达最低点时,小球m速度大小为C.小球m从初始位置到第一次到达最低点的过程中,滑块M在水平轨道上向右移动了0.2mD.小球m上升到的最高位置比初始位置低7.蹦极是一项刺激的极限运动,如图,运发动将一端固定的弹性长绳绑在腰或踝关节处,从几十米高处跳下(忽略空气阻力)。

动量-动量守恒定律专题练习(含答案)

动量-动量守恒定律专题练习(含答案)

动量-动量守恒定律专题练习(含答案)动量 动量守恒定律一、动量和冲量1、关于物体的动量和动能,下列说法中正确的是:A 、一物体的动量不变,其动能一定不变B 、一物体的动能不变,其动量一定不变C 、两物体的动量相等,其动能一定相等D 、两物体的动能相等,其动量一定相等2、两个具有相等动量的物体A 、B ,质量分别为m A 和m B ,且m A >m B ,比较它们的动能,则:A 、B 的动能较大 B 、A 的动能较大C 、动能相等 D 、不能确定3、恒力F 作用在质量为m 的物体上,如图所示,由于地面对物体的摩擦力较大,没有被拉动,则经时间t ,下列说法正确的是:A 、拉力F 对物体的冲量大小为零;B 、拉力F 对物体的冲量大小为Ft ;C 、拉力F 对物体的冲量大小是Ftcosθ;D 、合力对物体的冲量大小为零。

F4、如图所示,PQS 是固定于竖直平面内的光滑的14圆周轨道,圆心O 在S 的正上方,在O 和P 两点各有一质量为m 的小物块a 和b ,从同一时刻开始,a 自由下落,b 沿圆弧下滑。

以下说法正确的是 A 、a 比b 先到达S ,它们在S 点的动量不相等B 、a 与b 同时到达S ,它们在S 点的动量不相等C 、a 比b 先到达S ,它们在S 点的动量相等D 、b 比a 先到达S ,它们在S 点的动量不相等二、动量守恒定律1、一炮艇总质量为M ,以速度v 0匀速行驶,从船上以相对海岸的水平速度v 沿前进方向射出一质量为m 的炮弹,发射炮弹后艇的速度为v /,若不计水的阻力,则下列各关系式中正确的是 。

A 、'0()Mv M m v mv =-+B 、'00()()MvM m v m v v =-++ C 、''0()()Mv M m v m v v =-++ D 、'0Mv Mv mv =+2、在高速公路上发生一起交通事故,一辆质量为1500kg 向南行驶的长途客车迎面撞上了一辆质量为3000kg 向北行驶的卡车,碰后两车接在一起,并向南O P S Q5、光滑的水平面上有两个小球M和N,它们沿同一直线相向运动,M球的速率为5m/s,N球的速率为2m/s,正碰后沿各自原来的反方向而远离,M球的速率变为2m/s,N球的速率变为3m/s,则M、N两球的质量之比为A、3∶1B、1∶3C、3∶5D、5∶76、如图所示,一个木箱原来静止在光滑水平面上,都具有一定的质量。

(完整版)分方向(水平方向)动量守恒的应用常见例题全带

(完整版)分方向(水平方向)动量守恒的应用常见例题全带

【例1】如图所示,在光滑的水平面上有一物体M,物体上有一光滑的半圆弧轨道,最低点为C,两端A、B一样高.现让小滑块m从A点静止下滑,则()A.m不能到达小车上的B点B.M与m组成的系统机械能守恒,动量守恒C.m从A到B的过程中小车一直向左运动,m到达B的瞬间,M速度为零D.m从A到C的过程中M向左运动,m从C到B的过程中M向右运动变式1:如图所示,在光滑的水平面上放有一物体M,物体上有一光滑的半圆弧轨道,轨道半径为R,最低点为C,两端A、B等高,现让小滑块m从A点静止下滑,在此后的过程中,则A.M和m组成的系统机械能守恒,动量守恒B.M和m组成的系统机械能守恒,动量不守恒C.m从A到B的过程中,M运动的位移为mRM+mD.m从A到C的过程中M向左运动,m从C到B的过程中M向右运动例2、(多选)如下图(左)所示,小车质量为M,小车顶端为半径为R的四分之一光滑圆弧,质量为m的小球从圆弧顶端由静止释放,对此运动过程的分析,下列说法中正确的是(g 为当地重力加速度) ( )A.若地面粗糙且小车能够静止不动,当小球滑到圆弧最低点时速度为√2gRB.若地面粗糙且小车能够静止不动,则小球对小车的压力最大3mgC.若地面光滑,当小球滑到圆弧最低点时,小车速度为m2gRM(M+m)D.若地面光滑,当小球滑到圆弧最低点时,小车速度为M2gRm(M+m)变式1(多选)如上图(右)所示,将一个内、外侧均光滑的半圆形槽,置于光滑的水平面上,槽的左侧有一个竖直墙壁.现让一个小球自左端槽口A的正上方从静止开始下落,与半圆形槽相切从A点进入槽内,则以下说法正确的是()A.小球在半圆形槽内运动的全过程中,小球与槽组成的系统机械能守恒B.小球在半圆形槽内运动的全过程中,小球与槽组成的系统机械能不守恒C.小球从最低点向右侧最高点运动过程中,小球与槽组成的系统在水平方向动量守恒D.小球离开槽右侧最高点以后,将做竖直上抛运动例3 如图所示,AB 为一光滑水平横杆,杆上套一质量为M 的小圆环,环上系一长为L 质量不计的细绳,绳的另一端拴一质量为m 的小球,现将绳拉直,且与AB 平行,由静止释放小球,则当线绳与A B 成θ角时,圆环移动的距离是多少?变式1 如图所示,光滑水平面上有一小车,小车上固定一杆,总质量为M ;杆顶系一长为L 的轻绳,轻绳另一端系一质量为m 的小球.绳被水平拉直处于静止状态(小球处于最左端).将小球由静止释放,小球从最左端摆下并继续摆至最右端的过程中,小车运动的距离是多少?变式2 质量为M 的气球上有一质量为m 的人,共同静止在距地面高为h 的空中,现在从气球中放下一根不计质量的软绳,人沿着软绳下滑到地面,软绳至少为多长,人才能安全到达地面?(忽略空气阻力)例4 如图所示,光滑水平面上有一质量为2M 、半径为R (R 足够大)的圆弧曲面C ,质量为M 的小球B 置于其底端,另一个小球A 质量为M 2,以v 0=6 m/s 的速度向B 运动,并与B 发生弹性碰撞,不计一切摩擦,小球均视为质点,求:(1)小球B 的最大速率;(2)小球B 运动到圆弧曲面最高点时的速率;(3)通过计算判断小球B 能否与小球A 再次发生碰撞。

25道物理动量守恒的大题

25道物理动量守恒的大题

1用放射源钋的α射线轰击铍时,能发射出一种穿透力极强的中性射线,这就是所谓铍“辐射”。

1932年,查德威克用铍“辐射”分别照射(轰击)氢和氮(它们可视为处于静止状态)。

测得照射后沿铍“辐射”方向高速运动的氢核和氮核的速度之比为7.0。

查德威克假设铍“辐射”是由一种质量不为零的中性粒子构成的,从而通过上述实验在历史上首次发现了中子。

假设铍“辐射”中的中性粒子与氢或氮发生弹性正碰,试在不考虑相对论效应的条件下计算构成铍“辐射”的中性粒子的质量。

(质量用原子质量单位u表示,1 u等于1个12C 原子质量的十二分之一。

取氢核和氦核的质量分别为1.0 u和14 u。

)分析与求解:设构成铍“辐射”的中性粒子的质量和速度分别为m和v,氢核的质量为m H。

构成铍“辐射”的中性粒子与氢核发生弹性正碰,碰后两粒子的速度分别为v/和v H/。

对于电子、质子、中子、原子核等粒子,在物理过程中的重力通常不计,因此,在中性粒子与氢核的碰撞过程中,二者不受外力作用,它们的总动量守恒;又由于二者的碰撞属于弹性碰撞,同们的总动能保持不变,分别运用动量守恒与能量守恒定律得:mv=mv′+m H v H′;解此两式碰后氢核的速度:同理,对于质量为m N的氮核,亦可求得其碰后速度为,由及的表达式可求得:,根据题意可知:v H′=7.0v N′解此两式可得中性粒子的质量:m=1.2u2如图所示,质量均为m的A、B两个弹性小球,用长为2L的不可伸长的轻绳连接。

现把小球A、B置于距地面高H(H足够大)处,间距为L,当A球自由下落的同时,B球以水平速度v o指向A球水平抛出,求:(1)两球从开始运动到相碰,A球下落的距离;(2)A、B两球相碰(碰撞时无机械能损失)后,各自速度的水平分量;(3)轻绳拉直过程中,B球受到绳子拉力的冲量大小。

分析与求解:由于A球自由下落,B球水平抛出,所以,两球始终位于同一水平线上。

水平方向上两球的运动情景是B球以速度v o匀速运动L后与“静止”的A球碰撞,由于无机械能损失,碰撞后两球互换速度,此后,A球以速度v o匀速运动2L后,使绳子拉直,A、B获得相同的速度,而这个拉直过程中,两球水平方向不受外力作用,水平方向总动量守恒。

动量守恒定律的典型例题

动量守恒定律的典型例题

动量守恒定律的典型例题【例1】把一支枪固定在小车上,小车放在光滑的水平桌面上.枪发射出一颗子弹.对于此过程,下列说法中正确的有哪些?[] A.枪和子弹组成的系统动量守恒 B.枪和车组成的系统动量守恒 C.车.枪和子弹组成的系统动量守恒 D.车.枪和子弹组成的系统近似动量守恒,因为子弹和枪筒之间有摩擦力.且摩擦力的冲量甚小【例2】一个质量M=1kg的鸟在空中v0=6m/s沿水平方向飞行,离地面高度h=20m,忽被一颗质量m=20g沿水平方向同向飞来的子弹击中,子弹速度v=300m/s,击中后子弹留在鸟体内,鸟立即死去,g=10m/s2.求:鸟被击中后经多少时间落地;鸟落地处离被击中处的水平距离. 【例3】一列车沿平直轨道以速度v0匀速前进,途中最后一节质量为m的车厢突然脱钩,若前部列车的质量为M,脱钩后牵引力不变,且每一部分所受摩擦力均正比于它的重力,则当最后一节车厢滑行停止的时刻,前部列车的速度为 [] 【例4】质量m1=10g的小球在光滑的水平桌面上以v1=30cm/s的速率向右运动,恰好遇上在同一条直线上向左运动的另一个小球.第二个小球的质量为m2=50g,速率v2=10cm/s.碰撞后,小球m2恰好停止.那么,碰撞后小球m1的速度是多大,方向如何?【例5】甲.乙两小孩各乘一辆冰车在水平冰面上游戏.甲和他的冰车的总质量共为M=30kg,乙和他的冰车的总质量也是30kg.游戏时,甲推着一质量为m=15km的箱子,和他一起以大小为v0=2m/s 的速度滑行.乙以同样大小的速度迎面滑来.为了避免相撞,甲突然将箱子沿冰面推给乙,箱子到乙处时乙迅速把它抓住.若不计冰面的摩擦力,求甲至少要以多大的速度(相对于地面)将箱子推出,才能避免和乙相碰. 【例6】两辆质量相同的小车A和B,置于光滑水平面上,一人站在A 车上,两车均静止.若这个人从A车跳到B车上,接着又跳回A 车,仍与A车保持相对静止,则此时A车的速率 [] A.等于零B.小于B车的速率 C.大于B车的速率D.等于B车的速率【例7】甲.乙两船在平静的湖面上以相同的速度匀速航行,且甲船在前乙船在后.从甲船上以相对于甲船的速度v,水平向后方的乙船上抛一沙袋,其质量为m.设甲船和沙袋总质量为M,乙船的质量也为M.问抛掷沙袋后,甲.乙两船的速度变化多少?【分析】由题意可知,沙袋从甲船抛出落到乙船上,先后出现了两个相互作用的过程,即沙袋跟甲船和沙袋跟乙船的相互作用过程.在这两个过程中的系统,沿水平方向的合外力为零,因此,两个系统的动量都守恒.值得注意的是,题目中给定的速度选择了不同的参照系.船速是相对于地面参照系,而抛出的沙袋的速度v是相对于抛出时的甲船参照系. 【解】取甲船初速度V的方向为正方向,则沙袋的速度应取负值.统一选取地面参照系,则沙袋抛出前,沙袋与甲船的总动量为MV. 沙袋抛出后,甲船的动量为(M-m)v甲,沙袋的动量为m(v甲m)v 甲+m(v甲v)=(M+m)v乙 .(2)联立(l).(2)式解得则甲.乙两船的速度变化分别为【例8】小型迫击炮在总质量为1000kg的船上发射,炮弹的质量为2kg.若炮弹飞离炮口时相对于地面的速度为600m/s,且速度跟水平面成45°角,求发射炮弹后小船后退的速度?【例9】两块厚度相同的木块A和B,并列紧靠着放在光滑的水平面上,其质量分别为mA=2.0kg,mB=0.90kg.它们的下底面光滑,上表面粗糙.另有质量mC=0.10kg的铅块C(其长度可略去不计)以vC=10m/s的速度恰好水平地滑到A的上表面(见图),由于摩擦,铅块最后停在本块B 上,测得B.C的共同速度为v=0.50m/s,求木块A的速度和铅块C离开A时的速度. 【分析】C滑上A时,由于B与A紧靠在一起,将推动B一起运动.取C与A.B这一系统为研究对象,水平方向不受外力,动量守恒.滑上后,C在A的摩擦力作用下作匀减速运动,(A+B)在C的摩擦力作用下作匀加速运动.待C滑出A后,C继续减速,B在C的摩擦力作用下继续作加速运动,于是A与B分离,直至C最后停于B 上. 【解】设C离开A时的速度为vC,此时A.B的共同速度为vA,对于C刚要滑上A和C刚离开A这两个瞬间,由动量守恒定律知mCvC=(mA+mB)vA+mCv C(1)以后,物体C离开A,与B发生相互作用.从此时起,物体A 不再加速,物体B将继续加速一段时间,于是B与A分离.当C相对静止于物体B上时,C与B的速度分别由v C和vA变化到共同速度v.因此,可改选C与B为研究对象,对于C刚滑上B和C.B 相对静止时的这两个瞬间,由动量守恒定律知 mCvC+mBvA=(mB+mC)v(2)由(l)式得mCv C=mCvC-(mA+mB)vA 代入(2)式mCv C-(mA+mC)vA+mBvA=(mB+mC)v. 得木块A的速度所以铅块C离开A时的速度【说明】应用动量守恒定律时,必需明确研究对象,即是哪一个系统的动量守恒.另外需明确考察的是系统在哪两个瞬间的动量.如果我们始终以(C+A+B)这一系统为研究对象,并考察C刚要滑上A 和C刚离开A,以及C.B刚相对静止这三个瞬间,由于水平方向不受外力,则由动量守恒定律知 mCvC=(mA+mB)vA+mCvC=mAvA+(mB+mC)v. 同样可得【例10】在静止的湖面上有一质量M=100kg的小船,船上站立质量m=50kg的人,船长L=6m,最初人和船静止.当人从船头走到船尾(如图),船后退多大距离?(忽略水的阻力)【例13】一个静止的质量为M的原子核,放射出一个质量为m的粒子,粒子离开原子核时相对于核的速度为v0,原子核剩余部分的速率等于 []。

物理动量守恒定律题20套(带答案)及解析

物理动量守恒定律题20套(带答案)及解析

物理动量守恒定律题20套(带答案)及解析一、高考物理精讲专题动量守恒定律1.如图所示,在水平地面上有两物块甲和乙,它们的质量分别为2m 、m ,甲与地面间无摩擦,乙与地面间的动摩擦因数恒定.现让甲以速度0v 向着静止的乙运动并发生正碰,且碰撞时间极短,若甲在乙刚停下来时恰好与乙发生第二次碰撞,试求:(1)第一次碰撞过程中系统损失的动能 (2)第一次碰撞过程中甲对乙的冲量 【答案】(1)2014mv ;(2) 0mv 【解析】 【详解】解:(1)设第一次碰撞刚结束时甲、乙的速度分别为1v 、2v ,之后甲做匀速直线运动,乙以2v 初速度做匀减速直线运动,在乙刚停下时甲追上乙碰撞,因此两物体在这段时间平均速度相等,有:212v v =而第一次碰撞中系统动量守恒有:01222mv mv mv =+ 由以上两式可得:012v v =,20 v v = 所以第一次碰撞中的机械能损失为:222201201111222224E m v m v mv mv ∆=--=gg g g (2)根据动量定理可得第一次碰撞过程中甲对乙的冲量:200I mv mv =-=2.如图所示,一小车置于光滑水平面上,轻质弹簧右端固定,左端栓连物块b ,小车质量M =3kg ,AO 部分粗糙且长L =2m ,动摩擦因数μ=0.3,OB 部分光滑.另一小物块a .放在车的最左端,和车一起以v 0=4m/s 的速度向右匀速运动,车撞到固定挡板后瞬间速度变为零,但不与挡板粘连.已知车OB 部分的长度大于弹簧的自然长度,弹簧始终处于弹性限度内.a 、b 两物块视为质点质量均为m =1kg ,碰撞时间极短且不粘连,碰后一起向右运动.(取g =10m/s 2)求:(1)物块a 与b 碰后的速度大小;(2)当物块a 相对小车静止时小车右端B 到挡板的距离;(3)当物块a相对小车静止时在小车上的位置到O点的距离.【答案】(1)1m/s (2) (3) x=0.125m【解析】试题分析:(1)对物块a,由动能定理得:代入数据解得a与b碰前速度:;a、b碰撞过程系统动量守恒,以a的初速度方向为正方向,由动量守恒定律得:,代入数据解得:;(2)当弹簧恢复到原长时两物块分离,a以在小车上向左滑动,当与车同速时,以向左为正方向,由动量守恒定律得:,代入数据解得:,对小车,由动能定理得:,代入数据解得,同速时车B端距挡板的距离:;(3)由能量守恒得:,解得滑块a与车相对静止时与O点距离:;考点:动量守恒定律、动能定理。

动量守恒专题训练(含答案)

动量守恒专题训练(含答案)

动量守恒专题训练(含答案) 动量守恒定律成立的条件⑴系统不受外力或者所受外力之和为零;⑵系统受外力,但外力远小于内力,可以忽略不计;⑶系统在某一个方向上所受的合外力为零,则该方向上动量守恒。

⑷全过程的某一阶段系统受的合外力为零,则该阶段系统动量守恒。

【例1】 质量为M 的楔形物块上有圆弧轨道,静止在水平面上。

质量为m 的小球以速度v 1向物块运动。

不计一切摩擦,圆弧小于90°且足够长。

求小球能上升到的最大高度H 和物块的最终速度v。

2.子弹打木块类问题【例3】 设质量为m 的子弹以初速度v 0射向静止在光滑水平面上的质量为M 的木块,并留在木块中不再射出,子弹钻入木块深度为d 。

求木块对子弹的平均阻力的大小和该过程中木块前进的距离。

3.反冲问题在某些情况下,原来系统内物体具有相同的速度,发生相互作用后各部分的末速度不再相同而分开。

这类问题相互作用过程中系统的动能增大,有其它能向动能转化。

可以把这类问题统称为反冲。

【例4】 质量为m 的人站在质量为M ,长为L 的静止小船的右端,小船的左端靠在岸边。

当他向左走到船的左端时,船左端离岸多远?【例5】 总质量为M 的火箭模型 从飞机上释放时的速度为v 0,速度方向水平。

火箭向后以相对于地面的速率u 喷出质量为m 的燃气后,火箭本身的速度变为多大?4.爆炸类问题【例6】抛出的手雷在最高点时水平速度为10m/s,这时忽然炸成两块,其中大块质量300g仍按原方向飞行,其速度测得为50m/s,另一小块质量为200g,求它的速度的大小和方向。

5.某一方向上的动量守恒【例7】如图所示,AB为一光滑水平横杆,杆上套一质量为M的小圆环,环上系一长为L质量不计的细绳,绳的另一端拴一质量为m的小球,现将绳拉直,且与AB平行,由静止释放小球,则当线绳与A B成θ角时,圆环移动的距离是多少?6.物块与平板间的相对滑动【例8】如图所示,一质量为M的平板车B放在光滑水平面上,在其右端放一质量为m 的小木块A,m<M,A、B间动摩擦因数为μ,现给A和B以大小相等、方向相反的初速度v0,使A开始向左运动,B开始向右运动,最后A不会滑离B,求:(1)A、B最后的速度大小和方向;(2)从地面上看,小木块向左运动到离出发点最远处时,平板车向右运动的位移大小。

动量守恒超级经典题练习

动量守恒超级经典题练习

1、如图为氢原子能级示意图的一部分,则氢原子A.从n = 4能级跃迁到n = 3能级比从n = 3能级跃迁到n = 2能级辐射出电磁波的波长长B.从n = 5能级跃迁到n = 1能级比从n = 5能级跃迁到n = 4能级辐射出电磁波的速度大C.处于不同能级时,核外电子在各处出现的概率是一样的D.从高能级向低能级跃迁时,氢原子核一定向外放出能量2、如图所示,两根位于同一竖直平面内的水平长杆,上、下两杆上分别套着质量相等的甲、乙两金属球,两球之间用一轻质弹簧相连。

开始时乙在甲的正下方,且弹簧刚好无弹力。

现给甲一个水平向右的初速度v0,此后两球在杆上无摩擦地滑动。

下列叙述中正确的是A.甲、乙两球加速度始终相同B.甲、乙两球的动能之和保持不变C.当甲球的速度为零时,乙球刚好位于甲球的正下方D.甲球的速度减小至零的过程中,弹簧的弹性势能先增大后减小3、氢原子处于基态时,原子的能级为E1 =-13.6eV,普郎克常量h = 6.63×10-34J·s,氢原子在n = 4的激发态时,问:(1)要使氢原子电离,入射光子的最小能量是多少?(2)能放出的光子的最大能量是多少?4、如图所示,A、B两个木块质量分别为2 kg与0.9 kg,A、B与水平地面间接触光滑,上表面粗糙,质量为0.1 kg的铁块以10 m/s的速度从A的左端向右滑动,最后铁块与B的共同速度大小为0.5 m/s,求:①A的最终速度;②铁块刚滑上B时铁块的速度.5、如图,质量为m的小车静止在光滑的水平地面上,车上有半圆形光滑轨道,现将质量也为m的小球在轨道左侧边缘由静止释放,则A.小球在下滑过程机械能守恒B.小球可以到达右侧轨道的最高点C.小球在右轨道上滑时,小车也向右运动D.小球在轨道最低点时,小车与小球的速度大小相等,方向相反6、如图所示.长R=0.6m的不可伸长的细绳一端同定在O点.另一端系着质量m2=0.1kg的小球B.小球B刚好与水平面相接触。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【典例1】如图所示,A 、B 两物体质量
之比mA ∶mB =3∶2,原来静止在平板小
车C 上,A 、B 间有一根被压缩的弹簧,
地面光滑,当弹簧突然释放后,则( )
A.若A 、B 与平板车上表面间的动摩擦因数相同,A 、B 组成的系统的动量守恒
B.若A 、B 与平板车上表面间的动摩擦因数相同,A 、B 、C 组成的系统的动量守恒
C.若A 、B 所受的摩擦力大小相等,A 、B 组成的系统的动量守恒
D.若A 、B 所受的摩擦力大小相等,A ,B 、C 组成的系统的动量守恒
选B 、C 、D
】(2012·福建高考)如图,
质量为M 的小船在静止水面上以速率v0
向右匀速行驶,一质量为m 的救生员站
在船尾,相对小船静止。

若救生员以相对水面速率v 水平向左跃入水中,则救生员跃出后小船的速率为( )
【典例2】如图,A 、B 、C 三个木块的质量均为m 。

置于光滑的水平面上,B 、C 之间有一轻质弹簧,弹簧的两端与木块接触而不固连,将弹簧压紧到不能再压缩时用细线把B 和C 紧连,使弹簧不能伸展,以至于B 、C 可视为一个整体,现让A 以初速度v0沿B 、C 的连线方向朝B 运动,与B 相碰并粘合在一起,以后细线突然断开,弹簧伸展,从而使C 与A 、B 分离,已知C 离开弹簧后的速度恰为v0,求弹簧释放的势能。

解析】设碰后A 、B 和C 的共同速度大小为v ,由动量守恒有,
3mv=mv0 ① 设C 离开弹簧时,A 、B 的速度大小为v1,由动量守恒有,
3mv=2mv1+mv0 ② 设弹簧的弹性势能为Ep ,从细线断开到C 与弹簧分开的过程中机械能守恒,有 ③
由①②③式得弹簧所释放的势能为: 答案: A B C
()00
m v v v v M
'=++,2
1mv 3()()222p 101113m v E 2m v mv 222=++。

相关文档
最新文档