小学六年级比的应用应用题题型解析

合集下载

六年级上册第四单元《比》基础知识点汇总、参考重点题型与解题思路总结

六年级上册第四单元《比》基础知识点汇总、参考重点题型与解题思路总结

第四单元《比》基础知识点与解题思路一、比的意义1、比:两个数相除又叫做两个数的比。

2、比的结构:在两个数的比中,比号前面的数叫比的前项,比号后面的数叫比的后项。

比的前项除以后项所得的商,叫做比值。

比值通常用分数表示,也可以用小数或整数表示最简比:比的前项和后项只有公因数1,这样的比称为最简整数比。

3、比可以表示两个同类数量之间的倍数关系:比如一个长方形长和宽的比是15:10;也可以表示两个不同类数量之间的相除关系,得到一个新的量:比如路程÷时间=速度。

4、求比值:前项除以后项所得的商叫做比值,所以用比的前项除以后项即可求得比值(单位不统一时需要先统一单位再计算)。

比值是一个具体的数,通常用分数表示,也可以用小数或整数表示。

比值是否带单位:同类数量的比仅表示数量之间的倍数关系,其比值不带单位;不同类数量的比,其比值是一个新的数量,通常带一个复合单位(如速度)。

5、比与比值的关系:二者在写法上可能相同(都可以用分数表示),但比表示两个数量之间的相除关系;比值则是一个具体的数字。

6、比、除法与分数之间的联系:a:b=a÷b=b a(b≠0)区别:(1)意义不同:比表示两个数量之间的相除关系;除法是一种运算;分数是一个数;(2)表示方法不同:除法是一种运算,只能用算式表示;比和分数都可以用分数的形式表示,但是分数并不一定表示两个数量的比。

(3)、结果不同:除法的计算结果是一个商,这个商可以是整数、小数或分数;比只有当要求比值的时候,才需要用除法计算,比值可以用整数、小数或分数表示;而分数就是一个数,不需要计算。

7、为什么比的后项不能为0:在除法中,除数不能为0;在分数中,分母不能为0;而比的后项就相当于除法中的除数、分数中的分母,所以比的后项也不能为0。

8、求比中的未知项:在除法中,被除数÷除数=商,这3个数量只要知道其中任意2个量,就能求出另一个量,除数=被除数÷商;被除数=商×除数。

小学六年级上册 数学能力强化训练《第6讲 比例应用题一+答案》秋季

小学六年级上册 数学能力强化训练《第6讲  比例应用题一+答案》秋季

小学六年级上册 数学《能力强化训练+答案》秋季第6讲 比例应用题一例题练习题例1 一批化肥500吨,把其中的15留作库存,其余的按3:5分配给甲、乙两个生产队,甲、乙两个生产队各分到多少吨化肥?【答案】甲:150吨;乙:250吨【解析】一共分配150014005⎛⎫⨯-= ⎪⎝⎭(吨),其中甲分到340015035⨯=+(吨),乙分到400-150=250(吨).练1 甲、乙两辆汽车从相距720千米的A 、B 两地同时开出,相向而行,4小时后相遇.已知甲、乙两车的速度比是4:5,那么这两车的速度各是多少?【答案】甲:80千米/时;乙:100千米/时【解析】两车的速度和为720÷4=180(千米/时),根据速度比,甲车的速度为41808045⨯=+(千米/时),乙车的速度为180-80=100(千米/时).例2 红旗小学共有师生1081人.其中老师与学生的人数之比为2:45,男生与女生的人数之比为5:4.请问:红旗小学的老师、男生和女生各有多少人?【答案】老师:46人;男生:575人;女生:460人【解析】老师有2108146245⨯=+(人),那么学生一共有1081-46=1035(人);所以男生有5103557554⨯=+(人),女生有1035-575=460(人). 练2 512名士兵分成龙、虎两个营,将龙营分成甲、乙两个连,再将乙连分成A 、B 两个排.如果每次都按5:3的人数比来分,那么A 排有多少名士兵?【答案】75名【解析】由题意可知:龙营有551232053⨯=+(名)士兵;乙连有332012053⨯=+(名)士兵;A 排有51207553⨯=+士兵.例3育才小学五年级学生分成三批去参观博物馆.第=二批人数是第一批的45,第三批人数是第二批的23.已知第一批的人数比第二、三批的总和少55人.请问:育才小学五年级一共有多少人?【答案】385人【解析】根据题意,第一批:第二批=5:4,第二批:第三批=3:2,那么第一批:第二批:第三批=15:12:8;设第一批人数为15份,第二批人数为12份,第三批人数为8份,那么第一批的人数比第二、三批的总和少12+8-15=5(份),对应55人,每份为11人;所以五年级的总人数为11×(15+12+8)=385(人).练3萱萱家8月份共缴纳水费、电费、煤气费140元,其中煤气费是电费的916,水费与煤气费的比是1:3,萱萱家水费、电费、煤气费各是多少元?【答案】水费:15元;电费:80元;煤气费:45元【解析】由题意可知,电费:煤气费=16:9,而煤气费:水费=3:1,则电费:煤气费:水费=16:9:3,设电费为16份,煤气费为9份,水费为3份,所以水费为3140151693⨯=++(元),煤气费为9140451693⨯=++(元),电费为16140801693⨯=++(元).例4甲、乙、丙三个人合买一台电视机,甲付钱的12等于乙付钱的13,等于丙付钱数的37,已知丙比甲多付了120元,那么这台电视机多少钱?【答案】2640元【解析】根据题意,甲:乙:丙=2:3:73=6:9:7,设甲付的钱为6份,乙付的钱为9份,丙附的钱为7份,因为丙比甲多付120元,那么1份对应120元,所以这台电视机120×(6+9+7)=2640(元).练4A、B、C三架飞机模型在空中停留了一段时间.A在空中停留时间的23是B的47,B在空中停留时间的23又是C的47,C在空中的停留时间比A多13分钟.那么B在空中停留了多少时间?【答案】42分钟【解析】由题意可知,在空中停留的时间A:B:C=36:42:49,设A的停留时间为36份,B的停留时间为42份,C 的停留时间为49份,因为C 在空中的停留时间比A 多13分钟,所以B 在空中停留了13÷(49-36)×42=42(分).挑战极限1 已知甲、乙、丙三个班的总人数之比为3:4:2,其中甲班男、女生人数之比为5:4,丙班男、女生人数之比为2:1,且三个班所有男生和所有女生的人数之比为13:14.请问:乙班男、女生人数的比是多少?【答案】1:2【解析】根据甲、乙、两三个班的人数比,可设甲班人数为3份,乙班人数为4份,丙班人数为2份,共3+4+2=9(份);甲班男生有553543⨯=+(份),甲班女生有443543⨯=+(份);丙班男生有242213⨯=+(份),丙班女生有122213⨯=+(份);所有男生有()131334213143++⨯=+(份),所有女生有()141434213143++⨯=+(份);那么乙班男生有135443333--=(份),乙班女生有144283333--=(份),所以乙班男、女姓的人数比为1:2.自我巩固1.伍角人民币与贰角人民币的张数比为24:5,那么伍角和贰角的总钱数比值为________.【答案】12【解析】设伍角和贰角张数分别为24张和5张,那么伍角总钱数为5×24=120(角),贰角总钱数为2×5=10(角),伍角和贰角的总钱数之比为12:1,比值为12.2.一个直角三角形的两个锐角度数的比是2:1,较小的锐角是________度.【答案】30 【解析】190=3021︒⨯+.3.大、小两瓶油共重2.7千克,大瓶的油用去0.2千克后,剩下的油与小瓶油重量比为3:2,原来大瓶油重________千克.(填小数)【答案】1.7【解析】用去0.2千克后,两瓶油共重2.5千克;根据两瓶油的重量比,可以求出大瓶剩下的油重32.5=1.532⨯+(千克),原来大瓶油重1.5+0.2=1.7(千克). 4.一个直角三角形的三条边总和是60厘米,已知三条边的长度之比是3:4:5,那么这个直角三角形的面积为________平方厘米.【答案】150【解析】该直角三角形的两条直角边的长度分别为360=15345⨯++(厘米),460=20345⨯++(厘米),所以这个直角三角形的面积为15×20×12=150(平方厘米).5.甲、乙、两三个数的平均数是60,三个数的比是3:2:1,丙数等于________.【答案】30【解析】根据平均数,先求出甲、乙、两三个数的总和:60×3=180,按3:2:1分配,丙数等于1180=30321⨯++. 6.盒子里有三种颜色的球,黄球与红球的个数比为2:3,红球与白球的个数比为4:5,已知三种球共175个,那么红球有________个.【答案】60【解析】根据题意可知:黄球:红球:白球=8:12:15,所以红球有12175=6081215⨯++(个).7.某医院有医生、护士共3800人,其中医生与护士的人数之比是3:7,男护士与女护士的人数之比是1:69,那么男护士有________人.【答案】38【解析】护士的总人数为73800=266037⨯+(人),男护士有12660=38169⨯+(人).8.一个长方形的周长是24厘米,长与宽的比为2:1,这个长方形的面积是________平方厘米.【答案】32【解析】长方形周长是24厘米,那么一条长与一条宽的和为12厘米,长:212=821⨯+(厘米),宽:12-8=4(厘米),面积为8×4=32(平方厘米).9.六年级有三个班,已知一班人数是二班人数的34,三班的人数之比是5:6,一、三班共有78名同学,那么六年级共有学生________人.【答案】118【解析】一班:二班=3:4,二班:三班=5:6,所以一班:二班:三班=15:20:24,设一班人数为15份,二班人数为20份,三班人数为24份,因为一、三班共有78名同学,对应15+24=39(份),一份是2人,所以六年级共有学生2×(15+20+24)=118(人).10.阿呆的妈妈买了西瓜、桃子、苹果三种水果,其中西瓜重量的13与桃子的12相等,桃子重量的12与苹果的14相等.已知西瓜比苹果少买了1千克,那么阿呆的妈妈买了________千克桃子.【答案】2【解析】西瓜:桃子=3:2,桃子:苹果=1:2,所以西瓜:桃子:苹果=3:2:4,设西瓜的重量为3份,桃子的重量为2份,苹果的重量为4份,因为西瓜比苹果少买了1千克,对应4-3=1(份),一份是1千克,所以阿呆的妈妈买了1×2=2(千克)桃子.课堂落实1.故事书是科技书的56,科技书是文学书的12,又知道故事书和文学书共有102本,那么科技书有________本. 【答案】362.老师给班里学生准备了120颗糖果,老师自己吃掉15后,按照3:5分配给班里的男生和女生,那么女生总共可以分到________颗糖果.【答案】603.十一小学六年级共有师生320人,已知老师和学生的人数比为1:15,而且男同学和女同学的人数之比为2:3,那么六年级女同学共有________人.【答案】1804.甲数是乙数的65,丙数是乙数的56,且甲数比丙数大121,那么这三个数的和是________.【答案】10015.两车分别从甲、乙两地同时出发,相向而行,已知两地相距200千米,两车2小时后相遇,而且两车的速度比是2:3,那么当两车相遇时,快车行驶的距离为________千米.【答案】120。

六年级数学比的应用题(解析版)

六年级数学比的应用题(解析版)

六年级数学比的应用题1、红花和黄共共70朵,红花与黄花的比是2:5,求红花与黄花各是多少朵?解: 70÷7×2=20(朵) 70÷7×5=50(朵)答:红花是20朵,黄花是50朵2、 一个三角形的三个内角的比是2:3:4,这三个内角的度数分别是多少?解:180÷9×2=40(度)180÷9×3=60(度)180÷9×4=80(度)答:这个三角形的度数分别是40度,60度,80度。

3、 某校参加电脑兴趣小组的有42人,其中男、女生人数的比是 4 ∶3,男生有多少人?解:42÷7×4=24(人)答:男生有24人。

4、一桶重200克的盐水,盐和水的质量比是1:24,要使盐和水的质量比是1:29,要加多少克水?解:盐 200× 2411+= 8(克) 盐水8÷ 2911+=240(克) 要加水240-200=40(克)答:要加水40克。

5、一班有60人,二班有80人,从一班调多少人到二班,两班人数比才能为2:3?解:(60+80)×232+=56(人) 60-56=4(人) 答:从一班调4人到二班,两班人数比才能为2:3。

6、把300本作业按4∶5∶6分给四、五、六年级的同学,四、五、六年级的同学各得多少本作业本?解:4+5+6=15300÷15=2020×4=80(本),20×5=100(本),20×6=120(本)答:四年级得80本,五年级得100本,六年级得120本。

7、一种生理盐水是把盐水和水按照1∶100配制而成,要配制这种生理盐水5050千克,需要盐水多少千克?解:1+100=1015050÷101=50(千克)答:需要盐水50千克。

8、山羊和绵羊的头数比是2∶5,山羊40头。

山羊和绵羊一共有多少头?解:40÷2=20(头)20×(5+2)=140(头)答:山羊和绵羊一共有140头。

小学六年级比例应用题小学六年级应用题的分析与建议.doc

小学六年级比例应用题小学六年级应用题的分析与建议.doc

小学六年级比例应用题小学六年级应用题的分析与建议2009 年试卷应用题。

(25 分,每题 5 分) 1. 54 ?的铁丝围成一个三角形,这个三角形三边长度的比是 2:3 : 4,三条边长各是多少厘米, 2.小明和爸爸乘车去郊游,去时每小时行 60 千米,用了 1.2 小时。

原路返回时用了 0.9 小时,返回时汽车每小时行多少千米, 3.一项工程,甲队单独做 10 天完成,乙队单独做 15 天完成。

如果两队同时合做,几天可完成这项工程的 5,6, 4.李大伯养了 42 只鸭,养鸭的只数比鸡少 60?.李大伯养了多少只鸡, 5.做一个无盖的圆柱形铁皮水桶,底面直径是 2 分米,桶深 5 分米,做这个水桶至少需要多少平方分米的铁皮,这个水桶能装多少升水,(铁皮厚度忽略不计) 第 1 题是六年级上册第三单元分数除法第三章节比的应用知识点的抽查,是按比例分配的题目;第 2 题是六年级下册第三单元比例的应用知识点的考查,也是一道归总比例应用题,。

紧1扣条件原路返回确定是一道反比例应用题;第 3 题是一道旧教材中有关工程问题的应用题。

该类题目在新教材中从未出现,但在考题中时而有,作为毕业班教师的我们在复习过程中要重视,以例题的形式出现,利用两三课时时间对该类题目进行系统的讲解与训练; 第 4 题是六年级上册第五单元百分数应用题,是对教材中例 3 学校图书室原有图书 1400 册,今年图书增加了 12,,。

现在图书室有多少册图书的外延。

虽然该类题目在教材中没有例题,但我们要充分挖掘资源,积累经验,对比训练,注重知识的整合,引导学生与分数应用题相联系,灵活解答;第 5,题是六年级下册第二单元圆柱与圆锥这一章的相关题目,是本单元知识点的重点题目之一。

22010 年试卷六应用题 1.工厂有一批煤,原计划每天烧 6 吨,可以烧 70 天。

由于改进了技术,现在每天只烧 5.6 吨,这批煤可以烧多少天, 2.一列客车和一列货车,同时从甲乙两地相对开出,经过 6 小时相遇。

小学六年级奥数系列讲座:比的应用(含答案解析)

小学六年级奥数系列讲座:比的应用(含答案解析)

比的应用(一)一、知识要点我们已经学过比的知识,都知道比和分数、除法其实是一回事,所有比与分数能互相转化。

运用这种方法解决一些实际问题可以化难为易,化繁为简.二、精讲精练【例题1】甲数是乙数的2/3,乙数是丙数的4/5,甲、乙、丙三数的比是( ):():()。

【思路导航】甲、乙两数的比2:3乙、丙两数的比4:5甲、乙、丙三数的比8:12:15答:甲、乙、丙三数的比是8:12:15。

练习1:1.甲数是乙数的4/5,乙数是丙数的5/8,甲、乙、丙三数的比是( ):():()。

2.甲数是乙数的4/5,甲数是丙数的4/9,甲、乙、丙三数的比是():():()。

3.甲数是丙数的3/7,乙数是丙数的2又1/2,甲、乙、丙三数的比是():():()。

【例题2】光明小学将五年级的140名学生,分成三个小组进行植树活动,已知第一小组和第二小组人数的比是2:3,第二小组和第三小组人数的比是4:5.这三个小组各有多少人?【思路导航】先求出三个小组人数的连比,再按求出的连比进行分配。

①一、二两组人数的比2:3 二、三两组人数的比4:5一、二、三组人数的比8:12:15②总份数:8+12+15=35③第一组:140×8/35=32(人)④第二组:140×12/35=48(人)⑤第三组:140×15/35=60(人)答:第一小组有32人,第二小组有48人,第三小组有60人。

练习2:1.某农场把61600公亩耕地划归为粮田与棉田,它们之间的比是7:2,棉田与其他作物面积的比6:1.每种作物各是多少公亩?2.黄山小学六年级的同学分三组参加植树。

第一组与第二组的人数的比是5:4,第二组与第三组人数的比是3:2.已知第一组的人数比二、三组人数的总和少15人。

六年级参加植树的共有多少人?3.科技组与作文组人数的比是9:10,作文组与数学组人数的比是5:7。

已知数学组与科技组共有69人。

数学组比作文组多多少人?【例题3】甲、乙两校原有图书本数的比是7:5,如果甲校给乙校650本,甲、乙两校图书本数的比就是3:4。

六年级数学比应用题

六年级数学比应用题

六年级数学比应用题一、简单的比的计算应用题(1 - 5题)1. 已知甲、乙两数的比是3:5,甲数是12,求乙数。

- 解析:- 因为甲、乙两数的比是3:5,设乙数为x,则(甲)/(乙)=(3)/(5)。

- 已知甲数是12,即(12)/(x)=(3)/(5)。

- 根据比例的性质,内项之积等于外项之积,可得3x = 12×5。

- 解得x=(12×5)/(3)=20。

2. 某班男、女生人数比是4:3,男生有24人,女生有多少人?- 解析:- 设女生有x人,因为男、女生人数比是4:3,所以(24)/(x)=(4)/(3)。

- 由比例性质可得4x = 24×3。

- 解得x=(24×3)/(4)=18人。

3. 一种药水是把药粉和水按照1:100的比配成的。

要配制这种药水4040克,需要药粉多少克?- 解析:- 药粉和水的比是1:100,那么药水就是1 + 100=101份。

- 这种药水共4040克,那么一份就是4040÷101 = 40克。

- 药粉占1份,所以需要药粉40克。

4. 学校图书馆里科技书和故事书的比是3:4,科技书有180本,故事书有多少本?- 解析:- 设故事书有x本,因为科技书和故事书的比是3:4,所以(180)/(x)=(3)/(4)。

- 根据比例性质3x=180×4。

- 解得x=(180×4)/(3)=240本。

5. 甲、乙两个数的比是5:6,它们的和是66,求甲、乙两数。

- 解析:- 甲、乙两个数的比是5:6,设甲数是5x,乙数是6x。

- 它们的和是66,则5x + 6x=66。

- 即11x = 66,解得x = 6。

- 所以甲数5x = 5×6 = 30,乙数6x=6×6 = 36。

二、比在几何中的应用题(6 - 10题)6. 一个长方形的长和宽的比是5:3,长是25厘米,宽是多少厘米?- 解析:- 设宽是x厘米,因为长和宽的比是5:3,所以(25)/(x)=(5)/(3)。

苏教版数学六年级下册专项~比例解决问题【含答案】

苏教版数学六年级下册专项~比例解决问题【含答案】

苏教版数学六年级下册专项-比例解决问题1.一个精密零件,长5厘米,画在图纸上长0.4米.这张图纸的比例尺是多少?2.填空并按要求作图。

(1)以AB为轴,将三角形ABC旋转一周能形成________。

(填几何体名称)(2)在适当的位置按2∶1的比画出三角形ABC放大后的图形。

(3)在适当的位置按1∶2的比画出长方形缩小后的图形。

3.在一幅比例尺是1∶4000000的地图上量得甲、乙两地的距离是16厘米。

若画在比例尺是1∶8000000的地图上,两地间的图上距离是多少厘米?4.画一画,填一填。

(1)按3∶1的比画出图形A放大后得到的图形B。

(2)按1∶2的比画出图形B缩小后得到的图形C。

我发现:放大或缩小前后的图形()变了,但()没有变,而且图形各部分长度是按一定的比变化的。

5.在一张比例尺是1∶150的建筑图纸上,量得一座大楼的长是6分米,这座大楼的实际长与宽的比是3∶1,这座大楼的实际宽是多少米?6.下图中小平行四边形按比放大后得到大平行四边形,求大平行四边形的高。

(单位:分米)12.根据图中提供的信息,完成下列问题。

(1)自来水厂要从水库取水,取水管道怎样铺最短,请在图中画出来。

(2)自来水厂到城区的送水管道经测算最短是2000米,请你测算:自来水厂到水库的取水管道最短需多少米?13.在一幅地图上,用5厘米长的线段表示实际距离100千米,这幅地图的比例尺是多少?如果甲市至乙市的铁路线路长150千米,那么这段铁路线路在这幅地图上的长度是多少厘米?14.江苏省云龙湖景区杏花坞广场是人们夏天避暑纳凉的佳处。

广场绿地面积与铺装面积的比是6∶5,其中铺装面积共5000平方米,绿地面积有多少平方米?15.甲乙两城相距150千米,在一幅地图上量得甲乙两城之间的距离是5厘米,同时在这幅地图上量得乙丙两城之间的距离是8厘米。

乙丙两城之间的实际距离是多少千米?20.下图中A点是游乐场所在的位置,B点是电影院所在的位置,两地实际距离相距2千米。

六年级数学下册典型例题系列之第二单元比例的应用部分(解析版)(北师大)

六年级数学下册典型例题系列之第二单元比例的应用部分(解析版)(北师大)

六年级数学下册典型例题系列之第二单元比例的应用部分(解析版)编者的话:《六年级数学下册典型例题系列》是基于教材知识点和常年考点考题总结与编辑而成的,该系列主要包含典型例题和专项练习两大部分。

典型例题部分是按照单元顺序进行编辑,主要分为计算和应用两大部分,其优点在于考题典型,考点丰富,变式多样。

专项练习部分是从常考题和期末真题中选取对应练习,其优点在于选题经典,题型多样,题量适中。

本专题是第二单元比例的应用部分。

本部分内容主要考察比例的应用,包括比例的一般应用题和图形的放大与缩小等内容,内容和题型较少,更多有关比例应用题的内容请参考编者《第四单元正比例和反比例的应用部分基础篇》与《第四单元正比例和反比例的应用部分提高篇》,一共划分为四个考点,建议作为本章重点进行讲解,欢迎使用。

【考点一】根据对应边的比,列方程解决问题。

【方法点拨】该类题型主要考察图形的放大与缩小,要以对应边的比为等量建立方程求解。

【典型例题】将下图左边的三角形按比例缩小后得到右边的三角形,求未知数x。

解析:解:3.2∶1.6=4.8∶x3.2x=1.6×4.8x=7.68÷3.2x=2.4【对应练习1】下图中小平行四边形按比放大后得到大平行四边形,求大平行四边形的高。

(单位:分米)解析:解:设大平行四边形的高为x分米。

3.2∶1.2=12.8∶x3.2x=1.2×12.83.2x=15.36x=15.36÷3.2x=4.8答:大平行四边形的高是4.8分米。

【对应练习2】把左边的长方形按比例放大后得到右边的图形,右边长方形的宽是多少?(单位:厘米)解析:解:设右边长方形的宽是x厘米。

20∶12=50∶x20x=12×5020x=600x=30答:边长方形的宽是30厘米。

【对应练习3】将下图的三角形一定的比缩小后得到右边的三角形,求未知数x的值。

(单位∶厘米)解析4.5∶x=6∶3.6解:6x=4.5×3.66x=16.2x=16.2÷6x=2.7答:未知数x的值是2.7厘米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、比的意义:两个数相除又叫两个数的比
比与除法,分数的关系?
a:b=a÷b=
b
(b≠0)
比与除法,分数的不同点:比表示两个量或数之间的倍比关系,除法是一种运算,而分数则是一个数,除法是一种运算。

二、比的化简
最简整数比:比的前项和后项都是整数,并且比的前项和后项的最大公因数是1.
比的基本性质:比的前项和后项同时乘或除以一个相同的数(0除外),比值不变。

化简比的方法
三、比的应用
应用一:已知总量及两个部分量间的比的关系,求各部分量
例题:一个三角形,三个内角的度数比是1:2:6,这个三角形中最大的角是多少度?
平均分法
解析:可以把三角形的三个角的和看成(1+2+6)份,算出每一份多少度;其中一个三个角分别占1份,2份,6份
解答:180°÷(1+2+6)=20°三个角分别20°×1=20° 20°×2=40° 20°×6=120°
分数计算法
解析:三角形的三个角的和可以看成共9份,其中三个角分别占1
92
9
6
9
解答:1+2+6=9 三个角分别 180°×1
9
=20° 180°×
2
9
=40° 180°×
6
9
=120°
练习题:1、一个三角形的内角度数的比是3∶2∶1,按角分这是个什么三角形?
2、一个长方形周长是88cm,长与宽的比是4:7。

长方形的长、宽各是多少厘米?面积是多少?
3、一种什锦糖是按2份奶糖、5份水果糖和3份软糖混合成的。

要配制这样的什锦糖40kg,需要水果糖多少千克?
4、A,B两地相距480千米.甲乙两辆大巴同时从A,B两地相对开出,经过4.5小时,两车相遇后又相距120千米.这是甲乙两辆车所经过的路程比正好是8:7.甲.乙两辆车已经各行了多少千米?
应用二:已知一个部分量及它与另一个部分量间的比,求总量
例题:甲、乙两数的比是2:7,已知甲是108,甲、乙两数的和是多少?
平均分法:甲乙两数之和看成9份,甲是108;占了2份,所以可以求出一份,然后乘以总共的9份是多少就是甲乙两数之和
解答:108÷2=54 54×9=486
分数计算法:(可以列式也可以用方程,建议用方程)
甲是108,甲又占了总数的2
9
,所以总数=甲÷甲所占份数
解答:108÷2
9
=486
练习题:一种什锦糖是由水果糖、奶糖、软糖按5∶3∶2混合而成的。

(1)如果先称20千克的水果糖,奶糖与软糖各需多少千克?
(2)如果先称出15千克的奶糖,水果糖与软糖各需多少千克?
应用三:已知一个部分量以及它与另一个部分量的比,求另一个部分量。

例题:小明的爸爸今年的岁数和小明的岁数比是11:3,小明今年9岁,爸爸多少岁?
平均分法:小明9岁,正好占了3份,那么可以先算出一份是多少,然后乘以爸爸岁数占的份数即可 解答:9÷3=3 3×11=33岁
分数计算法:爸爸的年龄相当于小明的11÷3=
113 ,所以爸爸的岁数=小明的岁数×113 解答:9×113
=33岁 练习题:男工40人,男工与女工的比是4∶5,女工有多少人?一共有多少人?
应用四:已知两个部分量的比及差,求部分量或总量
某校一年级的学生人数比六年级的学生人数多60人,一、六年级的学生人数比是7:5,一、六年级各是多少人? 平均分法
例题:一、六年级人数比7:5可知,一年级比六年级多(7-5)份,正好是60,那么就可以先算出一份的量 解答:60÷(7-5)=30人 一年级:30×7=210人;六年级30×5=150人
分数计算法:一年级7份,六年级5份,一年级比六年级多了(7-5)÷5=
25,六年级人数比一年级少了(7-2)÷7=27
所以六年级人数:60÷
25=150人 一年级人数:60÷27=210人 练习题:
1、男工与女工的比是4∶5,女比男多4人,男、女各多少人?
2、明和小华存钱数的比是3:5,如果小明再存入400元,就和小华的存钱一样多。

小明原来存了多少钱
其他题型:
重点:比与除法、分数的联系要牢记,最后转化成比的应用题 题型一:甲是乙的
25,意思即是甲÷乙=25
;或甲:乙=2:5 一桶油用去的量占剩下的73,已知这桶油共有50千克,用去了多少千克?还剩下多少千克?
一套西装320元,其中裤子的价格是上衣的
5
3,上衣和裤子的价格各是多少元?
题型二:甲比乙多
27,可以看成乙是7份,甲是(7+2)份 ;甲比乙少27
,可以看成乙是7份,甲是(7-2)份 水是由氢和氧按按一定的质量比化合而成的,已知水中氢的质量比氧少78,那么7.2 kg 水中,含氢和氧各多少千克? (温馨提示:先算出氢与氧的质量比,然后按比的应用一解题)
补充填空题:
1、 4:3的后项加上6,要想比值不变,前项要加上( )
2、 一杯盐水,盐占盐水的9
1 ,盐和水的比是( ):( ) 3、3:8=( )÷24=24÷( )=( )%
4、一辆汽车6小时行了360千米,这辆汽车行驶的路程和时间的比是( ),比值是( ),比值表示( ),这辆汽车行驶的时间和路程的比是( ),比值是( ),比值表示( )。

5、甲数是乙数的
5
4 ,甲数与乙数的比是( )。

6、一本书,看了17
5 ,看了的与没看的比是( )。

7、如果甲、乙、丙三个人的速度的比为:甲∶乙=4∶5,乙∶丙=6∶7。

那么甲:乙:丙=( ):( ):( )。

假设从A 地到B 地,甲走了20分钟,丙要走( )分钟。

8、两个正方体的棱长比为:2:3,那么他们的棱长和比为( ):( ),表面积比为( ):( ),体积比为( ):( )
9:两个圆形的半径比为1:3,那么他们的周长比为( ):( ),面积比为( ):( )。

相关文档
最新文档