分子动力学04
分子动力学

由上一步确定的分子组建平衡相,在构建平衡相的时候会对构型、温度等参数加以监控。
生产相
进入生产相之后体系中的分子和分子中的原子开始根据初始速度运动,可以想象其间会发生吸引、排斥乃至 碰撞,这时就根据牛顿力学和预先给定的粒子间相互作用势来对各个粒子的运动轨迹进行计算,在这个过程中, 体系总能量不变,但分子内部势能和动能不断相互转化,从而体系的温度也不断变化,在整个过程中,体系会遍 历势能面上的各个点,计算的样本正是在这个过程中抽取的。
应用
分子动力学可以用于NPT,NVE,NVT等系综的计算,是一种基于牛顿力学确定论的热力学计算方法,与蒙特 卡洛法相比在宏观性质计算上具有更高的准确度和有效性,可以广泛应用于物理,化学,生物,材料,医学等各 个领域。
发展方向
分子动力学模拟是研究微观世界的有效手段"其势函数和数值算法对模拟的精度有较大影响,为了提高势函数 的精确性,将基于局部密度泛涵理论的从头计算分子动力学,量子化学分析参数拟合和蒙特卡洛方法相结合有望 成为研究势函数的最佳方法,随着计算机性能的不断提高,摆脱了经验势函数的从头计算分子动力学的应用范围 将会不断扩大,计算的精度也会不断提高。所以,从头计算分子动力学将会成为分子动力学模拟未来的主要发展 方向。
数值算法的高速和高效也是人们一直奋斗的目标,最近有人提出的多重时间宽度法,由于有效地减少了计算 时间而可能成为分子动力学方法中较有前途的数值积分算法,分子动力学方法与其他计算方法,如有限单元法、 模拟淬火法、蒙特卡罗法等的结合也将成为未来的发展方向之一 。
谢谢观看
简史
1980年:恒压条件下的动力学方法 1983年:非平衡态动力学方法(Gillan and Dixon) 1984年:恒温条件下的动力学方法 1985年:第一原理分子动力学法 1991年:巨正则系综的分子动力学方法(Cagin and Pettit)
分子动力学简介

分子动力学简介分子动力学(Molecular Dynamics,MD)是一种计算模拟方法,用于研究分子和材料的运动行为。
它可以通过对分子间相互作用进行数值模拟,预测分子的结构、动力学和热力学性质。
在MD模拟中,分子被视为由原子组成的粒子系统。
通过牛顿运动定律和库仑定律等基本定律来描述原子之间的相互作用,并通过数值计算来模拟其运动轨迹。
MD模拟可以提供有关物理、化学和生物过程中原子和分子运动的详细信息。
MD模拟涉及到许多参数,其中最重要的是势能函数。
势能函数定义了原子之间的相互作用方式,并决定了系统的稳定性和性质。
常见的势能函数包括Lennard-Jones势、Coulomb势、Bonded势等。
在进行MD模拟时,还需要选择合适的时间步长和温度控制方法。
时间步长是指每次计算所需的时间长度,通常需要根据系统特点进行调整以确保准确性和稳定性。
温度控制方法包括恒温、恒压等,可以帮助保持系统平衡并控制温度和压力。
MD模拟已经被广泛应用于材料科学、生物化学、药物设计等领域。
例如,通过对蛋白质分子进行MD模拟,可以预测蛋白质的结构和功能,并为药物设计提供指导。
在材料科学中,MD模拟可以帮助研究材料的力学性能、热传导性能等。
尽管MD模拟具有很多优点,如不需要大量实验数据、可以提供详细的原子级别信息等,但也存在一些限制。
例如,由于计算资源的限制,MD模拟通常只能涉及较小的系统;同时,由于势能函数的不确定性和时间步长的选择等因素的影响,结果可能存在误差。
总之,分子动力学作为一种计算模拟方法,在许多领域都得到了广泛应用。
通过对分子运动行为进行数值模拟,可以深入了解物理、化学和生物过程中原子和分子间相互作用机制,并为相关领域的研究和应用提供有价值的参考。
分子动力学

分子动力学
分子动力学(Molecular Dynamics)是运用统计物理学原理,通过计算来研究分子系统中
原子和分子的动态流变,从而对分子间相互作用及对引力法则、量子力学理论和其它物理定律的结果等进行模拟研究的仿真技术。
其基本思想是以细胞原理和迈克尔逊-普朗克动能作为模型基础,借助计算机,通过量子
化学方法理论研究分子在长时间运动中的结构性质及相互作用的力学行为,为原子间的交互作用和分子的动力学运动模拟,可以准确地描述原子性质和反应机理。
在复杂分子系统中,我们可以根据原子间相互作用潜力及其体积影响得出原子间劲度系数。
通过计算,实现分子动力学模拟。
一旦分子动力学模拟被成功应用于实际的物理或有机化学问题,就可以对模拟结果与实验结果进行比较。
将模拟结果与实验结果进行相比较与分析,我们可以更加深入地理解分子的性质。
此外,分子动力学技术还可以用在农业、医学、催化以及合成化学等领域之间。
例如,可以利用此技术来设计新型药物,通过调节抗病毒性和毒性等来减少药物副作用,可以研究加工作用,改进催化剂的性能,优化合成步骤,揭示有机体的生理活动等的究理。
总的来说,分子动力学是一个快速发展的模拟技术,可以模拟和解释小分子和蛋白质等大分子的结构和动态特性,以及丰富科学领域的多种新应用,可以说是一种十分重要的模型。
经典分子动力学方法详解课件

第19页,共39页。
基本单元大小的选择
• 基本单元的大小必须大于2Rcut(Rcut是相互作用势的 截断距离)或Rcut<1/2 基本单元的大小。这保证了任
何原子只与原子的一个镜像有相互作用,不与自己的镜 像作用。这个条件称为“minimum image criterion” • 在我们所研究的体系内的任何结构特性的特征尺寸或任 何重要的效应的特征长度必须小于基本单元的大小。 • 为了检验不同基本单元大小是否会引入“人为效应”,必 须用不同的基本单元尺寸做计算,若结果能收敛,则尺寸 选择是合适的。
MD方法的发展史
• MD方法是20世纪50年代后期由B.J Alder和T.E. Wainwright创造发展的。他们在1957年利用MD方法, 发现了早在1939年根据统计力学预言的“刚性球组成 的集合系统会发生由其液相到结晶相的相转变”。
• 20世纪70年代,产生了刚性体系的动力学方法被应 用于水和氮等分子性溶液体系的处理,取得了成功。 1972年,A.W. Less和S.F. Edwards等人发展了该 方法,并扩展到了存在速度梯度(即处于非平衡状态) 的系统。
建立完全弹性碰撞方程,借以求解出原子、分子的运动
规律。这种处理可以在液晶的模拟中使用。 • 质点力学模型是将原子、分子作为质点处理,粒子间
的相互作用力采用坐标的连续函数。这种力学体系的应 用对象非常多,可以用于处理陶瓷、金属、半导体等无
机化合物材料以及有机高分子、生物大分子等几乎所有
的材料。
第14页,共39页。
• 为了减小“尺寸效应”而又不至于使计算工作量过大,对
于平衡态MD模拟采用 “周期性边界条件”。
第16页,共39页。
分子动力学的理论及应用

分子动力学的理论及应用分子动力学是一种重要的计算化学方法,用来模拟复杂分子体系的动力学行为。
它从微观角度描述了分子系统的运动和相互作用,可应用于化学、材料学、生物学等多个领域。
本文将介绍分子动力学的基本理论和应用。
一、分子动力学的理论分子动力学核心在于牛顿第二定律,即F=ma。
该定律强调了物体所受到的力和它所产生的加速度之间的关系。
在分子动力学中,分子作为物体,其受力情况和加速度可通过势能函数来描述。
分子系统的能量可通过哈密顿量求得,其中包括分子所受到的所有势能和动能。
为了求解分子的动力学行为,需要进行时间演化。
具体地,需要在短时间内求解分子所受到的力,在此基础上根据分子的质量和加速度来更新分子的位置和速度。
这一过程类似于在离散时间点上计算微分方程。
在分子动力学中,最关键的参数是分子势能函数。
势能函数的形式多种多样,包括经验关系式、量子化学方法和经验分子力场等。
其中,经验分子力场最为常见,其包含了许多常见分子的实验数据,并将这些数据拟合到一个函数形式上。
二、分子动力学的应用分子动力学应用范围极广,常用于计算化学、材料学和生物学等领域。
以下是三个领域的典型应用:1. 计算化学多数化学反应的步骤很难通过实验分析。
分子动力学为计算化学提供了一种可靠的方法,可模拟和计算反应的中间态和过渡态。
这种方法可以为了解化学反应的机理提供深入的视角。
2. 材料学分子动力学也可用于研究材料的物理特性。
例如,可通过模拟来研究硅材料的分子运动、固态异质性等。
这种方法对于材料表面和表面处理技术的研究相当重要。
3. 生物学生物体系是极其复杂的,分子动力学可用于揭示生物分子之间的相互作用和运动。
例如,分子动力学模拟可以被用来研究蛋白质的折叠过程、膜生物学等。
特别是在新药开发中,分子动力学可为药物分子的设计和优化提供有价值的信息。
三、结论综上所述,分子动力学是一种强大的计算化学方法,用于预测分子系统和化学反应的医学性能。
分子动力学理论和技术的不断发展,使其在化学、材料学和生物学等多个领域具有重要的应用。
第四章分子动力学方法

第四章分子动力学方法第四章分子动力学方法§4.1 分子动力学方法第四章分子动力学方法分子动力学(Molecular Dynamics,简称MD)是模拟大量粒子集合体系(固体、气体、液体)中单个粒子的运动的一种手法,其关键的概念是运动,即要计算粒子的位置、速度和取向随时间的演化。
分子动力学中的质点可以是原子、分子、或更大的粒子集合,只有在研究分子束实验等情况下,粒子才是真正的分子。
与“分子动力学”相类似的名词还有“晶格动力学”(研究固体中原子的振动)和“分子力学”(分子结构的量子力学),而分子动力学限于模拟经典粒子的运动。
分子动力学简单来说就是用数值方法求解经典力学中的N 体问题。
自 Newton时代起, N 体问题就被认为是很重要的物理问题,解析求解或质点轨道的混沌分析是数理力学中的关注点。
但时至今日,该问题重要性的原因已经进化成,将单粒子动力学与系统的集体状态相联系,人们试图通过考察单个粒子的运动来解释大量粒子集合系统的行为。
例如,绕过一物体的流体是怎样产生湍流尾迹的?蛋白质分子中的原子是怎样相互运动从而折叠成生命支撑形态的?流体气旋怎样产生如木星上的大红斑那样的长寿旋涡的?溶液中的长链分子怎样自组装成一些特殊结构?等等。
因此,分子动力学在凝聚态物理、材料科学、高分子化学和分子生物学等许多研究领域都有广泛的应用。
§4.1 分子动力学方法4.1.1 基本概念4.1.1.1 分子动力学分子动力学现已成为分子尺度上模拟的典型方法之一。
它起源于上世纪50 年代,在70年代中开始受到广泛关注。
分子动力学源于自Newton时代以来的古老概念,即只要知道了系统组分的初始条件和相互作用力,整个系统的行为就可以计算出来并可以预测。
该自然的决定性力学解释长期左右了科学界。
Laplace 于1814年曾写到:“Given for one instant an intelligence which could comprehend all the forces by which nature is animated and the respective situation of beings who compose it-an intelligence sufficiently vast to submit these data to analysis-it would embrace in the same formula the movements of the greatest bodies of the universe and those of the lightest atoms; for it, nothing would be uncertain and the future, as th e past, would be present to its eyes”(现在的分子动力学模拟中,Laplace的“intelligence”由计算机实现,“respective situation”即为给定的一组初始条件,“same formula”为算法程序)。
分子动力学ppt课件

L
计算机分子模拟方法 第三章、分子动力学方法
• 差分格式(采用有限差分法将微分方程变成有限差分方程以便数 值求解 )
哈密顿表述:
牛顿表述:
dr dP i i m p ; F r i ij dt dti j dr dv i i v ; m F r i i ij dt dt j
K
U 压力: P *T rij PC 3N j i rij
子各自服从牛顿运动定律
1 P H i Ur ij 2 i m i j dr m i pi dt ; dP i Fr ij dt ij
2
计算机分子模拟方法 第三章、分子动力学方法
• 计算元胞:立方体元胞
计算机分子模拟方法 第三章、分子动力学方法
• 边界条件:周期性边界条件
设计算元胞的限度大小为L,其体积为L3,由于引用了这 样的立方体箱子, 将产生六个我们不希望出现的表面, 这些表面的存在对系统的任何一种性质都会有重大的影 响(模拟中碰撞这些箱子的表面的粒子被反射回到元胞 内部)。为了减少引入的表面效应,采用周期性边界条 件,构造出一个准无穷大的体积来更精确地代表宏观系 统, 即让这个小体积元胞镶嵌在一个无穷大的大块物质 之中。周期性边界条件的数学表示形式为: A ( x ) A ( x n L ) , n ( n , n , n ) 1 2 3 A为任意可观测量,n 1, n 2, n 3 为任意整数。 即令基本元胞 完全等同的重复无穷多次, 当有一个粒子穿过基本MD 元胞的六方体表面时, 就让这个粒子以相同的速度穿过 此表面对面的表面重新进入该MD元胞内。
计算机分子模拟方法 第三章、分子动力学方法
化学物理学中的分子动力学

化学物理学中的分子动力学化学物理学是研究物质中有关化学和物理相互作用的分支学科。
分子动力学则是化学物理学中非常重要的一个方向,它是指利用物理学和数学模型来描述和计算分子的运动行为。
分子动力学能够通过计算机模拟的手段来研究分子在不同温度、压力和环境下的动力学行为及其相互作用。
它是一种基于牛顿力学的数学模拟方法,通常用于研究物质在宏观和微观尺度下的热力学性质和宏观性质。
在分子动力学的研究中,常常使用分子间的势能函数来描述分子间的相互作用和化学反应,基于分子运动规律和动能、势能等物理量对分子进行数值模拟。
这些方法已经得到了广泛的应用,例如在生物化学和纳米技术等领域中,分子动力学已经成为了非常强大的工具。
分子动力学的应用在生物化学领域中,分子动力学可以用于确定生物分子识别和抑制剂的作用机制,如蛋白质、核酸和药物分子等。
分子动力学也可以用来研究分子在溶液中的行为,如蛋白质的折叠和溶剂的影响等。
在材料科学领域中,分子动力学应用非常广泛,如碳纳米管、纳米晶、高分子材料等。
通过模拟不同的反应温度和压力条件下的化学反应,科学家可以预测材料的性能和结构,并为新材料的合成提供理论基础。
另外,分子动力学也在气体动力学中得到了广泛应用,在利用计算机模拟大气层中的气体和气溶胶微粒运动的同时,可以考虑大气环境中的各种复杂作用。
分子动力学的模拟方法晶粒生长晶粒生长是一种分子动力学模拟方法,在晶体过程中使用原子和分子级别的实验数据构建出粒子之间的相互作用,从而通过模拟来预测晶体生长的形貌和性质。
化学反应分子动力学也可以用于模拟化学反应的过程。
这种方法基于分子间的势能,可以模拟分子在反应过程中的能量转移和化学键的形成和断裂。
Nose-Hoover热浴法Nose-Hoover热浴法是一种常用的分子动力学模拟方法,它可以通过在模拟中引入虚拟的热浴,来控制系统的温度和能量波动。
这种方法通常用来模拟大规模分子系统的动力学行为。
总结分子动力学是一种应用广泛的研究方法,它能够模拟分子在不同条件下的运动行为,以及分子间的相互作用和反应过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
p N p N t
A At A r N t , p N t E K V E E r N t , p N t
N
物理量
图
微观态的运动轨迹示意
pi2 K K p N t i 1 2m 7 V Vb Vnb
1
(一)、引言
对统计力学体系进行计算机模拟时,需要确定体系的 位形(组态)。按照产生位形变化的方法,可以将计 算机模拟分成两大类: 一类是随机( stochastic)模拟方法:MC: 马尔科夫(Markov)过程。 程序简单,占用内存少。难于处理非平衡的问题。
一类是确定性(deterministic)模拟方法:MD MD:按照体系的动力学规律产生位形变化。 程序复杂,占用内存多。可处理非平衡的问题。
x1 , y1 , t1 ; x2 , y2 , t 2 ;; xN , y N , t N ; p1x , p1 y , p1t ; p , p , p ; ; p , p , p Nx Ny Nt 2 x 2 y 2t
r
微观态
N
pN
1 , 2 ,, N
分子动力学中通过对原子之间相互作用的准经典处
理得到的相应的经典的运动方程,可以证明其在一
定条件下与薛定谔方程的解是一致的。
3
The Born-Oppenheimer approximation
由于组成分子体系的原子核的质量比电子大103~105 倍 ,因而分子中电子的运动速度比原子核快得多,当核 间发生任一微小运动时,迅速运动的电子能立即进行 调整,并建立起与变化后的核力场相应的运动状态。 这意味着,在任一确定的核排布下,电子都有相应的 运动状态,同时核间的相对运动可视为电子运动的平 均作用结果,这就是说,分子中电子的运动可以近似 地看成是在核固定不动的情况下进行的。根据这种物 理思想, Born和Oppenheimer处理了分子体系的定态 Schrodinger方程,使分子中核运动与电子运动分离开 4 来,称为 Born-Oppenheimer approximation 近似。
3N个二阶微分方程
d 2 xi 1 V d 2 yi 1 V d 2 zi 1 V , , dt 2 mi xi dt 2 mi yi dt 2 mi zi
i 1,2,, N ; N 10
2 4
0 t N
, Nx ,, 1 , 1x ; N z , Ny , Nx ,, 1z , 1y , 1x z , Ny z , 1y
1991年有人提出了巨正则系分子动力学方法。
10
(二)、简单模型的分子动力学 1957年,Alder和Wainwright采用刚球模型完成了凝聚 相系统的首次分子动力学模拟。在这种模型中,所有 的分子在两次碰撞之间都以一个大小不变的速度沿直 线运动,并且当两个粒子的中心的距离等于球体的直 径的时候,两个粒子将发生完全弹性碰撞过程。一些 早期的模拟也曾使用过方势阱势,如图所示,当两个 粒子的距离超过σ2,两个粒子的作用能为零;当两个 粒子的距离小于σ1时,两个粒子的作用为无穷大;当 两个粒子的距离在σ1和σ2时,相互作用能等于V0。
分子动力学
在分子动力学中,整个系统的连续变化一般完全 可以由牛顿运动方程给出。牛顿运动定律为: .物体在不受外力作用的时候,保持匀速直 线运动的状态; .物体所受的力等于物体的动量的变化量; .作用力和反作用力同时存在。
5
f i mi ai ,
2 ri 2 t mi
Fx i d 2 ri 2 dt mi 1 iV r1 , , ri ,, rN
11
energy
2R0
r
12
固体
液体
13
分子动力学模拟计算的基本步骤如下: (1)确定下一对相互碰撞的粒子,并计算它们的 碰撞时间; (2)计算每个粒子在碰撞时的位臵;
(3)计算两个互相碰撞粒子碰撞后的新的速度;
(4)重复上述三个步骤,直到计算结束。
14
两个互相碰撞粒子的新的速度由线性动量守恒公式
计算出来。像硬球势这样的简单的模型很明显有许
多的不足之处,但是它却给我们提供了一个很好的
机会来观察流体的微观性质。 早期的工作者们对定量确定固体和流体相之间的区 别特别感兴趣,但值得注意的是,正是那些早期的 分子图形系统大大促进了这种工作的进展,他们能 同时表示出粒子的运动轨迹。
15
(三)、连续势能模型的分子动力学模拟 在实际的模型中,由于存在分子之间的相互作用,作 用在每个粒子上的力不仅随着粒子的位臵的改变而改 变,而且随着其它任何一个与之相互作用的粒子的位 臵的改变而改变。 最早使用连续势能模拟氩原子的是Rahman,同时他 也完成了首次对分子液体的模拟(水),并且他在分子 动力学中其它许多方面也做出了重要贡献。在这种连 续势的影响下,所有粒子的运动都是相互关联在一起 的,构成不能用解析方法解决的多体问题。
1 2 r t t r t tv t t a t 2 1 2 v t t v t ta t t b t 2 a t t a t tb t
其中r是粒子位臵坐标,v是粒子的速度,a是粒子的 加速度,b是三阶导数,以此类推。
energy
2R0
r
9
1972年A.W. Lee and S.F. Edwards等人发展了该方法 并扩展到了存在速度梯度的系统,之后此方法被 M.J. Gillan等人推广到了具有温度梯度的非平衡系统 ,从而构成了非平衡分子动力学方法。 到二十世纪八十年代以后,出现了在分子内部对一 部分自由度施加约束条件的分子动力学方法,从而 使分子动力学方法可适用于类似蛋白质等生物大分 子的解析和设计。 1985年人们又提出将电子论和分子动力学方法有机 统一起来的所谓Car- Parrinello方法,即第一性原理 的分子动力学方法。
t
2 2 t r t t r t tv t a t O t 3 2 t vt t v t a t t a t O t 3 2
a t t a t Ot 3
优点和缺点
(1)它的缺点之一就是为求得r(t+δt)必须在两个较 大的量之差后再加一个较小的量δt2a(t),这将导致计 算结果的精确度下降。积累数值误差可以破坏牛顿方 程的时间可逆性,。 (2)坐标 计算达到四级近似,速度计算仅为二级近 似,相差两个近似等级。 (3)坐标计算与速度计算数据无关,且精度高,适 用于仅与粒子构型有关的问题讨论。 (4)每一时间步骤的速度计算滞后于坐标计算。为 了消除这一滞后,采用Verlet算法的改进形式。
N
V r t
分子动力学方法的发展历史
分子动力学方法是二十世纪五十年代后期由B. J. Alder and T. E. Wainwright创造发展的。 B. J. Alder and T. E. Wainwright在1957年利用分子动力学模拟, 验证了早在1939年由Kirkwood根据统计力学提出的预 言:“刚性球组成的集合系统会发生由液相到结晶相 的相转变”。后来人们称这种相转变为Alder相变。 这一结果表明,不具引力的系统也有凝聚态。 到二十世纪七十年代,产生了刚性体系的分子动力学 方法,被应用于水和氮等分子性溶液体系的处理,取 得了成功。 8
根据第一式,可写出:
1 2 r t t r t tv t t a t 2 1 2 r t t r t tv t t a t 2
20
1 2 r t t r t tv t t a t 2 1 2 r t t r t tv t t a t 2
起始条件
r t r 0 tv 0
t 2
2
a 0
F(t) a (t ) 21 m
优点和缺点 Verlet算法的最大优点是简单、直接。 而且所需的存储量比较适当,包括两组位臵坐标r(t),
r(t-δt)和一组加速度a(t)。
算法保留了牛顿方程的时间可逆性。
22
2
分子动力学方法,是确定性模拟方法:按照体系的 动力学规律产生位形变化。需要求解所有粒子的运
动方程。这种多体问题的严格处理,需要建立并求
解所有原子的薛定谔方程,其方程包括荷电部分( 原子核、电子)之间的相互作用及其动能。
Many problems are unfortunately too large to be considered by quantum mechanical methods.
三、分子动力学(Molecular Dynamics) (一)、引言 (二)、简单模型的分子动力学 (三)、连续势能模型的分子动力学模拟 (四)、选择时间步的方法 (五)、 Setting up and running a MD simulation
(六)、温度与压强的控制 (七)、分子动力学模拟举例 (八)、 Comparison between MC and MD methods
16
Fx i d 2 ri 2 dt mi
10 21 在这种情况下,使用有限差分法对牛顿运动方程积分。 17
1、有限差分法(finite difference method)的基本思想
有限差分法的基本思想是:将积分分为许多小阶段δt 在某个时刻t
r(t)
Fi(t)
ai (t)
v(t) r(t)
+)
-)
r t t 2r t r t t t 2 a t O t 4
r t t r t t v t O t 2 2t
0 t