淀粉水解糖的制备方法要点
工业微生物培养技术—淀粉水解糖的制备

酶解法
2. 糖化 由糖化酶将淀粉的液化产物糊精和低聚糖进一步水解成 葡萄糖的过程,称为糖化。
2. 糖化
(二)酶解法
糖化工艺具体如下:将30%淀粉乳的液化液泵入带有搅拌
器和保温装置的开口桶内,加入糖化酶,用酶量按80-100
表示淀粉糖的含糖量。
还原糖含量(%)
DE值=
100%
干物质含量(%)
四、淀粉制备葡萄糖的生产技术
(二)酶解法
定义
用专一性很强的淀粉酶及糖化酶将淀粉水解为葡萄糖 的工艺。 分两步 (1)液化:用α-淀粉酶将淀粉转化为糊精和低聚糖 (2)糖化:用糖化酶(又称葡萄糖淀粉酶)将糊精 和低聚糖转化为葡萄糖。
(二)酶解法
α-淀粉酶水解底物内部的α-1、4糖苷 键,不能水解α-1,6糖苷键,但能越过 -1.6-糖苷键继续水解-1、4-糖苷键, 而将-1.6糖苷键留在在水解产物中。
直链淀粉 葡萄糖、麦芽糖、麦芽三糖。 支链淀粉 以上+异麦芽糖及含有 -1、6-糖苷键的低聚糖
液化条件
国内目前较为普遍采用的是一次升温液化法和连续进出料液化法
四、淀粉制备葡萄糖的生产技术
在工业生产中,将淀粉水解为葡萄糖的过程称
淀粉的糖化,制得的溶液叫淀粉水解糖。
四、淀粉制备葡萄糖的生产技术
淀粉水解糖的制备方法及原理 原料:薯类、玉米、小麦、大米等
根据原料淀粉的性质和水解使用的催化剂的不同
酸解法 酶解法 酸酶结合法
四、淀粉制备葡萄糖的生产技术 (一)酸解法
酸水解 1.调浆:干淀粉用水调成10-11Bx的淀粉乳,加盐酸
淀粉制糖

淀粉制糖一、概述1、淀粉糖工业:利用淀粉为原料的制糖工业称为淀粉糖工业。
2、淀粉糖:将淀粉质的原料或淀粉用酸或酶水解获得的各种聚合度的水解产物。
1)淀粉糖种类:结晶葡萄糖(完全水解产物)、淀粉糖浆(不完全水解产物)、果葡糖浆(转化产物)2)淀粉糖浆按转化程度可分为高、中、低三类。
低转化糖浆DE值<20,中转化糖浆DE值38~42,高转化糖浆DE值60~703、DE值(葡萄糖值):还原糖(以葡萄糖计)占糖浆干物质的百分比。
二、淀粉水解方法1、淀粉水解有3种方法:酸解法、酶解法、酸酶结合法酸解法:以酸为催化剂在高温下将淀粉水解转化为葡萄糖酶解法:利用专一性很强的淀粉酶及糖化酶将淀粉水解为葡萄糖酸酶结合法:酸液化和酶糖化的工艺称为酸酶结合法2、液化:在糖化前,用酸或酶使糊化的淀粉水解到一定糊精和低聚糖的程度,粘度降低,流动性增强。
3、糖化:淀粉由葡萄糖组成,经酸或酶的催化作用,发生水解变成葡萄糖4、α-淀粉酶(液化酶):α-淀粉酶作用于淀粉时是从淀粉分子内部以随机的方式切断α-1,4糖苷键5、β-淀粉酶(麦芽糖酶):作用于淀粉时从非还原末端依次以麦芽糖为单位切开α-1,4糖苷键,在水解过程中水解产物麦芽糖分子中C1的构型由α型转变为β型,所以称其为β-淀粉酶6、糖化酶(葡萄糖淀粉酶、糖化酶):作用于淀粉时从非还原末端的α-1,4糖苷键开始,依次切下一个葡萄糖单位,产生的葡萄糖为β-构型,水解产物只有葡萄糖。
7、脱支酶:能够水解支链淀粉、糖原等大分子化合物中α-1,6糖苷键的酶称为脱支酶。
酶解法1、酶解法分为两步:1)利用淀粉酶将淀粉液化——液化2)利用糖化酶将糊精或低聚糖水解为葡萄糖——糖化2、液化的目的:1)使淀粉乳粘度降低,流动性增高2)为下一步糖化创造有利条件3、酶法生产全糖工艺1)全糖:淀粉经α-淀粉酶和β-淀粉酶作用得糖液,精制后浓缩、干燥、全部转化为商品淀粉糖,一般全糖的DE值在98以上。
第一章-淀粉水解糖的制备

③喷射液化法
特点: 设备小,便于连续操作,原料利用率高,蛋白絮
凝效果好。
要求一定压力的蒸汽,进出料的速度要稳定,设
备复杂,操作要求高。
2.液化方法的选择
(1)淀粉液化效果好坏的标准与控制
液化标准:
①液化要均匀;
②蛋白絮凝效果好; ③液化要彻底(在60℃时液化液要稳定,不出现老化 现象,不含不溶性淀粉颗粒,液化液透明、清亮)。
脱色一般采用粉末活性碳脱色,具体工艺如下:
用量:为糖液的0.1-0.2% 温度:65-80 ℃ 时间:30min PH:4.8-5.0
过滤
酸法水解包括三种反应:
水解反应
复合反应 分解反应
(二)酸酶法
酸酶法 :酸解为糊精或低聚糖,再用糖化酶水解 为葡萄糖。 酸用量少,糖液颜色浅,质量高。
(三)酶酸法
设备简单,操作容易,液化效果差,经糖化后 物料的过滤性差,糖的浓度也低。
②半连续液化法(又称高温液化法或称喷淋液化法)
在液化桶内放入底水并加热到90℃,然后将调配后待液化的 淀粉乳,用泵送经喷淋头引入液化桶内,并使桶内物料温度始 终保持在90℃±2℃,淀粉受热糊化、液化,由桶底流入保温 桶中,在90℃±2℃时,维持30min-60min,达到所需的液化程 度。 设备和操作简单,缺点: a) 安全性差。 b) 容器开口,蒸汽用量大。 c) 开口,无法达到耐高温-α-淀粉酶最佳温度所处的范围 (105℃)。与喷射法相比,液化效果差,糖化液过滤性能 也差。
2.淀粉水解糖液的质量要求
• (1)严格控制原料质量 • (7)质量标准
色泽:浅黄、杏黄透明液体;
糊精反应:无; 还原糖含量:18%左右; DE值:90%以上; 透光率:60%以上(420nm); PH:4.6-4.8
第一章淀粉水解糖的制备

酶量:0.2L/t,pH6.5,30min
设备、管道、泵都要清洗干净。
(二)淀粉的糖化
衡量糖化的经济技术指标 1.理论收率:
100g淀粉生成的葡萄糖量
(C6H10O5)n+ n H2O→n C6H12O6 162 18 180
理论收率111.11%
2.实际收率
糖液体积(V) × 糖液葡萄糖含量(ω1) 实际收率 = × 100% 投入原料量 × 淀粉含量(ω2)
特性 热稳定性: ℃以下稳定 热稳定性:60 ℃以下稳定 作用温度:60-70℃;90作用温度:60-70℃;90-110℃ pH稳定性 6.0-7.0稳定 5.0以下失活严重 稳定性: 稳定, pH稳定性:6.0-7.0稳定,5.0以下失活严重 金属离子的作用: 有激活作用, 金属离子的作用:Ca2+、Zn2+、Cl+有激活作用, 有抑制作用。 FeSO4、ZnSO4、CuSO4有抑制作用。
第一章 淀粉水解糖的制备
一.淀粉的组成及其特性
1.淀粉的性状及组成
形状:圆形、椭圆形、三角形 大小:马铃薯100~150µm、木薯5~30µm、 红薯10~25µm、小麦2~10µm 组成:葡萄糖的高聚体,通式是(C6H10O5)n
偏光显微镜下有黑色十字
直链淀粉:
不分枝的葡萄糖所构成,a-1,4糖苷键连接,遇碘显蓝。
总结
说说酸水解法、酸酶法和酶水解法三种不同水解工艺的优劣?
从制得的水解糖液的粘度来看,以 酶解法为最低,酸解法最高,如图4-18 所示。 从水解糖液的质量、原料利用率、糖收得 率、耗能及对粗淀粉原料的适应情况来看, 以酶解法最 , 酸酶 粘 法,酸法最 。 度 从淀粉水解的 所 的 来看 ,酸法最 ,酶法最 。 不同水解工艺与糖化液的粘度 的关系
淀粉水解与糖蜜

2、液化过程在高温下进行,时间延长已经液化的淀粉会重新结合成大分子。 一次升温液化法
连续进出料液化法
喷射液化法 分段液化法 液化结束后,升温至100°C10min灭菌,压滤去渣,降温就可以进行糖化 了
二、糖化
糖化酶的作用特点:
1、是一种外切酶,从底物的非还原末端一个分子一个分子的切下 葡萄糖,产生α-葡萄糖;
• (4)糖化锅结构的影响 淀粉水解过程都是在糖化锅内进行的因此糖化锅的结 构是否合理对水解糖液的质量也有一定影响。首先,糖化 锅的容积不能太大。淀粉水解时间不长(15min左右), 要保证进料放料迅速,尽量避免副反应。锅体太大,也会 使蒸汽难以均匀作用,造成水解不彻底。其次,锅的外形 要合理。工业发酵糖化锅一般采取封闭罐形结构,径高比 在1:1-1:1.5之间。径高比太大,锅体太矮,直径过大, 锅内死角增加,影响糖化进行;径高比太小,锅体过高, 锅内上下水解不均匀。最后,糖化锅的附属管道设计应保 证进出料迅速,尽量缩短辅助时间。典型的糖化锅构造如 下
二、糖蜜培养基的制备过程
(一)糖蜜的介绍
糖蜜是制糖工业的废液,是一种很有潜力的发酵原料。 降低成本 节约能源 便于实现高糖发酵工艺 例如:日本生产的味精,主要碳源就是糖蜜。 糖蜜的外 观:黑褐 色、粘稠 的液体
二、糖蜜培养基的制备过程
(一)糖蜜的介绍
糖蜜是制糖工业的下脚料,将提纯的甘蔗汁或甜菜汁熬成带有结晶的糖膏,用离心机分
(3)酸酶结合法(acid-enzyme hydrolysis method)
•
酸酶结合法是结合了酸法和酶法的水解糖制 备工艺,兼具两者特将淀粉用酸水解成低聚糖和糊精,再用糖 化酶将其水解为葡萄糖的工艺。有些原料的淀粉, 如玉米,小麦的淀粉颗粒坚实,用α-淀粉酶短时 间内往往作用不彻底,因此有些工厂就先用酸将 淀粉水解到一定程度(DE值约15),再用糖化酶 糖化,解决这一问题。
淀粉水解糖的制备方法

一、淀粉的组成及其特性 (一)淀粉的组成
淀粉为白色无定形的结晶粉末,存在于各种植物组织中。 淀粉一般有直链淀粉和支链淀粉两部分,如图2-1所示。直链淀 粉由不分支的葡萄糖链构成,葡萄糖分子间以α-1,4糖苷键聚合而 成,聚合度(一般为100~6000。支链淀粉的直链由葡萄糖分子以 α-1,4糖苷键相连结,而支链与直链葡萄糖分子以α-1,6糖苷键相 连结,它的分子呈树枝状,形成分枝结构。支链淀粉分子较大,聚合 度在1000~3000000之间,一般在6000以上。普通谷类和薯类淀 粉含直链淀粉17~27%,其余为支链淀粉;而粘高梁和糯米等则不 含直链淀粉,全部为支链淀粉。
(二)酶解法 酶解法是用专一性很强的淀粉酶和糖化酶作为催化剂将淀粉水解成为葡
萄糖的方法。酶解法制备葡萄糖可分为两步:第一步是液化过程,利用α-淀 粉酶将淀粉液化,转化为糊精及低聚糖。第二步是糖化过程,利用糖化酶将 糊精或低聚糖进一步水解为葡萄糖。淀粉的液化和糖化都在酶的作用下进行 的,故酶解法又称为双酶法。 1. 酶解法原理 ① 液化的原理
淀粉的液化是在α-淀粉酶的作用下完成的。但淀粉颗粒的结晶性结构对 酶作用的抵抗力非常强,α-淀粉酶不能直接作用于淀粉,在作用之前,需要 加热淀粉乳,使淀粉颗粒吸水膨胀、糊化,破坏其结晶性的结构。
α-淀粉酶是内切型淀粉酶,可从淀粉分子的内部任意切开α-1,4糖苷键, 使直链淀粉迅速水解生成麦芽糖、麦芽三糖和较大分子的寡糖,然后缓慢地 将麦芽三糖、寡糖水解为麦芽糖和葡萄糖。当α-淀粉酶作用于支链淀粉时, 不能水解α-1,6糖苷键,但能越过α-1,6糖苷键继续水解α-1,4糖苷键。因 此,液化产物除了麦芽糖和葡萄糖外,还含有一系列带有α-1,6糖苷键的寡 糖。在α-淀粉酶作用完全时,淀粉失去粘性,同时无碘的呈色反应。 ② 糖化的原理
淀粉水解糖制备1-已看

酸解法中常用的酸
盐酸:高效,但中和后产生氯化物,增加糖 液灰分,对葡萄糖的结晶,分离及收率会 有影响。 • 硫酸:能力仅次于盐酸,用碳酸钙中和, 经脱色,离子交换可除去。 • 草酸:能力低,用石灰中和生成草酸钙, 脱色过滤易除去,非强酸,减少了复合反 应。
2 酶解法
定义:以酶为催化剂,在常温常压下将淀粉水解 为葡萄糖的方法。包括液化和糖化两个过程,故 又称双酶水解法。 • 优点: – 反应条件温和 – 副反应少,淀粉质量高 – 可在较高淀粉浓度下水解,对预料要求不高 – 糖液的质量高、营养物质较丰富 • 缺点: – 水解时间长,夏天糖液容易变质
• 一、淀粉的水解的理论基础
1淀粉的颗粒的外观
• 淀粉颗粒呈白色,不溶于冷水和有机溶剂,其内 部呈结晶组织。形状不规则,大致分为圆形、椭 圆形和多角形。如马铃薯、甘薯的淀粉为圆形。
• 淀粉颗粒的构成如下:
氢键
聚集
淀粉分子链 ───→ 针状晶体 ───→ 淀粉颗粒
2,淀粉的分子结构
• 淀粉可分为直链和支链淀粉两类。
单罐维持
连续出料
多段液化工艺
液化程度的控制
• I2试 • 测定DE值
– DE值高,糊精太小,不利于糖化酶作用,影响 催化效率,终点DE值低。
– DE值低,液化不彻底,糖化速度慢,酶用量大, 时间长,过滤性能差。
• 透光率和澄清度
液化效果的标准
• 液化彻底--60˚C时液化液要稳定,不出现老 化现象,不含不溶性淀粉颗粒,液化液透 明、清亮。
• 喷射液化的几种流程:
一段高温喷射液化 单罐维持 连续出料
多段液化:多次加酶,多次加热,适用各种原 料(特别是难液化的小麦,玉米淀粉)
• 一段高温喷射液化工艺:
淀粉水解制糖的方法因素

淀粉水解制糖的方法因素
淀粉水解制糖的方法受到多种因素的影响,包括以下几个方面:
1. 酶的种类和活性:淀粉水解制糖的主要酶是α-淀粉酶和β-淀粉酶。
酶的种类和活性会直接影响糖的产量和质量。
不同种类的酶在不同条件下的活性也有差异。
2. 酶的浓度和添加方式:酶的浓度越高,酶解作用越强,有利于制糖。
另外,酶的添加方式也会影响酶解效果,一般有一次性添加、分批添加和连续添加等方法。
3. pH值和温度:pH值和温度是酶活性的重要影响因素。
淀粉水解制糖一般在较酸性的条件下进行,pH值一般在
4.5-6之间。
温度方面,常规的操作温度为50-60摄氏度,但不同酶的最适温度会有所差异。
4. 反应时间:反应时间的长短会直接影响淀粉的水解程度和糖的产量。
一般来说,反应时间越长,糖的产量越高。
5. 淀粉的性质:淀粉的来源和性质也会对水解制糖过程产生影响。
不同来源和类型的淀粉对酶的反应性能、反应速率等均有差异。
6. 辅助物质:辅助物质如矿物盐、金属离子、营养物质和表面活性剂等对淀粉水解制糖有一定影响,可以改变酶的活性和稳定性,提高制糖效果。
综上所述,淀粉水解制糖的方法会受到酶的种类和活性、酶的浓度和添加方式、pH值和温度、反应时间、淀粉的性质以及辅助物质等多个因素的影响。
为了获得较高的制糖效果,需要根据具体情况进行合理调节和优化。