第三章多元线性回归模型习题答案
第三章课后作业

(2) ˆ0 = Y − α ˆ1 X 1 − α ˆ 2 X 2 = (Y − X 1 ) − (α ˆ1 − 1) X 1 − α ˆ2 X 2 α ˆ X −β ˆ X = (Y − X ) − β
1 1 1 2 2
ˆ =β
0
证毕。
(3)设: Z i = Yi − X 1i (a)式的拟合优度为:
2 i 3i 2 3i
2 i 3i 2 3i
2 i 3i 2 3i
ˆ1 − 1 =α & & (y & −x & ) ∑x ∑x & x & & (y & −x & ) x ∑x ˆ = ∑ β & & x & ∑x ∑x & x & & ∑x ∑x & & y & & & ∑x ∑x ∑x ∑x & x & & y & & x & & x & ∑x ∑x ∑x ∑x = − & & x & & & x & ∑x ∑x ∑x ∑x & x & & & x & & ∑x ∑x ∑x ∑x
证明: 根据 OLS 估计原理依次求解上述待估参数可证明。 或
ˆi 为: 由回归方程(2)可得残差ν ˆ0 − α ˆ1 X 2i ,将其带入回归方程(3)可得: νˆi = X 1i − α ˆ0 − α ˆ1 X 2i ) + γ 2 X 2i + wi Yi = γ 0 + γ 1 ( X 1i − α ˆ 0 ) + γ 1 X 1i + (γ 2 − γ 1α ˆ1 ) X 2i + wi = (γ 0 − γ 1α
(完整版)多元线性回归模型习题及答案

多元线性回归模型一、单项选择题1.在由30n =的一组样本估计的、包含3个解释变量的线性回归模型中,计算得多重决定系数为0.8500,则调整后的多重决定系数为( D )A. 0.8603B. 0.8389C. 0.8655D.0.8327 2.下列样本模型中,哪一个模型通常是无效的(B ) A.iC (消费)=500+0.8iI (收入)B. di Q (商品需求)=10+0.8i I (收入)+0.9i P (价格) C. si Q (商品供给)=20+0.75i P (价格)D. iY (产出量)=0.650.6i L (劳动)0.4i K (资本)3.用一组有30个观测值的样本估计模型01122t t t ty b b x b x u =+++后,在0.05的显著性水平上对1b 的显著性作t 检验,则1b 显著地不等于零的条件是其统计量t 大于等于( C )A.)30(05.0t B.)28(025.0t C.)27(025.0t D.)28,1(025.0F4.模型tt t u x b b y ++=ln ln ln 10中,1b 的实际含义是( B )A.x 关于y 的弹性B. y 关于x 的弹性C. x 关于y 的边际倾向D. y 关于x 的边际倾向5、在多元线性回归模型中,若某个解释变量对其余解释变量的判定系数接近于1,则表明模型中存在( C )A.异方差性B.序列相关C.多重共线性D.高拟合优度6.线性回归模型01122......t t t k kt t y b b x b x b x u =+++++ 中,检验0:0(0,1,2,...)t H b i k ==时,所用的统计量服从( C )A.t(n-k+1)B.t(n-k-2)C.t(n-k-1)D.t(n-k+2)7. 调整的判定系数 与多重判定系数之间有如下关系( D )A.2211n R R n k -=-- B. 22111n R R n k -=---C. 2211(1)1n R R n k -=-+-- D. 2211(1)1n R R n k -=----8.关于经济计量模型进行预测出现误差的原因,正确的说法是( C )。
计量经济学考试习题与解答

计量经济学考试习题与解答第三章、经典单⽅程计量经济学模型:多元线性回归模型⼀、内容提要本章将⼀元回归模型拓展到了多元回归模型,其基本地建模思想与建模⽅法与⼀元地情形相同.主要内容仍然包括模型地基本假定、模型地估计、模型地检验以及模型在预测⽅⾯地应⽤等⽅⾯.只不过为了多元建模地需要,在基本假设⽅⾯以及检验⽅⾯有所扩充.本章仍重点介绍了多元线性回归模型地基本假设、估计⽅法以及检验程序.与⼀元回归分析相⽐,多元回归分析地基本假设中引⼊了多个解释变量间不存在(完全)多重共线性这⼀假设;在检验部分,⼀⽅⾯引⼊了修正地可决系数,另⼀⽅⾯引⼊了对多个解释变量是否对被解释变量有显著线性影响关系地联合性F检验,并讨论了F检验与拟合优度检验地内在联系.本章地另⼀个重点是将线性回归模型拓展到⾮线性回归模型,主要学习⾮线性模型如何转化为线性回归模型地常见类型与⽅法.这⾥需要注意各回归参数地具体经济含义.本章第三个学习重点是关于模型地约束性检验问题,包括参数地线性约束与⾮线性约束检验.参数地线性约束检验包括对参数线性约束地检验、对模型增加或减少解释变量地检验以及参数地稳定性检验三⽅⾯地内容,其中参数稳定性检验⼜包括邹⽒参数稳定性检验与邹⽒预测检验两种类型地检验.检验都是以F检验为主要检验⼯具,以受约束模型与⽆约束模型是否有显著差异为检验基点.参数地⾮线性约束检验主要包括最⼤似然⽐检验、沃尔德检验与拉格朗⽇乘数检验.它们仍以估计⽆约束模型与受约束模型为基础,但以最⼤似然原理进⾏估计,且都适⽤于⼤样本情形,都以约束条件个数为⾃由度地分布为检验统计量地分布特征.⾮线性约束检验中地拉格朗⽇乘数检验在后⾯地章节中多次使⽤.⼆、典型例题分析例1.某地区通过⼀个样本容量为722地调查数据得到劳动⼒受教育地⼀个回归⽅程为R2=0.214式中,edu为劳动⼒受教育年数,sibs为该劳动⼒家庭中兄弟姐妹地个数,medu与fedu分别为母亲与⽗亲受到教育地年数.问(1)sibs是否具有预期地影响?为什么?若medu与fedu保持不变,为了使预测地受教育⽔平减少⼀年,需要sibs增加多少?(2)请对medu地系数给予适当地解释.(3)如果两个劳动⼒都没有兄弟姐妹,但其中⼀个地⽗母受教育地年数为12年,另⼀个地⽗母受教育地年数为16年,则两⼈受教育地年数预期相差多少?解答:(1)预期sibs对劳动者受教育地年数有影响.因此在收⼊及⽀出预算约束⼀定地条件下,⼦⼥越多地家庭,每个孩⼦接受教育地时间会越短.根据多元回归模型偏回归系数地含义,sibs前地参数估计值-0.094表明,在其他条件不变地情况下,每增加1个兄弟姐妹,受教育年数会减少0.094年,因此,要减少1年受教育地时间,兄弟姐妹需增加1/0.094=10.6个.(2)medu地系数表⽰当兄弟姐妹数与⽗亲受教育地年数保持不变时,母亲每增加1年受教育地机会,其⼦⼥作为劳动者就会预期增加0.131年地教育机会.(3)⾸先计算两⼈受教育地年数分别为10.36+0.131?12+0.210?12=14.45210.36+0.131?16+0.210?16=15.816因此,两⼈地受教育年限地差别为15.816-14.452=1.364例2.以企业研发⽀出(R&D)占销售额地⽐重为被解释变量(Y),以企业销售额(X1)与利润占销售额地⽐重(X2)为解释变量,⼀个有32容量地样本企业地估计结果如下:其中括号中为系数估计值地标准差.(1)解释log(X1)地系数.如果X1增加10%,估计Y会变化多少个百分点?这在经济上是⼀个很⼤地影响吗?(2)针对R&D强度随销售额地增加⽽提⾼这⼀备择假设,检验它不虽X1⽽变化地假设.分别在5%和10%地显著性⽔平上进⾏这个检验.(3)利润占销售额地⽐重X2对R&D强度Y是否在统计上有显著地影响?解答:(1)log(x1)地系数表明在其他条件不变时,log(x1)变化1个单位,Y变化地单位数,即?Y=0.32?log(X1)≈0.32(?X1/X1)=0.32?100%,换⾔之,当企业销售X1增长100%时,企业研发⽀出占销售额地⽐重Y会增加0.32个百分点.由此,如果X1增加10%,Y会增加0.032个百分点.这在经济上不是⼀个较⼤地影响.(2)针对备择假设H1:,检验原假设H0:.易知计算地t统计量地值为t=0.32/0.22=1.468.在5%地显著性⽔平下,⾃由度为32-3=29地t 分布地临界值为1.699(单侧),计算地t值⼩于该临界值,所以不拒绝原假设.意味着R&D强度不随销售额地增加⽽变化.在10%地显著性⽔平下,t分布地临界值为1.311,计算地t 值⼩于该值,拒绝原假设,意味着R&D强度随销售额地增加⽽增加.(3)对X2,参数估计值地t统计值为0.05/0.46=1.087,它⽐在10%地显著性⽔平下地临界值还⼩,因此可以认为它对Y在统计上没有显著地影响.例3.下表为有关经批准地私⼈住房单位及其决定因素地4个模型地估计量和相关统计值(括号内为p-值)(如果某项为空,则意味着模型中没有此变量).数据为美国40个城市地数据.模型如下:式中housing——实际颁发地建筑许可证数量,density——每平⽅英⾥地⼈⼝密度,value——⾃由房屋地均值(单位:百美元),income——平均家庭地收⼊(单位:千美元),popchang——1980~1992年地⼈⼝增长百分⽐,unemp——失业率,localtax——⼈均交纳地地⽅税,检验模型A中地每⼀个回归系数在10%⽔平下是否为零(括号中地值为双边备择p-值).根据检验结果,你认为应该把变量保留在模型中还是去掉?在模型A中,在10%⽔平下检验联合假设H0:βi =0(i=1,5,6,7).说明被择假设,计算检验统计值,说明其在零假设条件下地分布,拒绝或接受零假设地标准.说明你地结论.(3)哪个模型是“最优地”?解释你地选择标准.(4)说明最优模型中有哪些系数地符号是“错误地”.说明你地预期符号并解释原因.确认其是否为正确符号.解答:(1)直接给出了P-值,所以没有必要计算t-统计值以及查t分布表.根据题意,如果p-值<0.10,则我们拒绝参数为零地原假设.由于表中所有参数地p-值都超过了10%,所以没有系数是显著不为零地.但由此去掉所有解释变量,则会得到⾮常奇怪地结果.其实正如我们所知道地,多元回去归中在省略变量时⼀定要谨慎,要有所选择.本例中,value、income、popchang地p-值仅⽐0.1稍⼤⼀点,在略掉unemp、localtax、statetax地模型C中,这些变量地系数都是显著地.(2)针对联合假设H0:βi =0(i=1,5,6,7)地备择假设为H1:βi =0(i=1,5,6,7)中⾄少有⼀个不为零.检验假设H0,实际上就是参数地约束性检验,⾮约束模型为模型A,约束模型为模型D,检验统计值为显然,在H0假设下,上述统计量满⾜F分布,在10%地显著性⽔平下,⾃由度为(4,32)地F分布地临界值位于2.09和2.14之间.显然,计算地F值⼩于临界值,我们不能拒绝H0,所以βi(i=1,5,6,7)是联合不显著地.(3)模型D中地3个解释变量全部通过显著性检验.尽管R2与残差平⽅和较⼤,但相对来说其AIC值最低,所以我们选择该模型为最优地模型.(4)随着收⼊地增加,我们预期住房需要会随之增加.所以可以预期β3>0,事实上其估计值确是⼤于零地.同样地,随着⼈⼝地增加,住房需求也会随之增加,所以我们预期β4>0,事实其估计值也是如此.随着房屋价格地上升,我们预期对住房地需求⼈数减少,即我们预期β3估计值地符号为负,回归结果与直觉相符.出乎预料地是,地⽅税与州税为不显著地.由于税收地增加将使可⽀配收⼊降低,所以我们预期住房地需求将下降.虽然模型A是这种情况,但它们地影响却⾮常微弱.4、在经典线性模型基本假定下,对含有三个⾃变量地多元回归模型:你想检验地虚拟假设是H0:.(1)⽤地⽅差及其协⽅差求出.(2)写出检验H0:地t统计量.(3)如果定义,写出⼀个涉及β0、θ、β2和β3地回归⽅程,以便能直接得到θ估计值及其标准误.解答:(1)由数理统计学知识易知(2)由数理统计学知识易知,其中为地标准差.(3)由知,代⼊原模型得这就是所需地模型,其中θ估计值及其标准误都能通过对该模型进⾏估计得到.三、习题(⼀)基本知识类题型3-1.解释下列概念:1)多元线性回归2)虚变量3)正规⽅程组4)⽆偏性5)⼀致性6)参数估计量地置信区间7)被解释变量预测值地置信区间8)受约束回归9)⽆约束回归10)参数稳定性检验3-2.观察下列⽅程并判断其变量是否呈线性?系数是否呈线性?或都是?或都不是?1)2)3)4)5)6)7)3-3.多元线性回归模型与⼀元线性回归模型有哪些区别?3-4.为什么说最⼩⼆乘估计量是最优地线性⽆偏估计量?多元线性回归最⼩⼆乘估计地正规⽅程组,能解出唯⼀地参数估计地条件是什么?3-5.多元线性回归模型地基本假设是什么?试说明在证明最⼩⼆乘估计量地⽆偏性和有效性地过程中,哪些基本假设起了作⽤?3-6.请说明区间估计地含义.(⼆)基本证明与问答类题型3-7.什么是正规⽅程组?分别⽤⾮矩阵形式和矩阵形式写出模型:,地正规⽅程组,及其推导过程.3-8.对于多元线性回归模型,证明:(1)(2)3-9.为什么从计量经济学模型得到地预测值不是⼀个确定地值?预测值地置信区间和置信度地含义是什么?在相同地置信度下如何才能缩⼩置信区间?为什么?3-10.在多元线性回归分析中,检验与检验有何不同?在⼀元线性回归分析中⼆者是否有等价地作⽤?3-11.设有模型:,试在下列条件下:(1)(2)分别求出和地最⼩⼆乘估计量.3-12.多元线性计量经济学模型1,2,…,n (2.11.1)地矩阵形式是什么?其中每个矩阵地含义是什么?熟练地写出⽤矩阵表⽰地该模型地普通最⼩⼆乘参数估计量,并证明在满⾜基本假设地情况下该普通最⼩⼆乘参数估计量是⽆偏和有效地估计量.3-13.有如下⽣产函数:(0.257)(0.219)其中括号内数值为参数标准差.请检验以下零假设:(1)产出量地资本弹性和劳动弹性是等同地;(2)存在不变规模收益,即.3-14.对模型应⽤OLS法,得到回归⽅程如下:要求:证明残差与不相关,即:.3-15.3-16.考虑下列两个模型:Ⅰ、Ⅱ、要求:(1)证明:,,(2)证明:残差地最⼩⼆乘估计量相同,即:(3)在何种情况下,模型Ⅱ地拟合优度会⼩于模型Ⅰ拟合优度.3-17.假设要求你建⽴⼀个计量经济模型来说明在学校跑道上慢跑⼀英⾥或⼀英⾥以上地⼈数,以便决定是否修建第⼆条跑道以满⾜所有地锻炼者.你通过整个学年收集数据,得到两个可能地解释性⽅程:⽅程A:⽅程B:其中:——某天慢跑者地⼈数——该天降⾬地英⼨数——该天⽇照地⼩时数——该天地最⾼温度(按华⽒温度)——第⼆天需交学期论⽂地班级数请回答下列问题:(1)这两个⽅程你认为哪个更合理些,为什么?(2)为什么⽤相同地数据去估计相同变量地系数得到不同地符号?3-18.对下列模型:(1)(2)求出β地最⼩⼆乘估计值;并将结果与下⾯地三变量回归⽅程地最⼩⼆乘估计值作⽐较:(3),你认为哪⼀个估计值更好?3-19.假定以校园内⾷堂每天卖出地盒饭数量作为被解释变量,盒饭价格、⽓温、附近餐厅地盒饭价格、学校当⽇地学⽣数量(单位:千⼈)作为解释变量,进⾏回归分析;假设不管是否有假期,⾷堂都营业.不幸地是,⾷堂内地计算机被⼀次病毒侵犯,所有地存储丢失,⽆法恢复,你不能说出独⽴变量分别代表着哪⼀项!下⾯是回归结果(括号内为标准差):(2.6)(6.3) (0.61) (5.9)要求:(1)试判定每项结果对应着哪⼀个变量?(2)对你地判定结论做出说明.(三)基本计算类题型3-20.试对⼆元线性回归模型:,()作回归分析,要求:(1)求出未知参数地最⼩⼆乘估计量;(2)求出随机误差项地⽅差地⽆偏估计量;(3)对样本回归⽅程作拟合优度检验;(4)对总体回归⽅程地显著性进⾏检验;(5)对地显著性进⾏检验;(6)当时,写出和Y0地置信度为95%地预测区间.3-21.下表给出三变量模型地回归结果:⽅差来源平⽅和(SS)⾃由度(d.f.)平⽅和地均值(MSS)来⾃回归65965 ——来⾃残差_———总离差(TSS) 66042 14要求:(1)样本容量是多少?(2)求RSS?(3)ESS和RSS地⾃由度各是多少?(4)求和?(5)检验假设:和对⽆影响.你⽤什么假设检验?为什么?(6)根据以上信息,你能否确定和各⾃对地贡献吗?3-22.下⾯给出依据15个观察值计算得到地数据:,,,,,,其中⼩写字母代表了各值与其样本均值地离差.要求:(1)估计三个多元回归系数;(2)估计它们地标准差;并求出与?(3)估计、95%地置信区间;(4)在下,检验估计地每个回归系数地统计显著性(双边检验);(5)检验在下所有地部分系数都为零,并给出⽅差分析表.3-23.考虑以下⽅程(括号内为估计标准差):(0.080)(0.072) (0.658)其中:——年地每位雇员地⼯资和薪⽔——年地物价⽔平——年地失业率要求:(1)对个⼈收⼊估计地斜率系数进⾏假设检验;(尽量在做本题之前不参考结果)(2)讨论在理论上地正确性,对本模型地正确性进⾏讨论;是否应从⽅程中删除?为什么?3-24.下表是某种商品地需求量、价格和消费者收⼊⼗年地时间序列资料:要求:(1)已知商品需求量是其价格和消费者收⼊地函数,试求对和地最⼩⼆乘回归⽅程:(2)求地总变差中未被和解释地部分,并对回归⽅程进⾏显著性检验;(3)对回归参数,进⾏显著性检验.3-25.参考习题2-28给出地数据,要求:(1)建⽴⼀个多元回归模型,解释MBA毕业⽣地平均初职⼯资,并且求出回归结果;(2)如果模型中包括了GPA和GMA T 分数这两个解释变量,先验地,你可能会遇到什么问题,为什么?(3)如果学费这⼀变量地系数为正、并且在统计上是显著地,是否表⽰进⼊最昂贵地商业学校是值得地.学费这个变量可⽤什么来代替?3-26.经研究发现,学⽣⽤于购买书籍及课外读物地⽀出与本⼈受教育年限和其家庭收⼊⽔平有关,对18名学⽣进⾏调查地统计资料如下表所⽰:要求:(1)试求出学⽣购买书籍及课外读物地⽀出与受教育年限和家庭收⼊⽔平地估计地回归⽅程:(2)对地显著性进⾏t检验;计算和;(3)假设有⼀学⽣地受教育年限年,家庭收⼊⽔平,试预测该学⽣全年购买书籍及课外读物地⽀出,并求出相应地预测区间(α=0.05).3-27.根据100对(,)地观察值计算出:要求:(1)求出⼀元模型中地地最⼩⼆乘估计量及其相应地标准差估计量;(2)后来发现还受地影响,于是将⼀元模型改为⼆元模型,收集地相应观察值并计算出:求⼆元模型中地,地最⼩⼆乘估计量及其相应地标准差估计量;(3)⼀元模型中地与⼆元模型中地是否相等?为什么?3-28.考虑以下预测地回归⽅程:其中:——第t年地⽟⽶产量(蒲式⽿/亩)——第t年地施肥强度(磅/亩)——第t年地降⾬量(英⼨)要求回答下列问题:(1)从和对地影响⽅⾯,说出本⽅程中系数和地含义;(2)常数项是否意味着⽟⽶地负产量可能存在?(3)假定地真实值为,则估计值是否有偏?为什么?(4)假定该⽅程并不满⾜所有地古典模型假设,即并不是最佳线性⽆偏估计值,则是否意味着地真实值绝对不等于?为什么?3-29.已知线性回归模型式中(0,),且(为样本容量,为参数地个数),由⼆次型地最⼩化得到如下线性⽅程组:要求:(1)把问题写成矩阵向量地形式;⽤求逆矩阵地⽅法求解之;(2)如果,求;(3)求出地⽅差—协⽅差矩阵.3-30.已知数据如下表:要求:(1)先根据表中数据估计以下回归模型地⽅程(只估计参数不⽤估计标准差):(2)回答下列问题:吗?为什么?吗?为什么?(四)⾃我综合练习类题型3-31.⾃⼰选择研究对象(最好是⼀个实际经济问题),收集样本数据,应⽤计量经济学软件(建议使⽤Eviews3.1),完成建⽴多元线性计量经济模型地全过程,并写出详细研究报告.四、习题参考答案(⼀)基本知识类题型3-1.解释下列概念(1)在现实经济活动中往往存在⼀个被解释变量受到多个解释变量地影响地现象,表现为在线性回归模型中有多个解释变量,这样地模型被称为多元线性回归模型,多元指多个解释变量.(2)形如地关于参数估计值地线性代数⽅程组称为正规⽅程组.3-2.答:变量⾮线性、系数线性;变量、系数均线性;变量、系数均线性;变量线性、系数⾮线性;变量、系数均为⾮线性;变量、系数均为⾮线性;变量、系数均为线性.3-3.答:多元线性回归模型与⼀元线性回归模型地区别表现在如下⼏⽅⾯:⼀是解释变量地个数不同;⼆是模型地经典假设不同,多元线性回归模型⽐⼀元线性回归模型多了“解释变量之间不存在线性相关关系”地假定;三是多元线性回归模型地参数估计式地表达更复杂;3-4.在多元线性回归模型中,参数地最⼩⼆乘估计量具备线性、⽆偏性、最⼩⽅差性,同时多元线性回归模型满⾜经典假定,所以此时地最⼩⼆乘估计量是最优地线性⽆偏估计量,⼜称BLUE估计量.对于多元线性回归最⼩⼆乘估计地正规⽅程组,3-5.答:多元线性回归模型地基本假定有:零均值假定、随机项独⽴同⽅差假定、解释变量地⾮随机性假定、解释变量之间不存在线性相关关系假定、随机误差项服从均值为0⽅差为地正态分布假定.在证明最⼩⼆乘估计量地⽆偏性中,利⽤了解释变量与随机误差项不相关地假定;在有效性地证明中,利⽤了随机项独⽴同⽅差假定.3-6.答:区间估计是指研究⽤未知参数地点估计值(从⼀组样本观测值算得地)作为近似值地精确程度和误差范围.(⼆)基本证明与问答类题型3-7.答:含有待估关系估计量地⽅程组称为正规⽅程组.正规⽅程组地⾮矩阵形式如下:正规⽅程组地矩阵形式如下:推导过程略.3-16.解:(1)证明:由参数估计公式可得下列参数估计值证毕.⑵证明:证毕.⑶设:I式地拟合优度为:II式地拟合优度为:在⑵中已经证得成⽴,即⼆式分⼦相同,若要模型II地拟合优度⼩于模型I地拟合优度,必须满⾜:.3-17.答:⑴⽅程B更合理些.原因是:⽅程B中地参数估计值地符号与现实更接近些,如与⽇照地⼩时数同向变化,天长则慢跑地⼈会多些;与第⼆天需交学期论⽂地班级数成反向变化,这⼀点在学校地跑道模型中是⼀个合理地解释变量.⑵解释变量地系数表明该变量地单位变化在⽅程中其他解释变量不变地条件下对被解释变量地影响,在⽅程A和⽅程B中由于选择了不同地解释变量,如⽅程A选择地是“该天地最⾼温度”⽽⽅程B选择地是“第⼆天需交学期论⽂地班级数”,由此造成与这两个变量之间地关系不同,所以⽤相同地数据估计相同地变量得到不同地符号.3-18.答:将模型⑴改写成,则地估计值为:将模型⑵改写成,则地估计值为:这两个模型都是三变量回归模型⑶在某种限制条件下地变形.如果限制条件正确,则前两个回归参数会更有效;如果限制条件不正确则前两个回归参数会有偏.3-19.答:⑴答案并不唯⼀,猜测为:为学⽣数量,为附近餐厅地盒饭价格,为⽓温,为校园内⾷堂地盒饭价格;⑵理由是被解释变量应与学⽣数量成正⽐,并且应该影响显著;与本⾷堂盒饭价格成反⽐,这与需求理论相吻合;与附近餐厅地盒饭价格成正⽐,因为彼此是替代品;与⽓温地变化关系不是⼗分显著,因为⼤多数学⽣不会因为⽓温升⾼不吃饭.(三)基本计算类题型3-22.解:⑴⑵其中:同理,可得:,拟合优度为:⑶,查表得,得到,得到,⑷,,查表得临界值为则:⑸所有地部分系数为0,即:,等价于⽅差来源平⽅和⾃由度平⽅和地均值来⾃回归65963.018 2 32981.509来⾃残差79.2507 12 6.6042总离差66042.269,,临界值为3.89值是显著地,所以拒绝零假设.3-23.解:⑴对给定在5%地显著⽔平下,可以进⾏t检验,得到地结果如下:3-28.解:⑴在降⾬量不变时,每亩增加⼀磅肥料将使第年地⽟⽶产量增加0.1蒲式⽿/亩;在每亩施肥量不变地情况下,每增加⼀英⼨地降⾬量将使第年地⽟⽶产量增加5.33蒲式⽿/亩;⑵在种地地⼀年中不施肥、也不下⾬地现象同时发⽣地可能性极⼩,所以⽟⽶地负产量不可能存在;⑶如果地真实值为0.40,并不能说明0.1是有偏地估计,理由是0.1是本题估计地参数,⽽0.40是从总体得到地系数地均值.⑷不⼀定.即便该⽅程并不满⾜所有地古典模型假设、不是最佳线性⽆偏估计值,也有可能得出地估计系数等于5.33.3-29.解:⑴该⽅程组地矩阵向量形式为:⑵⑶地⽅差—协⽅差矩阵为:版权申明本⽂部分内容,包括⽂字、图⽚、以及设计等在⽹上搜集整理。
多元线性回归模型习题及答案

多元线性回归模型习题及答案TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-多元线性回归模型一、单项选择题1.在由30n =的一组样本估计的、包含3个解释变量的线性回归模型中,计算得多重决定系数为,则调整后的多重决定系数为( D )2.下列样本模型中,哪一个模型通常是无效的(B )A. i C (消费)=500+i I (收入)B. d i Q (商品需求)=10+i I (收入)+i P (价格)C. s i Q (商品供给)=20+i P (价格)D. iY (产出量)=0.6i L (劳动)0.4i K (资本)3.用一组有30个观测值的样本估计模型01122t t t t y b b x b x u =+++后,在的显着性水平上对1b 的显着性作t 检验,则1b 显着地不等于零的条件是其统计量t 大于等于( C )A. )30(05.0tB. )28(025.0tC. )27(025.0tD. )28,1(025.0F4.模型t t t u x b b y ++=ln ln ln 10中,1b 的实际含义是( B )A.x 关于y 的弹性B. y 关于x 的弹性C. x 关于y 的边际倾向D. y 关于x 的边际倾向 5、在多元线性回归模型中,若某个解释变量对其余解释变量的判定系数接近于1,则表明模型中存在( C )A.异方差性B.序列相关C.多重共线性D.高拟合优度6.线性回归模型01122......t t t k kt t y b b x b x b x u =+++++ 中,检验0:0(0,1,2,...)t H b i k ==时,所用的统计量 服从( C )(n-k+1) (n-k-2)(n-k-1) (n-k+2)7. 调整的判定系数 与多重判定系数 之间有如下关系( D ) A.2211n R R n k -=-- B. 22111n R R n k -=--- C. 2211(1)1n R R n k -=-+-- D. 2211(1)1n R R n k -=---- 8.关于经济计量模型进行预测出现误差的原因,正确的说法是( C )。
庞皓《计量经济学》(第4版)章节题库-第3章 多元线性回归模型【圣才出品】

2
2
而 1-α 的置信度下 Y0 的置信区间为:
Yˆ0 t ˆ
1
X0
X
X
1
X
0
Y0
Yˆ0
t
ˆ
1
X0
X
X
1
X
0
2
2
6.多元回归模型中的解释变量个数为 k,那么回归方程显著性检验的 F 统计量的第一 自由度为 n-k-1,第二自由度为 k。( )
【答案】× 【解析】多元回归模型中的解释变量个数为 k,那么回归方程显著性检验的 F 统计量 的第一自由度为 k,第二自由度为 n-k-1。
2 / 22
圣才电子书
十万种考研考证电子书、题库视频学习平
台
【解析】在变量显著性检验中,针对某变量 Xj(j=1,2,…,k)设计的原假设与备
择假设为 H0:βj=0,H1:βj≠0。给定显著性水平 α 之后,可根据|t|>tα/2(n-k-1)
(或|t|≤tα/2(n-k-1))来决定拒绝(或接受)原假设 H0,从而判定对应的解释变量是
三、简答题 1.多元线性回归模型的基本假设是什么?试说明在证明最小二乘估计量的无偏性和 有效性的过程中,哪些基本假设起了作用? 答:(1)针对普通最小二乘法,多元线性回归模型的基本假设主要有以下三大类: ①关于模型设定的基本假设: 假定回归模型的设定是正确的,即模型的变量和函数形式均为正确的。 ②关于随机扰动项的基本假设: 假定随机扰动项满足条件零均值、条件同方差、条件序列不相关性以及服从正态分布。
2.调整的多重可决系数 Error!2 与多重可决系数 R2 的关系为( )。 A.Error!2=R2(n-1)/(n-k-1) B.Error!2=1-R2(n-1)/(n-k-1) C.Error!2=1-(1+R2)(n-1)/(n-k-1) D.Error!2=1-(1-R2)(n-1)/(n-k-1) 【答案】D 【解析】在样本容量一定的情况下,增加解释变量必定使得自由度减少,为了剔除变 量个数对拟合优度的影响,调整的多重可决系数是将残差平方和与总离差平方和处以各自
(完整版)第三章(多元线性回归模型)3-1答案

3.1 多元线性回归模型及古典假定一、判断题1. 在实际应用中,一元回归几乎没什么用,因为因变量的行为不可能仅有一个解释变量来解释。
(T )2. 一元线性回归模型与多元线性回归模型的基本假定是相同的。
(F )二 、单项选择题1.在二元线性回归模型i i i i u X X Y +++=22110βββ中,1β表示( A )。
A .当X2不变时,X1每变动一个单位Y 的平均变动。
B .当X1不变时,X2每变动一个单位Y 的平均变动。
C .当X1和X2都保持不变时,Y 的平均变动。
D .当X1和X2都变动一个单位时,Y 的平均变动。
2.如果两个经济变量X 与Y 间的关系近似地表现为当X 发生一个绝对量变动(ΔX ) 时, Y 有一个固定地相对量(ΔY/Y )变动,则适宜配合的回归模型是( B )。
A .i i 21i u X Y ++=ββB .i i 21i u X Y ++=ββlnC .i i21i u X 1Y ++=ββ D .i i 21i u X Y ++=ln ln ββ3.在多元线性回归模型中对样本容量的基本要求是(k 为解释变量个数):( C )。
A. n ≥k+1 B .n<k+1C. n ≥30 或n ≥3(k+1)D. n ≥304、模型i i 21i u X Y ++=ln ln ββ中 ,2β的实际含义是( B )。
A. X 关于Y 的弹性B. Y 关于X 的弹性C. X 关于Y 的边际倾向D. Y 关于X 的边际倾向三、多项选择题1.下列哪些非线性模型可以通过变量替换转化为线性模型( ABC )A. i 2i 10i u X Y ++=ββB. i i10i u X 1Y ++=ββC. i i 10i u X Y ++=ln ln ββD. i i 210i u X Y ++=ββE. i i 10i u X Y ++=ββ四、简答题1.多元线性回归模型与一元线性回归模型有哪些区别?答:多元线性回归模型与一元线性回归模型的区别表现在如下几个方面:一是解释变量的个数不同;二是模型的经典假设不同,多元线性回归模型比一元线性回归模型多了个“解释变量之间不存在线性相关关系”的假定;三是多元线性回归模型的参数估计式的表达更为复杂。
第三章多元线性回归模型习题答案

&第三章 多元线性回归模型一、单项选择题1、C2、A3、B4、A5、C6、C7、A8、D9、B 10、D一、单项选择题1、在模型0112233t t t t t Y X X X ββββμ=++++的回归分析结果中,有462.58F =,0.000000F p =的值,则表明( C ) A 、解释变量2t X 对t Y 的影响不显著B 、解释变量1t X 对t Y 的影响显著】C 、模型所描述的变量之间的线性关系总体上显著D 、解释变量2t X 和1t X 对t Y 的影响显著2、设k 为回归模型中的实解释变量的个数,n 为样本容量。
则对回归模型进行总体显著性检验(F 检验)时构造的F 统计量为 ( A )A 、(1)ESS k F RSS n k =--B 、(1))ESS k F RSS n k -=- C 、ESS F RSS = D 、1RSS F TSS=- 3、已知二元线性回归模型估计的残差平方和为2800i e =∑,估计用样本容量为23n =,则随机误差项t μ的方差的OLS 估计值为( B )!A 、B 、 40C 、D 、4、在多元回归中,调整后的决定系数2R 与决定系数2R 的关系为 ( A )A 、22R R <B 、22R R >C 、22R R =D 、2R 与2R 的关系不能确定5、下面说法正确的有 ( C )A 、时间序列数据和横截面数据没有差异B 、对回归模型的总体显著性检验没有必要C 、总体回归方程与样本回归方程是有区别的:D 、决定系数2R 不可以用于衡量拟合优度6、根据调整的可决系数2R 与F 统计量的关系可知,当21R =时,有 ( C )A 、F=0B 、F=-1C 、F →+∞D 、F=-∞7、线性回归模型的参数估计量ˆβ是随机向量Y 的函数,即1ˆ()X X X Y β-''=。
ˆβ是 ( A )A 、随机向量B 、非随机向量C 、确定性向量D 、常量8、下面哪一表述是正确的 ( D )A 、线性回归模型01i i i Y X ββμ=++的零均值假设是指110ni i n μ==∑ ;B 、对模型01122i i i i Y X X βββμ=+++进行方程显著性检验(即F 检验),检验的零假设是0012:0H βββ===C 、相关系数较大意味着两个变量存在较强的因果关系D 、当随机误差项的方差估计量等于零时,说明被解释变量与解释变量之间为函数关系9、对于01122ˆˆˆˆi i i k ki iY X X X e ββββ=+++++…,如果原模型满足线性模型的基本假设则 在零假设0j β=下,统计量ˆˆ()j j s ββ(其中ˆ()js β是j β的标准误差)服从 ( B )A 、()t n k -B 、(1)t n k --C 、(1,)F k n k --D 、(,1)F k n k --10、下列说法中正确的是 ( D )。
应用回归分析,第3章课后习题参考答案

第3章 多元线性回归思考与练习参考答案3.2 讨论样本容量n 与自变量个数p 的关系,它们对模型的参数估计有何影响?答:在多元线性回归模型中,样本容量n 与自变量个数p 的关系是:n>>p 。
如果n<=p 对模型的参数估计会带来很严重的影响。
因为: 1. 在多元线性回归模型中,有p+1个待估参数β,所以样本容量的个数应该大于解释变量的个数,否则参数无法估计。
2. 解释变量X 是确定性变量,要求()1rank p n =+<X ,表明设计矩阵X 中的自变量列之间不相关,即矩阵X 是一个满秩矩阵。
若()1rank p <+X ,则解释变量之间线性相关,1()X X -'是奇异阵,则β的估计不稳定。
3.3证明随机误差项ε的方差σ2的无偏估计。
证明:22122222111112221111ˆ(),111()()(1)(1)()(1)1ˆ()()1n i i n n nnnii ii iiii i i i i i ni i SSE e e e n p n p n p E e D e h h n h n p E E e n p σσσσσσσ======='===------∴==-=-=-=--∴==--∑∑∑∑∑∑∑3.4 一个回归方程的复相关系数R=0.99,样本决定系数R 2=0.9801,我们能判断这个回归方程就很理想吗? 答:不能断定这个回归方程理想。
因为:1. 在样本容量较少,变量个数较大时,决定系数的值容易接近1,而此时可能F 检验或者关于回归系数的t 检验,所建立的回归方()1ˆ2--=p n SSE σ程都没能通过。
2. 样本决定系数和复相关系数接近于1只能说明Y 与自变量X1,X2,…,Xp 整体上的线性关系成立,而不能判断回归方程和每个自变量是显著的,还需进行F 检验和t 检验。
3. 在应用过程中发现,在样本容量一定的情况下,如果在模型中增加解释变量必定使得自由度减少,使得 R 2往往增大,因此增加解释变量(尤其是不显著的解释变量)个数引起的R 2的增大与拟合好坏无关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 多元线性回归模型
一、单项选择题 1、C
2、A
3、B
4、A
5、C
6、C
7、A
8、D
9、B 10、D
一、单项选择题
1、在模型0112233t t t t t Y X X X ββββμ=++++的回归分析结果中,有462.58F =,
0.000000
F p =的值,则表明
( C )
A 、解释变量2t X 对t Y 的影响不显著
B 、解释变量1t X 对t Y 的影响显著
C 、模型所描述的变量之间的线性关系总体上显著
D 、解释变量2t X 和1t X 对t Y 的影响显著
>
2、设k 为回归模型中的实解释变量的个数,n 为样本容量。
则对回归模型进行总体显著性
检
验
(
F
检验)时构造的
F
统计量为
( A ) A 、(1)ESS k F RSS n k =
-- B 、(1)
()
ESS k F RSS n k -=-
C 、ESS F RSS =
D 、1RSS
F TSS
=- 3、已知二元线性回归模型估计的残差平方和为
2
800i
e
=∑,估计用样本容量为23n =,
则随机误差项t μ的方差的OLS 估计值为 ( B )
A 、
B 、 40
C 、
D 、
4、在多元回归中,调整后的决定系数2
R 与决定系数2
R
的关系为
( A )
A 、22R R <
B 、22
R R >
C 、22R R =
D 、2R 与2
R 的关系不能确定
,
5
、
下
面
说
法
正
确
的
有
( C )
A 、时间序列数据和横截面数据没有差异
B 、对回归模型的总体显著性检验没有必要
C 、总体回归方程与样本回归方程是有区别的
D 、决定系数2
R 不可以用于衡量拟合优度
6、根据调整的可决系数2
R 与F 统计量的关系可知,当21R =时,有 ( C ) A 、F=0 B 、F=-1 C 、F →+∞ D 、F=-∞
7、线性回归模型的参数估计量ˆβ
是随机向量Y 的函数,即1ˆ()X X X Y β-''=。
ˆβ是 ( A )
A 、随机向量
B 、非随机向量
C 、确定性向量
D 、常量
/
8
、
下
面
哪
一
表
述
是
正
确
的
( D )
A 、线性回归模型01i i i Y X ββμ=++的零均值假设是指1
10n
i i n μ==∑
B 、对模型01122i i i i Y X X βββμ=+++进行方程显著性检验(即F 检验),检验的零假 设是0012:0H βββ===
C 、相关系数较大意味着两个变量存在较强的因果关系
D 、当随机误差项的方差估计量等于零时,说明被解释变量与解释变量之间为函数关系
9、对于01122ˆˆˆˆi i i k ki i
Y X X X e ββββ=+++++…,如果原模型满足线性模型的基本假设则 在零假设0j β=下,统计量ˆˆ()j j s ββ(其中ˆ()j
s β是j β的标准误差)服从 ( B )
A 、()t n k -
B 、(1)t n k --
C 、(1,)F k n k --
D 、(,1)F k n k -- 10
、
下
列
说
法
中
正
确
的
是
( D )
…
A 、如果模型的R 2很高,我们可以认为此模型的质量较好
B 、如果模型的R 2很低,我们可以认为此模型的质量较差
C 、如果某一参数不能通过显著性检验,我们应该剔除该解释变量
D 、如果某一参数不能通过显著性检验,我们不应该随便剔除该解释变量
二、判断题
四、判断题、 1、√
2、√
3、×
4、×
5、√
1、满足基本假设条件下,样本容量略大于解释变量个数时,可以得到各参数的唯一确定的 估计值,但参数估计结果的可靠性得不到保证 ( √ )
{
2、在多元线性回归中,t 检验和F 检验缺一不可。
( √ )
3、回归方程总体线性显著性检验的原假设是模型中所有的回归参数同时为零 ( × )
4、多元线性回归中,可决系数2R 是评价模型拟合优度好坏的最佳标准。
( × )
5、多元线性回归模型中的偏回归系数,表示在其他解释变量保持不变的情况下,对应解释
变量每变化一个单位时,被解释变量的变动。
( √ )
三、计算分析题
1、考虑以下方程(括号内为标准差):
1ˆ8.5620.3640.004 2.560t t t t
W P P U -=++- () 19=n 873.02=R
:
其中:t W ——t 年的每位雇员的工资
t P ——t 年的物价水平
t U ——t 年的失业率
要求:(1)进行变量显著性检验;
(2)对本模型的正确性进行讨论,1-t P 是否应从方程中删除为什么
解:
(1) 在给定5%显著性水平的情况下,进行t 检验。
t P 参数的t 值:
0.364
4.550.080= 1t P -参数的t 值:0.004
0.0560.072=
t U 参数的t 值: 2.560
3.890.658-=-
~
在5%显著性水平下,自由度为19-3-1=15的t 分布的临界值为0.025(15) 2.131t =,
t P 、t U 的参数显著不为0,但不能拒绝1t P -的参数为0的假设。
(2)回归式表明影响工资水平的主要原因是当期的物价水平、失业率,前期的物价水平对他的影响不是很大,当期的物价水平与工资水平呈正向变动、失业率与工资水平呈相反变动,符合经济理论,模型正确。
可以将1t P -从模型删除.
2、以企业研发支出(R&D )占销售额的比重(单位:%)为被解释变量(Y ),以企业销售额
(X 1)与利润占销售额的比重(X 2)为解释变量,一个容量为32的样本企业的估计结果如下:
1220.4720.32ln 0.05(1.37)
(0.22)
(0.046)
0.099
i i i
Y X X R =++=
其中,括号中的数据为参数估计值的标准差。
(1)解释ln(X 1)的参数。
如果X 1增长10%,估计Y 会变化多少个百分点这在经济上是一
个很大的影响吗
(2)检验R&D 强度不随销售额的变化而变化的假设。
分别在5%和10%的显著性水平上
进行这个检验。
(3)利润占销售额的比重X 2对R&D 强度Y 是否在统计上有显著的影响 解:
{
(1)ln(X 1)的系数表明在其他条件不变时,ln(X 1)变化1个单位,Y 变化的单位数,即Y=ln(X 1)(X 1/ X 1)。
由此,如果X 1增加10%,Y 会增加个百分点。
这在经济上不是一个较大的影响。
(2)针对备择假设H 1:10β≠,检验原假设H 0:01=β。
易知相应的t 统计量的值为t==。
在5%的显著性水平下,自由度为32-3=29的t 分布的临界值为,计算出的t 值小于该临界值,所以不拒绝原假设。
这意味着销售额对R&D 强度的影响不显著。
在10%的显著性水平下,t 分布的临界值为,计算的t 值小于该值,不拒绝原假设,意味着销售额对R&D 强度的影响不显著。
(3)对X 2,参数估计值的t 统计值为=,它比10%显著性水平下的临界值还小,因此可以认为它对Y 在统计上没有显著的影响。
3、下表给出一二元模型的回归结果。
方差来源 平方和(SS )
自由度(.)
来自回归(ESS) ¥
— 来自残差(RSS) _— — 总离差(TSS) 66042
14
求:(1)样本容量是多少RSS 是多少ESS 和RSS 的自由度各是多少
(2)2
R 和2
R
"
(3)检验假设:解释变量总体上对Y 无影响。
你用什么假设检验为什么 (4)根据以上信息,你能确定解释变量各自对Y 的贡献吗
解:
(1)样本容量为
n=14.+1=15
RSS=TSS-ESS=66042-65965=77
ESS的自由度为: .= 2
RSS的自由度为: .=n-2-1=12
(2)R2=ESS/TSS=65965/66042=
2
R=1-(1- R2)(n-1)/(n-k-1)=*14/12=
(3)应该采用方程显著性检验,即F检验,理由是只有这样才能判断X1、X2一起是否对Y有影响。
(4)不能。
因为通过上述信息,仅可初步判断X1、X2联合起来对Y有线性影响,两者的变化解释了Y变化的%。
但由于无法知道X1,X2前参数的具体估计值,因此还无法判断它们各自对Y的影响有多大。