【数学与应用数学】论文——公交车合理调度的优化模型
数学建模论文校园公交车调度问题--大学毕业设计论文

西南交通大学2012年新秀杯数学建模竞赛题目:A题组别:大二组西南交通大学教务处西南交通大学实验室及设备管理处西南交通大学数学建模创新实践基地校园通行车路线的设计摘要本文主要研究的是校园交通车的站点设置、在固定停车和招手即停两种模式结合下的运载能力、运行路线和时间安排以及相应行驶方案的规划问题。
问题一中,我们对校园通行车现有行车路线网络和常停站点进行了调查和分析。
首先,在数据处理阶段,将站点实体间的线路选择抽象为图论最短路模型,用Matlab软件画出三条主要的行车线路,然后利用GIS空间分析方法解决单个交通线路上站点规划问题。
该方法依据乘客出行时间最短确定单个线路上的站点个数,结合GIS缓冲区分析和叠合分析,在路线上做站点设置的适宜性讨论,提出基于最优化理论和GIS空间分析技术的站点规划方法,确定站点的位置,从而提供一种可行的行驶方案。
问题二中,考虑固定停车和招手即停相结合的方案,我们首先将最佳行驶路线定义为车辆运行时间最短的路线,将图论中经典的Dijkstra算法(单源最短路径)进行改进,结合哈密尔顿图,以结点之间的时间作为权数,利用C++编程得到最佳推销员回路,也就是通行车行驶的最佳路径。
考虑到招手即停模式具有极大的随机性,为了便于调度,我们首先对乘车人次密度分布进行了调查和分析,并通过随机模拟出概率分布值较大的区域,将其抽象为一假想固定停车点,这样就将模型简化为固定停车点最佳行驶路径的问题。
根据已得到的乘车时段分布规律和学校实际的作息时间表,按照模糊聚类分析法将一工作日数单位时间段划分为更概括的高峰期、低潮期和一般期,并应用Matlab中的fgoalattain进行非线性规划求出实际发车数,以及应用时间步长法估计发车间隔,从而给出两种模式结合下通行车每周运行的车辆数、路线和时刻表。
问题三中,我们首先对校区师生乘车需求人数进行了描述性统计,从乘车人数的均值、方差、峰度以及正态性四个角度对样本进行检测,找到相关的分布规律与结论,即每日在各时段中的乘车人数分布相似。
公交调度中的数学模型

公交调度 中的数 学模型
武 斌 ( 中国石油大学胜利学院 山东 东营 270) 5 0 0 摘要:建立合理有效 的数 学模 型来模 拟公 交运 营是优 化公交调度 、改善公 交服 务的关键 ,在分析现有模型 的基础 上,建立 以乘客
费用 最 小 ,公 交企 业 运 营 利 润 最 大化 的 多 目标 规 划模 型 。
l. 为第f h} —— 个小时时 间内。以^ 车时间 为发 间隔的 到达
第七站前的公交车已有的乘客数;
— —
公交车的最大载客量;
—
—
第1 个小时时间内在 车站下车的乘客总人数; 第f 个小时时问内到达 车站的乘客总人数; 根据客流量划分的时间段:
—
—
—
—
将 教育 理论知 识具体 应用到 教学 实践 中 去, 新教师在 岗前 培训 中亲 的总 成绩 记入 人事 档案 。 使 身体验 教 学的 各个环 节 ,掌握 教 学 的方 法和 艺术 ,尽快 适应 教 学的 青 年教师从毕业 到走上工 作岗位真正适应 教师角色需 要一个长期 过 程 。 的过程 ,把培训工作作为教师成长和教师队伍建设的重要环节,从 5 .建立有效考核体系 青年教 师 的需要 入手 ,促进 高 校教 师 岗前培 训 向专 业化 、科 学化 发 严格考核是检查督促岗前培训工作的有效手段, 但在授课后即以 展 ,以切 实提 高 青年 教 师 岗前 培 训 的效果 。 闭卷形 式考核却 不利 于新教 师对 所学 理论 的融会 贯通 。 青年 教师 岗前 培训体 系的建立 应本着 科学 性和 可操 作性 的原则 。 闭卷 考试 可用来 考 参考 文献: 察高 等教 育学 、高等 心理 学等 课 堂讲 授 内容 的记 忆情 况 ,督促 受训 【】 海高校教师岗前培训述评 【】 山东省青年管理干部学 1 J. 教师 强化 记忆 , 以指 导 实际教 学 工 作 。同时 ,青年 教 师听 取专题 讲 院学报 ,2 0 , 1 O 3 () 座 、典 型 报 告 、参 加 教 学观 摩 、 交流 讨 论 、参 观访 问和 提 交 论 文 [】赵志鲲 ,陶 勤. 高校青年教师岗前培训制度研究 【】 2 J. 的情况 也都要 以学分 形式记 入 岗前培 训档案 。 在使 用期结束 后 、 并 转 黑龙 江 高教研 究, 2 0 , 1) 7 (0 口 0 正之前 由专家 小组对 教学实 践能 力进 行考核 , 计总分 作为 岗前培 训 合
公交车调度数学建模论文 精品

公交车调度摘 要本文通过对给定数据进行统计分析,将数据按18个时段、两个行驶方向进行处理,计算出各个时段各个站点以及两个方向的流通量,从而将远问题转化为对流通量的处理。
首先,利用各时段小时断面最高流通量计算出各时段各方向的最小发车次数,进行适当的调整,确定了各时段两个方向的发车次数。
假定采用均匀发车的方式。
继而求出各时段两个方向发车间隔,经部分调整后,列出0A 站和13A 站的发车时刻表,并给出了时刻表的合理性证明,从而制定调度方案。
根据调度方案采用逐步累加各时段新调用的车辆数算法,求出公交车的发配车辆数为57辆。
其次,建立乘客平均待车时间和公交车辆实际利用率与期望利用率的差值这两个量化指标,并用这两个指标来评价调度方案以如何的程度照顾到乘客和公交公司双方利益。
前者为4.2分钟,后者为13.88%。
最后,我们以上述两个指标为优化目标,以乘客的等车时间数学期望值和公交车辆的满载率的数学期望为约束指标,建立了一个双目标的优化模型。
并且给出了具体的求解方法,特别指出的是,给出了计算机模拟的方法求解的进程控制图。
通过了对模型的分析,提出了采集数据的 采集数据方法的建议。
注释:第i 站乘客流通量:∑=ik 1(第k 站的上车的人数与第k 站的下车人数的差值);总的乘客等车时间:∑=mi 1∑=nj 1(第i 时段第j 站等车乘客数)⨯(第I 时段第j 站等待时间);乘客平均等车时间:总的乘客等车时间与总乘客数的比值;实际利用率:总实际乘客流通量与公司车辆总最大客运量的比值; 期望利用率:总期望乘客流通量与公司车辆总最大客运量的比值一、问题的提出一条公交线路上行方向共14站,下行方向功13站,给定典型的一个工作日两个运行方向各站上下车的乘客数量统计。
该线路用同一型号的大客车,每辆标准载客100人,据统计客车在该线路上运行的平均速度为20公里/小时。
运营调度要求,乘客候车时间一般不要超过10分钟,早高峰是一般不要超过5分钟,车辆满载率不应超过120%,一般也不要低与100%,一般也不要地狱50%。
公车调度问题的数学模型

公车调度问题的数学模型班级:信息1102学生:汤韩瑜学号:07111082研究概述•1研究背景•2研究意义•3论文结构•4研究内容•公交车调度问题的背景是某大城市公交部门提出的一个实际科研课题。
该课题要求对一条确定的公交路线,解决三个方面的问题:•第一, 根据历史积累和必要的补充调查数据,提出沿路各站来站与离站的乘客分布规律;•第二, 研制一个模拟该线路公交运行过程的数学模型;•第三, 在前两条的基础上为该线路提出一个配备车辆和司( 机) 售( 票员) 人员数目的方案,以及一个在通常情况下车辆的运行时间表。
•从历史积累和必要的补充调查数据中,提出公交车沿路各站来站与离站的乘客分布规律将实际问题转化为数学模型进行具体化的解答有数学模型解答出的答案制定司售人员的工作安排的正常情况下的车辆时间安排3论文结构•第一部分:论文题目•第二部分:摘要•第三部分:关键词•第三部分:正文•第四部分:结论•第五部分:致谢•第六部分:参考文献4研究内容•首先,选择了该市一条比较典型的公交线路, 沿线上行方向共14 站, 下行方向共13站,根据多年来沿线各站乘客来、离站的人数调查数据,给出了该线一个工作日两个运行方向各站上下车的乘客数量按时间的分布。
•其次,根据上述数据,在尽可能适当考虑公交社会效益和公交公司利益的目标下,为该线路设计一个便于操作的全天( 工作日) 的公交车调度方案,即两个起点站的发车时刻表,并指出实现这个方案至少需要配备多少辆车; 给出这种方案照顾乘客和公交公司双方的利益程度的数量指标,从而将这个调度问题抽象成一个明确、完整的数学模型,并指出求解模型的方法。
研究方法•建立数学模型•具体步骤:•1.建立数学模型•(1)运行模型及其求解•(2)配车模型及其求解•2.得出结论主要结论•根据所给数据中始发站的上车人数, 确定早、晚高峰时段为:早高峰6 ∶40 ~9 ∶40 ;晚高峰15 ∶50 ~18 ∶50 。
公交车调度问题数学建模论文

公交车调度问题数学建模论文2021年数学建模论文——对公交车调度问题的研究全文:本文根据Rewa的客流量及运营情况排泄公交车调度时刻表,以及充分反映客运公司和乘客的利益存有多个指标,创建了乘客的利益及公司利益两个目标函数的多目标规划数学模型。
基于多目标规划分析法,展开数值排序,从而获得原问题的一个明晰、完备的数学模型,并在模型拓展中运用房建的计算机模拟系统对税金的结果和我们对于调度方案的见解展开分析和评价。
首先通过数据的分析,并考虑到方案的可操作性,将一天划为;引入乘客的利益、公司利益作为两个目标函数,建立了两目标优化模型。
通过运客能力与运输需求(实际客运量)达到最优匹配、满载率高低体现乘客利益;通过总车辆数较少、发车次数最少表示公司利益建立两个目标函数。
应用matlab中的fgoalattain进行多目标规划求出发车数,以及时间步长法估计发车间隔和车辆数。
关键字:公交车调度;多目标规划;数据分析;数学模型;时间步长法,matlab一问题的重述:1、路公交线路上下行方向各24站,总共有l辆汽车在运行,开始时段线路两端的停车场中各停放汽车m辆,每两车可乘坐s人。
这些汽车将按照发车时刻表及到达次序次发车,循环往返地运行来完成运送乘客的任务。
建立数学模型,根据乘客人数大小,配多少辆车、多长时间发一班车使得公交公司的盈利最高,乘客的抱怨程度最小。
假设公交车在运行过程中是匀速的速度为v。
1路公交车站点客流量见到下表中1已知数据及问题的提出我们必须考量的就是莆田市的一路公交线路上的车辆调度问题。
现已指该线路下行的车站总数n1(=24),上行的车站总数n2(=24),并且得出每一个站点上下车的人数。
公交线路总路程l(=l);公交高速行驶的速度v=20km/h;运营调度建议,车辆载满率为不该少于r=120%,通常也不要底于r=50%。
现要我们根据以上资料和要求,为该线路设计一个公交公司发车时间的调度方案、一共须要多少辆车、公交车道路高速行驶过程中的速度以及公交车车型的挑选的方案。
公交车调度论文分解

关于公交车调度问题摘要随着国民生活水平的提高,公共交通问题也日益重要起来,而公交车调度是制约公共交通的重要因素。
根据题中所给的数据,建立数学模型对公交车调度问题进行分析。
对于问题一:首先,根据城市中某条公交线路各个时段的客流信息,得出了公交车公司的最大客容量,发车车次,发车时间间隔。
运用MATLAB编程,计算出各个时段的最大客容量,在满足公交满载率的情况下得出日最少发车车次为460次,其中上行线230车次,下行线230车次,用LINGO计算出发车时间间隔,并给出公交车发车时刻调整表。
基于公交车从起始站运行到终点站的用时为44分钟,且时间间隔应为整分间隔,可算出早高峰所需最少车辆为58辆。
其次,一个合理的公交车调度方案应该考虑公交公司的最大利益和乘客的满意度两个方面。
故建立了满意度分析模型,在此模型中,运用了层次分析法。
对满意度进行了分析计算。
结合整数规划模型中的结果可求得满意的分析模型中公交公司与乘客双方之间满意度,并且使二者和达到最大,同时双方满意度之差最小,得到上下行的最优满意度(0.8688,0.8688)。
最后,综合了公交车公司的最大客容量、发车车次、公交公司满意度等方面因素,且以公交公司所发的车次最小为目标,乘客的等待时间和公交载客率为约束条件提出了整数规划模型。
此模型是把公交车调度问题抽象成数学模型来表达,从考虑发车车次最小出发,满足各项约束条件,寻求最优解。
运用LINGO编程,可计算出公交公司日发车车次最小值为461次。
因此该解法是在满足乘客的情况下求的最优解。
乘客的等待时间的满意度为100%,但是从舒适度考虑,上行和下行分别有11和9人不满意。
这个结果为满意度模型和整数规划模型的中间情况,故此模型的建立是合理的。
关键词:整数规划满意度MATLAB LINGO一问题的重述公共交通是城市交通的重要组成部分,作好公交车的调度对于完善城市交通环境、改进市民出行状况、提高公交公司的经济和社会效益,都具有重要意义。
一类公交车调度问题的数学模型及其解法

一类公交车调度问题的数学模型及其解法1. 背景介绍公交车作为城市交通的重要组成部分,其运营效率和服务质量直接影响市民出行体验。
而公交车调度问题则是保障公交线路运营效率和准时性的重要环节之一。
在日常运营中,由于路况、乘客量、车辆故障等影响因素,公交车的调度往往面临诸多挑战。
如何利用数学模型解决公交车调度问题成为了一个备受关注的课题。
2. 公交车调度问题的数学建模公交车调度问题的数学建模主要涉及到车辆的合理分配以及路线的优化规划。
在数学建模时,需要考虑的主要因素包括但不限于乘客量、车辆容量、交通状况、站点分布等。
而个体车辆的运行轨迹则需要综合考虑上述因素以及最优化算法对其进行分析。
3. 数学模型的构建针对上述因素,可以将公交车调度问题构建成一个复杂的优化模型。
该模型主要包括以下几个方面的内容:(1)乘客需求预测:通过历史数据和大数据分析,预测不同时段和不同线路的乘客需求,为车辆调度提供依据。
(2)车辆分配优化:根据乘客需求预测和实际路况,采用最优化算法确定每辆车的运行路线和发车间隔。
(3)站点排队优化:结合乘客上下车规律和站点的停靠条件,优化车辆在不同站点的排队顺序,以减少候车时间和提升服务效率。
(4)交通状况仿真:通过交通仿真模型,考虑城市交通状况对公交车运行的影响,提前对可能出现的拥堵情况进行预判,以调整车辆的发车时间和路线。
4. 数学模型的求解在构建好数学模型后,需要采用合适的方法对其进行求解。
常见的求解方法主要包括但不限于线性规划、遗传算法、模拟退火算法等。
在实际求解过程中,需要充分考虑不同方法的适用场景和对模型的拟合程度,以选择最合适的求解方法。
5. 案例分析以某市的公交系统为例,采用上述数学模型对其进行调度优化。
通过收集该市的实际路况数据、站点分布情况以及历史乘客需求数据,建立完整的数学模型。
然后运用遗传算法对其进行求解,得到了最优的车辆运行路线和发车间隔。
在模型求解后,将其应用于实际公交车调度中,并进行了一段时间的实际运行试验。
6公交车调度的数学模型讲解

公交车调度的数学模型摘要随着人口的增加以及现代化建设的加快,城市人口迅猛增长,城市公共交通面临着巨大的挑战。
为缓解城市交通的拥堵,除了提倡错峰出行、减少私家车出行之外,对公共交通设施进行合理的调度也特别重要。
本文正是通过已知的某条公交线路的客流调查和运营资料,为该线路设计一个便于操作的全天(工作日)的公交车调度方案,以解决该条公交线路上公交车的调度问题。
公交车的运营可以产生经济效益和社会效益,两种效益的关系是对立统一的,当乘客人数一定的情况下,产生的经济效益越高,即同一时段公交车的数量越少、发车次数越少,社会效益就越低;同理,产生的社会效益越高,经济效益就越低。
故在制定公交车调度方案时,我们要综合考虑经济效益与社会效益。
公交车产生的经济效益由公交车的满载率、运营所需的公交车总数、运营时间内总发车次数所决定,而社会效益则由乘客的等待抱怨度以及拥挤抱怨度所决定。
通过分析,我们发现要使公交车的运营产生最大的效益,既要使公交车的满载率最大、所需公交车总数和发车次数越小、乘客等待抱怨度和拥挤抱怨度最低,同时,我们发现在某段时间内乘客人数一定的条件下,这些决定因素本质上都是由某段时间内的发车次数所决定的。
因此,我们可通过建立多目标的优化模型、采用遗传算法、用Lingo软件编程进行求解。
最后,我们得出要使乘客与公交公司的利益最大化,全天需要公交52辆,共需发车445次,并绘制出上、下行起始点发车时刻表。
关键词:公交车调度多目标优化模型遗传算法 Lingo编程1、问题重述众所周知,公共交通是城市交通的重要组成部分,一个好的公交车调度方案对于完善城市交通环境、改进市民出行状况、提高公交公司的经济和社会效益,都具有重要意义。
本文需要研究的是某一大城市一条公交线路上公交车的调度问题,附录一给出了一个工作日两个运行方向各站上下车的乘客数量统计表。
该条公交线路上行方向共14站,下行方向共13站。
公交公司配给该线路同一型号的大客车,每辆标准载客100人,据统计客车在该线路上运行的平均速度为20公里/小时。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
公交车合理调度的优化模型摘要:公共交通是城市交通的中央组成部分,公交车的调度具有重要的现实意义.本模型利用统计资料的特点,运行统计,最优化等数学方法以及Maple 软件,考虑到公交公司和乘客双方的利益相矛盾,给出了一个最优的调度时刻表,计算出了所需车辆至少要53辆.进而劳力到调度方案的可行性,通过计算机模拟搜索,给出了一个便于操作的优化方案,计算出所需车辆至少为44辆.校验该方案,公交公司的利益很大程度满足,原来每天每车次的平均载客量只降低了39人/车次,而乘客满意度也不会有很大降低.关键词:公交车调度;载客率;发车时刻表;最优模型;优化方案一、问题的提出公共交通是城市交通的重要组成部分,作为公交车的调度具有重要的现实意义.某城市的公交公司统计了上行下行两个方向的某条公交线路上的客观情况.给出了一个典型工作日各时组两个运行方向每站上下车人数.该条公交线路上行方向共14站,总长14.58公里;下行方向共13站,总长14.61公里.公交公司配给该线路标准载客100人的同一型号的大客车,客车在该线路上运行的平均速度为20公里/小时.现在要根据这些资料,为该线路设计一个便于操作的全天(工作日)的公交调度方案,包括:1.两个起点站的发车时间;2.一共需要多少辆车;3.该方案以这样的程度照顾到了乘客和公交公司双方的利益.其中,营运调度要求: (1).每一辆客车的满载率50%~120%.(2).乘客候车时间一般不超过10分钟,早高峰期不超过5分钟. 二、模型的假设1、交通顺畅,公交车运行秩序良好,路上无阻塞情况,汽车也不会出现突然坏掉或燃料不足等情况.2、每辆客车始终以20公里/小时的平均速度行驶,到各站的停留载客时间也涵盖在这个车速里,即不考虑每个乘客的上下时间.3、汽车一到总站,乘客全部下车,从而保证了总站发车时空车.4、不论乘车距离长短,上车票价都相同.(如:1元/人)5、公交公司的利益只考虑汽车在路面上行驶的车辆次数与载客率.6、全天(工作日)的公交车调度从5:00开始到23:00结束,分为18个单位时组,每个时组为1小时,表示为i T ()18,,2,1 =i7、乘客到各站点的人数,在各时组里均匀分布. 8、乘客利益只考虑等车时间的长短.三、符号的约定1i N 、2i N 分别表示上下行线第i T 时组内需要开出的乘客总次数,i=18,,2,1 1i n 、2i n 分别表示在上下行线第i T 时组内正在路上行驶的车辆数,i=18,,2,1 上T 、下T 分别表示在上下行线客车从始点到终点所需行驶时间.i d 、 'i d 分别表示在上下行线个站点间距离()1413,,2,1或 =iv 表示汽车行驶的平均速度v=20公里/小时.i t ∆ 表示从第i+1个车次的发车间隔时间() ,1,0=ii t 表示从起点到i A 站所需时间()1413,,2,1或 =iM 表示每次车的平均载客量.四、问题的分析本案例给出了上下行两方向个时组i T 上行下效每站点上下车总人数的统计数,由这些资料来确定一个便于操作的全天(工作日)的公交车合理调度的方案,它要求某程度照顾到乘客与公交公司双方利益衡量.乘客利益是与等待时间有关,等待时间越少,满意度越高;汽车公司利益与满载率和两站发出次数有关.显然减少乘客等待是与增加公司利益是两个相互矛盾的问题.我们可求出一个在每一组内各相邻站点见的公交车上乘坐的总人数,以满载率为约束条件,求得每一个时组i T 内上下行线两方向所需车次数,在此基础上寻找最高峰时段所需的最少车辆数.考虑到上下全线车行驶时间分别为分和分,都不足一个小时,在余下近16分钟内车辆可循环利用,同时可以补充车辆,从而得出所需最少车辆数. 在此基础上,我们用计算机搜索法搜索出一个同时照顾汽车公司与乘客利益的最优模型,从现实考虑,却不可能合理调度,因此再在此基础上模拟搜索,得出一个合理的调车时刻表.五、模型的过程与求解在上下行线的每一个站点,乘客都是随机的到达,按到达时间先后次序排队等车,然后乘客到各自的目的地.影响公交车调度的因素主要有三方面:公交车的数量,乘车的人数以及发车时间间隔.在调度中以汽车的活动为主,同时照顾到乘客与公交公司的双方利益.乘客的利益主要与等待时间有关,等待时间越少,满意度越高,公交公司利益与车辆的满载率以及两个总站车数有关.从表中可求1S =公里, 2S =公里, 3S =分钟, 4S =分钟.(1) 根据资料显示的每一个时间段内上车的人数,以及运营调度要求,求所需车辆数.通过表中资料分析i T (i=18,,2,1 )时组发出的车次不可能进入时组2+i T 来载客,但可能进入1+i T 时组.首先考虑沿下行线:在某一时组i T (i=18,,2,1 )内,需要i n 车次来完全载客运输任务.在i T 时组前j 个站点上车总人数:∑-=⎪⎭⎫⎝⎛+++=1221110160j k j i j k j x t x X X X 13,,3,2 =j)60(12211101∑-=+++=j k j ij k j y t y Y Y Y j=2,3,…13 分别在2T --18T 时组内,前j 个站点上车总人数:⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛-++=+-=∑j i jj ij j m im i ij x t t x X X X ,112060601⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛-++=+-=∑j i jj ij j m im i ij y t t y Y Y Y ,112060601, ,3,2=i …,18, j=0,2,3,…,13这样,在i T (=i 1,2,…,18)时组,装载前j 个站点上车的总人数所需车次应满足:120)(max 50≤-≤iij ij jn Y X13,2,018,2,1 ==j i应用Maple 软件,可求出下行线各时组内需发出的车次数.同样方法,可处理上行线, 各时表1根据资料显示的资料和调度要求,以及我们所得表1可看出,早高峰期为7:00~8:00,这段时间内所需的车次数上下行线各需41次和24次.每一个时期内,到各站点来候车的人数在该时组内均匀分布.由表1选择最高时期3T ,在3T 时组内,从上行线至少需要41辆车次,下行线至少需要24辆车次,然后考虑该时组内车辆的具体运作情况,我们假设N i1>n i2时,上行线路上正在路上所需的车辆数分别为6060222111T N n T N n i i i i ⨯=⨯=易知,21i i n n >.所以下行车辆数可由上行车辆来补充,而下行车辆数有(21i i N N -)由下行线车和公司另外补充:下行车可提供:22i i n N - (辆)公司另外补充: )()(2211i i i i n N n N k ---= (辆) 共需车辆=行线路行走车辆+下行路上行走车辆+补充 即:212212i i i i i N N n k n n -+⨯=++ ,具体分析见附录.根据上述方法.可以求得 7:00 — — 8:00 至少需要53辆车,也是公交公司至少需要的车辆数.(2)求发车时刻表设第个时组内发车间隔相等,要得到时刻表,关键在于要得出在第1T 时组首发车的发车时刻.在1T 时组,我们主要照顾公交公司的利益.设在5点t 分时刻(可以大于零或小于零),我们有下面的方程(上行线)()()()()120606060606012121211111122211100=+⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛-+++⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-t t y x t t y x t t y x t t y x t y x解得03856.7=t (分钟).所以在1T 内第一辆发车时间在5:07时刻.将在1T 时组内上行线的首发车到终点站0A 的时刻作为下行线的首发车时间.在1T 时组内,上下行线的首发车时间确定,主要是考虑到公交公司的利益,这个时间时组内乘车人数极少.另外,公交公司首发车时刻是稳定的,乘客可按规律(时间)来等车.因为我们总是假定在每个时组内发车时间间隔相等,则在确定了首发车以后容易确定该时组各辆车的发车时刻,在1T 时组内最后一趟车发车时间在5:58时刻,2T 时组内发车时间间隔是4.2分钟,这两个时间相加取整,就得到2T 时组内首发车的时间.将上述方法依次做下去,首先就可以得到上行线时刻表.同样考虑到公司利益和乘客对发车时间的理解,上行线的首发车到0A 站后(即5:51时)0A 站发出下行线的第一趟车,然后再利用上述同样方法,可得到下行线时刻表.从而得到时刻表(表2):分析上表可知,在不同时组内的发车间隔不相等,并且不是整数分钟数.至少我们的结果是最优的,但在现实操作中不方便,因此在表2的基础上,用计算机模拟搜索得出一个可行性强的发车时刻表(表3):(3)、下面讨论表3所反映的公交公司和乘客双方的利益公司利益用每次车的平均载客量M 来反映.(I )1M =一天内上车人数的总和(包括上行下行线)/一天内总的发车次数(包括上行下行线).由表2的调度方案通过简单计算,M =(人/车次).这最大限度照顾了公司的利益. 关于乘客的抱怨,主要发生在5:00--6:00和22:00--23:00两个时组内.而在其它时组内,由表2可知不会产生.(II )通过表3中的调度方案,可计算出2M =(人/车次).(人/车次),也就是说每次车的平均载客量全天只降低了39(人/车次),但满意度不会有很大降低.方案二已对方案一进行了调整,使得公交公司的利益仍然得到很大程度满足.另外,方案二的顾客抱怨还会在高峰时期发生,但从现实中来考虑,方案二至少需44辆车,公交公司的利益也算挺高,说明方案二是便于操作、且可行的.六、模型的评价和改进:1、本模型分别从理论和实际操作两个角度,利用计算机模拟搜索,得到公交车调度的最优时刻表和便于操作的时刻表.2、在安排理想时刻表(理论上的最优时刻表)的首发车时间上,我们较多地考虑到了汽车公司的利益,并末很好地兼顾到顾客方面的利益.而在通常情况下,该求解方案是合理的.因为考虑到公司的信誉以及行车的规律,乘坐首班车的乘客不会太早到达车站,从而其等待时间不会太长,那么他们的抱怨程度将降低.3、 第二个时刻表是在理论的基础上,结合实际情况而提出来的,具有易操作性的特点.4、由于乘客与公交公司双方的利益是相互矛盾,所以求出的解并不是唯一的,而只能是一个优化解.参考文献:[1] 周义仓 赫孝良 数学建模实验 西安交通大学出版社 [2] 魏宗舒 概率论与数理统计教程 高等教育出版社 [3] 李世李 杜慧琴 Maple 计算机代数系统应用及程序设计 附录1:求解最大车辆数的方法:假设每一时间段各站点所增加人数是均匀分布的,在第i 时间段内,上、下车行线路需要开出的车辆班数总数分别为1i N ,2i N .需要多少辆公交车,就可以保证高峰期正常运转,不会出现一边车站有车滞留而另一边又不够用的情况,对此,我们用下面方法解决.考虑出现在全日最高峰时,两边车辆都已出发,在分钟后,两边首发车辆已达对方总站,均可补充给对方.由于西总站发车时间间隔不同,会出现一边补充不上,而另一边会出现滞留情况.当补充不上时,就要增加车辆来补充上去.。