液压缸选型
(完整版)液压缸选型参考

【液压缸选定程序】程序1:初选缸径/杆径(以单活塞杆双作用液压缸为例)※ 条件一已知设备或装置液压系统控制回路供给液压缸的油压P、流量Q及其工况需要液压缸对负载输出力的作用方式(推、拉、既推又拉)和相应力(推力F1、拉力F2、推力F1和拉力F2)的大小(应考虑负载可能存在的额外阻力)。
针对负载输出力的三种不同作用方式,其缸径/杆径的初选方法如下:(1)输出力的作用方式为推力F1的工况:初定缸径D:由条件给定的系统油压P(注意系统的流道压力损失),满足推力F1的要求对缸径D进行理论计算,参选标准缸径系列圆整后初定缸径D;初定杆径d:由条件给定的输出力的作用方式为推力F1的工况,选择原则要求杆径在速比1.46~2(速比:液压缸活塞腔有效作用面积与活塞杆腔有效作用面积之比)之间,具体需结合液压缸回油背压、活塞杆的受压稳定性等因素,参照相应的液压缸系列速比标准进行杆径d的选择。
(2)输出力的作用方式为拉力F2的工况:假定缸径D,由条件给定的系统油压P(注意系统的沿程压力损失),满足拉力F2的要求对杆径d进行理论计算,参选标准杆径系列后初定杆径d,再对初定杆径d进行相关强度校验后确定。
(3)输出力的作用方式为推力F1和拉力F2的工况:参照以上(1)、(2)两种方式对缸径D和杆径d进行比较计算,并参照液压缸缸径、杆径标准系列进行选择。
※ 条件二已知设备或装置需要液压缸对负载输出力的作用方式(推、拉、既推又拉)和相应力(推力F1、拉力F2、推力F1和拉力F2)大小(应考虑负载可能存在的额外阻力)。
但其设备或装置液压系统控制回路供给液压缸的油压P、流量Q等参数未知,针对负载输出力的三种不同作用方式,其缸径/杆径的初选方法如下:(1)根据本设备或装置的行业规范或特点,确定液压系统的额定压力P;专用设备或装置液压系统的额定压力由具体工况定,一般建议在中低压或中高压中进行选择。
(2)根据本设备或装置的作业特点,明确液压缸的工作速度要求。
液压油缸选型手册

液压油缸选型手册(原创实用版)目录一、液压油缸选型的重要性二、液压油缸的分类三、液压油缸选型的步骤和要点四、液压油缸选型的注意事项五、液压油缸选型手册的作用和意义正文液压油缸选型的重要性液压油缸是液压系统中的重要执行元件,它的选型直接影响到整个液压系统的工作效果和稳定性。
正确选择液压油缸,不仅能提高系统的工作效率,降低能耗,还能延长元件的使用寿命,减少维修费用。
因此,液压油缸选型对于液压系统的设计和使用具有重要意义。
液压油缸的分类液压油缸根据其结构和功能可分为以下几类:单杆液压缸、双杆液压缸、多级液压缸、组合液压缸等。
每种液压油缸都有其独特的结构和工作原理,适用于不同的工作环境和工况。
液压油缸选型的步骤和要点1.确定液压油缸的工作压力:根据液压系统的工作压力,选取液压油缸的工作压力,一般选取值为系统工作压力的 1.1~1.5 倍。
2.确定液压油缸的行程:根据工作部件的行程要求,选取液压油缸的行程。
3.确定液压油缸的安装方式:根据工作环境和安装空间,选取合适的液压油缸安装方式。
4.确定液压油缸的连接方式:根据液压系统的连接方式,选取液压油缸的连接方式。
5.确定液压油缸的材质和密封形式:根据工作环境和介质特性,选取液压油缸的材质和密封形式。
液压油缸选型的注意事项1.避免液压油缸的过度选型,以免造成系统能耗过大和设备投资过高。
2.注意液压油缸的安装和维护,确保其正常工作和延长使用寿命。
3.在选型过程中,要充分考虑液压油缸的可靠性和稳定性,避免因为选型不当导致的系统故障。
液压油缸选型手册的作用和意义液压油缸选型手册是液压油缸选型的重要参考资料,它提供了液压油缸的详细参数和选型建议,为设计人员和用户提供了方便、快捷的选型工具。
液压油缸选型手册

液压油缸选型手册摘要:一、液压油缸选型的重要性二、液压油缸的分类与结构1.分类2.结构三、液压油缸选型的要素1.工作压力2.活塞杆直径3.行程4.安装方式四、液压油缸选型的步骤与方法1.确定工作压力2.选择合适的活塞杆直径3.确定行程4.选择安装方式五、液压油缸选型的注意事项1.油缸材质2.密封方式3.品牌选择正文:液压油缸选型对于液压系统的稳定性和可靠性至关重要。
正确的选型可以确保液压油缸在实际工作中发挥最佳性能,提高设备的运行效率和寿命。
本文将为您详细介绍液压油缸的选型方法和注意事项。
首先,我们了解一下液压油缸的分类和结构。
液压油缸按照功能可分为单杆液压油缸和双杆液压油缸;按照安装方式可分为耳轴安装式、法兰安装式、轴心安装式等。
液压油缸的主要结构包括缸体、活塞杆、活塞、密封件等。
在进行液压油缸选型时,需要考虑以下几个要素:1.工作压力:液压油缸的工作压力决定了液压系统的驱动力,必须根据设备的实际需求进行选择。
通常情况下,选择工作压力时需留有一定的安全余量。
2.活塞杆直径:活塞杆直径直接影响液压油缸的承载能力。
选择时需要根据设备的负载情况和安装空间进行权衡。
3.行程:行程决定了液压油缸活塞从最下端到最上端移动的距离。
行程的选择应根据设备的实际工作需求来确定。
4.安装方式:液压油缸的安装方式会影响到设备的整体结构和布局。
根据设备的实际情况选择合适的安装方式。
在进行液压油缸选型时,可以按照以下步骤进行:1.确定工作压力:根据设备的实际需求和安全余量选择合适的工作压力。
2.选择合适的活塞杆直径:根据设备的负载情况和安装空间选择合适的活塞杆直径。
3.确定行程:根据设备的实际工作需求来确定行程。
4.选择安装方式:根据设备的实际情况选择合适的安装方式。
在液压油缸选型过程中,还需要注意以下几点:1.油缸材质:液压油缸的材质直接影响到其使用寿命和性能。
一般选择高强度、耐磨损的材质。
2.密封方式:液压油缸的密封方式关系到系统的稳定性和可靠性。
液压缸选型和液压泵选型计算

液压缸选型和液压泵选型计算液压系统中的液压缸和液压泵是核心组件。
液压缸用于产生机械运动,而液压泵则负责提供液压力。
正确的选型对于确保系统的性能和效率至关重要。
液压缸选型计算液压缸的选型需要考虑以下因素:1. 载荷:确定承受液压缸的最大载荷。
载荷可以是静态的或动态的,在计算中需要考虑不同工况下的最大载荷。
2. 行程:确定液压缸的行程,即活塞的位移范围。
行程长度会影响液压缸的尺寸和容量。
3. 速度:考虑液压缸的工作速度。
速度过高可能导致冲击和过度磨损,速度过低则可能导致效率低下。
4. 工作环境:评估液压缸所处的工作环境,包括温度、湿度、腐蚀性和振动等因素。
这些因素会影响选择材料和密封件的类型。
5. 安全系数:在选型计算中,通常要考虑安全系数,以确保液压缸在最不利的工况下仍能正常工作。
根据以上因素,可以使用液压缸选型表格或计算软件来计算并选择合适的液压缸。
液压泵选型计算液压泵的选型与液压缸选型类似,需要考虑以下因素:1. 流量:确定系统所需的最大流量。
流量决定了液压泵的容量和泵的尺寸。
2. 压力:确定系统所需的最大压力。
液压泵必须能够提供足够的压力以满足系统需求。
3. 转速:考虑液压泵的转速。
转速过高可能导致泄漏和磨损,转速过低则可能导致系统响应时间延长。
4. 工作环境:评估液压泵所处的工作环境,包括温度、湿度、腐蚀性和振动等因素。
这些因素会影响选择材料和密封件的类型。
5. 安全系数:在选型计算中考虑安全系数,以确保液压泵在最不利的工况下仍能正常工作。
根据以上因素,可以使用液压泵选型表格或计算软件来计算并选择合适的液压泵。
在液压系统设计过程中,确保选用合适的液压缸和液压泵是非常重要的。
通过充分考虑系统需求和工作环境,可以选择到满足性能和效率要求的恰当型号。
液压油缸选型及计算

液压油缸选型及计算液压油缸是机械和工程中常见的一种装置,它由活塞、筒体、密封件、进油口和排油口等组成。
液压油缸本质上是将液体压力转换为线性机械运动的装置。
液压油缸广泛应用于输油管线、汽车、机床、起重机械、冶金、矿山、石油、化工、航空航天等领域。
如何选择液压油缸?1. 负载:负载是选择液压油缸的一个重要参数。
将液压油缸安装在所需执行力的方向上,即可取得所需的筒体尺寸和活塞尺寸,材料特性等参数,从而能够满足应用需求。
2. 速度:液压油缸的速度是由流量控制,作用力分配,超出的去向,密封摩擦以及摆动的自身等参数决定的。
在选择液压油缸时需要考虑速度限制,确保它与应用相匹配。
例如,在起重机械的情况下,需要实现平稳、快速的回收机械臂,因此需要设计具有较高响应速度的液压油缸。
3. 工作气体的类型:液压油缸的工作介质通常使用液态,常见的包括:水、液压油和空气。
不同的工作介质对液压油缸的性能和寿命有不同的影响。
例如,使用水作为工作介质可以使液压油缸在高压下具有更好的性能,使其在常温或低温下更有优势。
4. 工作温度:可以通过以下几个方面考虑工作温度:a. 确保液压油缸可在高和低温度下工作,因为在各种天气条件下需执行的任务可能会发生变化。
b. 不同类型的液压油缸在不同的温度下都会发生物理和化学变化,因此,根据应用的要求选择液压油缸非常关键。
c. 外界因素影响的温度也是一个非常重要的考虑因素,包括环境温度,媒介流速和加热或冷却作为行动缸使回油口位置。
液压油缸的计算液压油缸的计算有两个主要方面:1. 计算液压缸的负载能力:该计算基于机械、重力、速度和力的平衡方程式。
它们考虑了作用在活塞上的所有力的大小、方向和位置。
通过量化负载能力,可以确保液压油缸与应用需求相匹配。
2. 计算液压油缸的工作压力能力:液压油缸的工作压力能力是指液压油缸在其承受能力的范围内所能承受的最高工作压力。
液压油缸的工作压力能力通常是通过以下条件之一来确定的:a. 活塞对出现的负载产生的压力。
液压油缸型号大全及选型流程参考

液压缸选型流程:程序1:初选缸径/杆径(以单活塞杆双作用液压缸为例)※条件一已知设备或装置液压系统控制回路供给液压缸的油压P、流量Q及其工况需要液压缸对负载输出力的作用方式(推、拉、既推又拉)和相应力(推力F1、拉力F2、推力F1和拉力F2)的大小(应考虑负载可能存在的额外阻力)。
针对负载输出力的三种不同作用方式,其缸径/杆径的初选方法如下:(1)输出力的作用方式为推力F1的工况:初定缸径D:由条件给定的系统油压P(注意系统的流道压力损失),满足推力F1的要求对缸径D进行理论计算,参选标准缸径系列圆整后初定缸径D;初定杆径d:由条件给定的输出力的作用方式为推力F1的工况,选择原则要求杆径在速比1.46~2(速比:液压缸活塞腔有效作用面积与活塞杆腔有效作用面积之比)之间,具体需结合液压缸回油背压、活塞杆的受压稳定性等因素,参照相应的液压缸系列速比标准进行杆径d的选择。
(2)输出力的作用方式为拉力F2的工况:假定缸径D,由条件给定的系统油压P(注意系统的沿程压力损失),满足拉力F2的要求对杆径d进行理论计算,参选标准杆径系列后初定杆径d,再对初定杆径d进行相关强度校验后确定。
(3)输出力的作用方式为推力F1和拉力F2的工况:参照以上(1)、(2)两种方式对缸径D和杆径d进行比较计算,并参照液压缸缸径、杆径标准系列进行选择。
※条件二已知设备或装置需要液压缸对负载输出力的作用方式(推、拉、既推又拉)和相应力(推力F1、拉力F2、推力F1和拉力F2)大小(应考虑负载可能存在的额外阻力)。
但其设备或装置液压系统控制回路供给液压缸的油压P、流量Q等参数未知,针对负载输出力的三种不同作用方式,其缸径/杆径的初选方法如下:(1)根据本设备或装置的行业规范或特点,确定液压系统的额定压力P;专用设备或装置液压系统的额定压力由具体工况定,一般建议在中低压或中高压中进行选择。
(2)根据本设备或装置的作业特点,明确液压缸的工作速度要求。
液压缸选型流程范文

液压缸选型流程范文液压缸的选型流程主要包括以下几个步骤:1.确定应用需求:首先要明确所需的液压缸的应用场景和功能要求。
例如,需要用于举升、顶起、推拉、旋转等任务,还需要考虑负载大小、工作环境条件、使用频率等因素。
2.确定工作条件:了解液压系统的工作压力和工作温度范围,并确认系统所需的缸大小(包括直径和行程)。
一般来说,液压缸的工作压力应小于液压系统的额定压力。
3.确定负载要求:根据应用场景和需求,确定所需液压缸的负载要求,包括负载类型(静负载还是动负载)、负载大小(力矩、推力等)以及负载位置。
4.选择液压缸类型:根据应用场景和负载要求,选择合适的液压缸类型。
常见的液压缸类型有单作用缸、双作用缸、多级缸、直径可调缸等。
根据具体情况,还需要考虑缸体材质(铝合金、钢材、不锈钢等)、密封件材料(橡胶、聚氨酯等)等因素。
5.确定性能参数:根据应用需求和工作条件,确定液压缸的性能参数。
包括额定推力、额定速度、最大速度、最大加速度、运动平稳性等。
6.确定附件配件:根据应用需求,选择液压缸的附件配件。
如安装支架、杆端连接方式(螺纹、销等)、缓冲器、传感器等。
7.考虑预算和供应商选择:根据项目预算和供应商的信誉、服务质量等综合因素,选择合适的液压缸供应商。
8.进行选型计算:根据液压缸的负载、行程、运动速度等参数,进行选型计算。
计算过程中要考虑液压缸的力矩、承载能力、压力损失等参数,并与选型图表、手册进行对比验证。
9.进行性能测试:选型完成后,进行性能测试以验证液压缸的负载能力、运动平稳性等是否满足要求。
可通过实验台、试验装置等手段对液压缸进行测试。
10.进行文件整理和备案:将选型计算、测试报告、供应商合同等相关文件整理归档,以备将来参考和维护。
以上是液压缸的选型流程,通过逐步明确需求、确定工作条件、选择类型和性能参数、考虑预算和供应商等步骤,可以帮助选出适合的液压缸,确保其在实际应用中能够发挥良好的性能。
油缸型号和规格尺寸

油缸型号和规格尺寸1. 简介油缸是一种常见的液压执行元件,主要用于产生线性运动力和实现机械部件的定位、夹紧等功能。
在液压系统中,根据需要选择合适的油缸型号和规格尺寸是非常重要的。
2. 油缸型号分类根据不同的操作方式和结构特点,油缸可以分为多种型号,包括单作用油缸、双作用油缸、活塞杆无杆腔油缸、带杆腔油缸等。
2.1 单作用油缸单作用油缸是最基本的油缸类型之一,其通过液压力推动活塞向一个方向运动,而返回运动则依靠外力(如弹簧、重力等)完成。
2.2 双作用油缸双作用油缸能够实现双向运动,通常由一个或两个油口控制进油和排油。
在进油口通油时,油液施加在活塞的两侧,从而实现双向运动。
2.3 活塞杆无杆腔油缸活塞杆无杆腔油缸是一种专门用于特殊工况的油缸。
它的活塞杆腔不含有活塞杆,可以有效避免介质进入活塞杆腔的问题,适用于一些特殊的工艺要求。
2.4 带杆腔油缸带杆腔油缸是最常见的油缸类型之一,在油缸的两端都设置有杆腔和无杆腔。
它通常通过活塞杆连接外部的负载,实现线性运动,并能输出相应的力。
3. 油缸规格尺寸选择选择合适的油缸规格尺寸需要考虑以下几个方面:3.1 承载力需求首先需要根据实际应用中所需的承载力来选择油缸的规格尺寸。
一般来说,承载力需求越大,油缸的规格尺寸也需要相应增大。
3.2 工作压力工作压力也是选择油缸规格尺寸的重要因素之一。
较高的工作压力需要选择具有较高额定压力的油缸,以确保系统的正常工作和安全性。
3.3 工作速度工作速度对油缸的选型有一定的影响。
在选择油缸的过程中,需要考虑工作速度对液压缸的摩擦、热量和润滑等方面的影响,以保证系统的可靠性和稳定性。
3.4 安装空间限制由于油缸通常需要安装在机械设备中,因此还需要考虑安装空间的限制。
合理选择油缸的外形尺寸,以确保安装的便利性和有效利用空间。
4. 结论在选择油缸型号和规格尺寸时,需要根据实际应用需求综合考虑诸多因素。
通过了解油缸的不同型号和结构特点,合理选择适用的油缸,可以提高液压系统的工作效率和安全性,从而满足设备的需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
液压缸选型(你做设计的时候,遇见液压缸的问题不用愁了)
液压缸的结构基本上可以分为缸筒和缸盖、活塞和活塞杆、密封装置、缓冲装置和排气装置五个部分.
1.液压缸的设计内容和步骤
(1)选择液压缸的类型和各部分结构形式。
(2)确定液压缸的工作参数和结构尺寸。
(3)结构强度、刚度的计算和校核。
(4)导向、密封、防尘、排气和缓冲等装置的设计。
(5)绘制装配图、零件图、编写设计说明书。
下面只着重介绍几项设计工作。
2.计算液压缸的结构尺寸
液压缸的结构尺寸主要有三个:缸筒内径D、活塞杆外径d和缸筒长度L。
(1)缸筒内径D。
液压缸的缸筒内径D是根据负载的大小来选定工作压力或往返运动速度比,求得液压缸的有效工作面积,从而得到缸筒内径D,再从GB2348—80标准中选取最近的标准值作为所设计的缸筒内径。
根据负载和工作压力的大小确定D:
①以无杆腔作工作腔时 (4-32)
②以有杆腔作工作腔时 (4-33)式中:pI为缸工作腔的工作压力,可根据机床类型或负载的大小来确定;Fmax为最大作用负载。
(2)活塞杆外径d。
活塞杆外径d通常先从满足速度或速度比的要求来选择,然后再校核其结构强度和稳定性。
若速度比为λv,则该处应有一个带根号的式子:
(4-34)也可根据活塞杆受力状况来确定,一般为受拉力作用时,d=0.3~0.5D。
受压力作用时:pI<5MPa时,d=0.5~0.55D
5MPa<pI<7MPa时,d=0.6~0.7D pI>7MPa时,d=0.7D
(3)缸筒长度L。
缸筒长度L由最大工作行程长度加上各种结构需要来确定,即:
L=l+B+A+M+C式中:l为活塞的最大工作行程;B为活塞宽度,一般为(0.6-1)D;A为活塞杆导向长度,取(0.6-1.5)D;M为活塞杆密封长度,由密封方式定;C为其他长度。
一般缸筒的长度最好不超过内径的20倍。
(4)最小导向长度的确定。
当活塞杆全部外伸时,从活塞支承面中点到导向套滑动面中点的距离称为最小导向长度H(如图4-19所示)。
如果导向长度过小,将使液压缸的初始挠度(间隙引起的挠度)增大,影响液压缸的稳定性,因此设计时必须保证有一最小导向长度。
图4-19油缸的导向长度 K—隔套对于一般的液压缸,其最小导向长度应满足下式:H≥L/20+D/2 (4-35)式中:L为液压缸最大工作行程(m);D为缸筒内径(m)。
一般导向套滑动面的长度A,在D<80mm时取A=(0.6-1.0)D,在D>80mm时取A=(0.6-1.0)d;活塞的宽度B则取B= (0.6-1.0)D。
为保证最小导向长度,过分增大A和B都是不适宜的,最好在导向套与活塞之间装一隔套K,隔套宽度C由所需的最小导向长度决定,即: C=H- (4-36)采用隔套不仅能保证最小导向长度,还可以改善导向套及活塞的通用性。
3.强度校核?
对液压缸的缸筒壁厚δ、活塞杆直径d和缸盖固定螺栓的直径,在高压系统中必须进行强度校核。
(1)缸筒壁厚校核。
缸筒壁厚校核时分薄壁和厚壁两种情况,当D/δ≥10时为薄壁,壁厚按下式进行校核:δ>=ptD/2[σ] (4-37)式中:D为缸筒内径;pt为缸筒试验压力,当缸的额定压力pn≤16MPa时,取pt=1.5pn,pn为缸生产时的试验压力;当pn>16MPa时,取 pv=1.25 pn;[σ]为缸筒材料的许用应力,[σ]=σb/n,σb为材料的抗拉强度,n为安全系数,一般取n=5。
当D/σ<10时为厚壁,壁厚按下式进行校核:δ≥ (4-38)在使用式
(4-37)、式(4-38)进行校核时,若液压缸缸筒与缸盖采用半环连接,δ应取缸筒壁厚最小处的值。
(2)活塞杆直径校核。
活塞杆的直径d按下式进行校核: d≥ (4-39)式中:F为活塞杆上的作用力;[σ]为活塞杆材料的许用应力,[σ]=σb/1.4。
(3)液压缸盖固定螺栓直径校核。
液压缸盖固定螺栓直径按下式计算:
d≥ 4-40)式中:F为液压缸负载;Z为固定螺栓个数;k为螺纹拧紧系数,k=1.12~1.5,[σ]=σs/(1.2-2.5),σs为材料的屈服极限。
4.液压缸稳定性校核? 活塞杆受轴向压缩负载时,其直径d一般不小于长度L的1/15。
当L/d ≥15时,须进行稳定性校核,应使活塞杆承受的力F不能超过使它保持稳定工作所允许的临界负载Fk,以免发生纵向弯曲,破坏液压缸的正常工作。
Fk的值与活塞杆材料性质、截面形状、直径和长度以及缸的安装方式等因素有关,验算可按材料力学有关公式进行。
5.缓冲计算? 液压缸的缓冲计算主要是估计缓冲时缸中出现的最大冲击压力,以便用来校核缸筒强度、制动距离是否符合要求。
缓冲计算中如发现工作腔中的液压能和工作部件的动能不能全部被缓冲腔所吸收时,制动中就可能产生活塞和缸盖相碰现象。
液压缸在缓冲时,缓冲腔内产生的液压能E1和工作部件产生的机械能E2分别为: E1=pcAclc (4-41) E2=ppAplc+mV2-Fflc (4-42)式中:pc为缓冲腔中的平均缓冲压力;pp为高压腔中的油液压力;Ac、Ap为缓冲腔、高压腔的有效工作面积;Lc为缓冲行程长度;m为工作部件质量;v0为工作部件运动速度;Ff为摩擦力。
式(4-42)中等号右边第一项为高压腔中的液压能,第二项为工作部件的动能,第三项为摩擦能。
当E1=E2时,工作部件的机械能全部被缓冲腔液体所吸收,由上两式得:
Pc=E2/Aclc (4-43)如缓冲装置为节流口可调式缓冲装置,在缓冲过程中的缓冲压力逐渐降低,假定缓冲压力线性地降低,则最大缓冲压力即冲击压力为:
Pcmax=Pc+mυ02/2Aclc (4-44)如缓冲装置为节流口变化式缓冲装置,则由于缓冲压力Pc始终不变,最大缓冲压力的值如式(4-43)所示。