设数法解题

合集下载

用设数法解题

用设数法解题

用设数法解题在数学应用题中,常常遇到一些题目中有多个未知数的情况,而有些未知数对于答案本身没有影响,解答时又不能确定其结果。

这时,就可以采用“设数代入法”,即对题目中的未知条件,假设一个具体数(假设的这个数要尽量方便计算)或一个字母代入,然后求出解答。

例1:如果△△=□□□,△☆=□□□□,那么☆☆□=()个△。

分析:直接用图形互相代换,显然要多费周折。

由第1个等式,可以设□=2,则△=3。

根据第2等式,可知☆=8-3=5。

因此☆☆□=5×2+2=12。

例2:小华上山的速度是每小时3千米,下山的速度是每小时6千米。

求小华上山后又沿原路下山的平均速度。

分析一:设这段路程共有12千米,则上山的时间为:12÷3=4(小时),下山的时间为:12÷6=2(小时),小华上山后又沿原路下山的平均速度为:总路程÷总时间=(12×2)÷(4+2)=4(千米/小时)分析二:设这段路程共有a千米,则上山的时间为:a÷3=a(小时),下山的时间为:a÷6=a(小时),小华上山后又沿原路下山的平均速度为:总路程÷总时间=(a×2)÷(a+a)=2a÷a=4(千米/小时)【说明】分析二中的未知数a,参与了算式的构建和运算,在解答过程中会自动抵消,无法确定其具体数目。

这样的未知数称为辅助未知数。

例3:某班一次数学考试,平均分为70分,其中及格,及格的同学平均分为80分。

那么不及格的同学平均分是多少?分析:题目中有多个未知数,其中全班人数的多少与答案无关。

可假设全班共有60人。

因此,全班数学考试的总分为:70×60=4200(分),及格人数为60×=45(人),及格同学的总分为:80×45=3600(分)。

不及格同学的人数为:60-45=15(人),不及格同学的总分为:4200-3600=600(分),所以不及格的同学平均分为:600÷15=40(分)例4:足球赛门票30元一张,降价后观众增加一半,收入增加。

特殊解题方法__设数法

特殊解题方法__设数法

特殊解题方法——设数法有些数学题涉及的概念易被混淆,解题时把握不定,还有些数学题是要求两个(或几个)数量间的等量关系或者倍数关系,但已知条件却十分抽象,数量关系又很复杂,凭空思索,则不易捉摸。

为了使数量关系变得简单明白,可以给题中的某一个未知量适当地设一个具体数值,以利于探索解答问题的规律,正确求得问题的答案。

这种方法就是设数法。

设数法是假设法的一种特例。

给哪一个未知量设数,要便于快速解题。

为了使计算简便,数字尽可能小一点。

在分数应用题中,所设的数以能被分母整除为好。

若单位“1”未知,就给单位“1”设具体数值。

例1 判断下列各题。

(对的打√,错的打×)(1)除1以外,所有自然数的倒数都小于1。

()(2)正方体的棱长和它的体积成正比例。

()以上各数的倒数都小于1,就能猜测此题的说法是正确的。

第(2)小题,给正方体的棱长设数,分析棱长的变化与其体积变化的规律。

由上表看出,正方体的棱长扩大2倍,体积扩大8倍;棱长扩大4倍,体积扩大64倍……这不符合正比例的含义,就能断定此题的说法是错误的。

几分之几?分析:先把女生人数看作单位“1”,假定女生人数为60人。

男生人数则为女生人数比男生人数少几分之几,则为解:通过设数分析,理清了数量关系,找到了解题线索,便能顺利地列出综合算式。

分析:这道题似乎条件不够,不知从何下手。

不妨根据路程、时间、速度的关系,给从A地去B地的速度设一个具体数值试一试。

假设去时每小时走20千米,那么A、B两地的路程就是:沿原路回家的速度则为:回家时所需的时间则为:解:把全路程看作单位“1”。

例4已知甲校学生数是乙校学生数的40%,甲校女生数是甲校学生数的30%,乙校男生数是乙校学生数的42%,那么,两校女生总数占两校学生总数的百分比是____。

(1993年小学数学奥林匹克竞赛试题初赛B卷)分析:题中没有给出具体数量,且数量关系错综复杂,不易理清头绪。

我们不妨把乙校人数看作单位“1”,给乙校学生人数假定一个具体数值,这样就化难为易了。

第9讲 设数法解题

第9讲 设数法解题

分是多少分?
举一反三2-2:
小学奥数举一反三(六年级)第9讲 设数法解题
游泳池里参加游泳的学生中,小学生占30%,又
来了一批学生后,学生总数增加了20%,小学生占
学生总数的40%,小学生增加百分之几?
举一反三2-3:
小学奥数举一反三(六年级)第9讲 设数法解题
五年级三个班的人数相等。一班的男生人数和二
男孩比女孩多 1 ,女孩平均身高比男孩高10%,这
5
个班男孩平均身高是多少?
举一反三4-1:
小学奥数举一反三(六年级)第9讲 设数法解题
某班男生人数是女生的 2 ,男生平均身高为138
3
厘米,全班平均身高为132厘米。问:女生平均身
高是多少厘米?
举一反三4-2:
小学奥数举一反三(六年级)第9讲 设数法解题
班的女生人数相等,三班的男生是全部男生的 2 ,
5
全部女生人数占全年级人数的几分之几?
【王牌例题3】
小学奥数举一反三(六年级)第9讲 设数法解题
小王在一个小山坡往返跑。先从山下跑上山,每
分钟跑200米,再从原路下山,每分钟跑240米,
又从原路上山,每分钟跑150米,再从原路下山,
每分钟跑200米,求小王的平均速度。
傅往返途中的平均速度是每小时多少千米?
举一反三3-3:
小学奥数举一反三(六年级)第9讲 设数法解题
小王骑摩托车往返A、B两地。平均速度为每小
时48千米,如果他去时每小时行42千米,那么他返
回时的平均速度是每小时行多少千米?
【王牌例题4】
小学奥数举一反三(六年级)第9讲 设数法解题
某幼儿园中班的小朋友平均身高115厘米,其中
兔跑5步的距离,而狗跑2步的时间等于兔跑3步的

六年级奥数设数法解题

六年级奥数设数法解题

第9讲 设数法解题一、知识要点在小学数学竞赛中, 常常会遇到一些看起来缺少条件的题目, 按常规解法似乎无解, 但仔细分析就会发现, 题目中缺少的条件对于答案并无影响, 这时就可以采用“设数代入法”, 即对题目中“缺少”的条件, 随便假设一个数代入(当然假设的这个数要尽量的方便计算), 然后求出解答.二、精讲精练【例题1】如果△△=□□□, △☆=□□□□, 那么☆☆□=( )个△. 练习1:1、已知△=○○□□, △○=□□, ☆=□□□, 问△□☆=( )个○.2、五个人比较身高, 甲比乙高3厘米, 乙比丙矮7厘米, 丙比丁高10厘米, 丁比戊矮5厘米, 甲与戊谁高, 高几厘米?【例题2】足球门票15元一张, 降价后观众增加一倍, 收入增加51, 问一张门票降价多少元?练习2:1、某班一次考试, 平均分为70分, 其中43及格, 及格的同学平均分为80分, 那么不及格的同学平均分是多少分?2、游泳池里参加游泳的学生中, 小学生占30%, 又来了一批学生后, 学生总数增加了20%, 小学生占学生总数的40%, 小学生增加百分之几?【例题3】小王在一个小山坡来回运动. 先从山下跑上山, 每分钟跑200米, 再从原路下山, 每分钟跑240米, 又从原路上山, 每分钟跑150米, 再从原路下山, 每分钟跑200米, 求小王的平均速度.练习3:1、小华上山的速度是每小时3千米, 下山的速度是每小时6千米, 求上山后又沿原路下山的平均速度.2、张师傅骑自行车往返A 、B 两地. 去时每小时行15千米, 返回时因逆风, 每小时只行10千米, 张师傅往返途中的平均速度是每小时多少千米?【例题4】某幼儿园中班的小朋友平均身高115厘米, 其中男孩比女孩多51, 女孩平均身高比男孩高10%, 这个班男孩平均身高是多少?练习4:1、某班男生人数是女生的32, 男生平均身高为138厘米, 全班平均身高为132厘米. 问:女生平均身高是多少厘米?2、某班男生人数是女生的54, 女生的平均身高比男生高15%, 全班的平均身高是130厘米, 求男、女生的平均身高各是多少?【例题5】狗跑5步的时间马跑3步, 马跑4步的距离狗跑7步, 现在狗已跑出30米, 马开始追它. 问狗再跑多远, 马可以追到它?练习5:1、猎狗前面26步远的地方有一野兔, 猎狗追之. 兔跑8步的时间狗只跑5步, 但兔跑9步的距离仅等于狗跑4步的距离. 问兔跑几步后, 被狗抓获?2、猎人带猎狗去捕猎, 发现兔子刚跑出40米, 猎狗去追兔子. 已知猎狗跑2步的时间兔子跑3步, 猎狗跑4步的距离与兔子跑7步的距离相等, 求兔再跑多远, 猎狗可以追到它?3、狗和兔同时从A地跑向B地, 狗跑3步的距离等于兔跑5步的距离, 而狗跑2步的时间等于兔跑3步的时间, 狗跑600步到达B地, 这时兔还要跑多少步才能到达B地?三、课后作业1、甲、乙、丙三个仓库原有同样多的货, 从甲仓库运60吨到乙仓库, 从乙仓库运45吨到丙仓库, 从丙仓库运55吨到甲仓库, 这时三个仓库的货哪个最多?哪个最少?最多的比最少的多多少吨?2、五年级三个班的人数相等. 一班的男生人数和二班的女生人数相等, 三班的男生是全部男生的2/5, 全部女生人数占全年级人数的几分之几?3、小王骑摩托车往返A、B两地. 平均速度为每小时48千米, 如果他去时每小时行42千米, 那么他返回时的平均速度是每小时行多少千米?4、一个长方形每边增加10%, 那么它的周长增加百分之几?它的面积增加百分之几?面积计算一、知识要点计算平面图形的面积时, 有些问题乍一看, 在已知条件与所求问题之间找不到任何联系, 会使你感到无从下手. 这时, 如果我们能认真观察图形, 分析、研究已知条件, 并加以深化, 再运用我们已有的基本几何知识, 适当添加辅助线, 搭一座连通已知条件与所求问题的小“桥”, 就会使你顺利达到目的. 有些平面图形的面积计算必须借助于图形本身的特征, 添加一些辅助线, 运用平移旋转、剪拼组合等方法, 对图形进行恰当合理的变形, 再经过分析推导, 方能寻求出解题的途径.二、精讲精练【例题1】已知如图, 三角形ABC的面积为8平方厘米, AE=ED, BD=2/3BC, 求阴影部分的面积.练习1:1、如图, AE=ED, BC=3BD, S△ABC=30平方厘米. 求阴影部分的面积.2、如图所示, AE=ED, DC=1/3BD, S△ABC=21平方厘米. 求阴影部分的面积.3、如图所示, DE=1/2AE, BD=2DC, S△EBD=5平方厘米.求三角形ABC的面积.【例题2】两条对角线把梯形ABCD分割成四个三角形, 如图所示, 已知两个三角形的面积, 求另两个三角形的面积各是多少?练习2:1、两条对角线把梯形ABCD分割成四个三角形, (如图所示), 已知两个三角形的面积, 求另两个三角形的面积是多少?2、已知AO=1/3OC, 求梯形ABCD的面积(如图所示).【例题3】四边形ABCD的对角线BD被E、F两点三等分, 且四边形AECF的面积为15平方厘米. 求四边形ABCD的面积(如图所示).练习3:1、四边形ABCD的对角线BD被E、F、G三点四等分, 且四边形AECG的面积为15平方厘米. 求四边形ABCD的面积(如图).2、如图所示, 求阴影部分的面积(ABCD为正方形).【例题4】如图所示, BO=2DO, 阴影部分的面积是4平方厘米. 那么, 梯形ABCD的面积是多少平方厘米?练习4:1、如图所示, 阴影部分面积是4平方厘米, OC=2AO. 求梯形面积.2、已知OC=2AO, S△BOC=14平方厘米. 求梯形的面积(如图所示).3、已知S△AOB=6平方厘米. OC=3AO, 求梯形的面积(如图所示).【例题5】如图所示, 长方形ADEF的面积是16, 三角形ADB的面积是3, 三角形ACF的面积是4, 求三角形ABC的面积.练习5:1、如图所示, 长方形ABCD的面积是20平方厘米, 三角形ADF的面积为5平方厘米, 三角形ABE的面积为7平方厘米, 求三角形AEF的面积.2、如图所示, 长方形ABCD的面积为20平方厘米, S△ABE=4平方厘米, S△AFD=6平方厘米, 求三角形AEF的面积.三、课后练习1、已知三角形AOB的面积为15平方厘米, 线段OB的长度为OD的3倍. 求梯形ABCD的面积. (如图所示).2、已知四边形ABCD的对角线被E、F、G三点四等分, 且阴影部分面积为15平方厘米. 求四边形ABCD的面积(如图所示).3、如图所示, 长方形ABCD的面积为24平方厘米, 三角形ABE、AFD的面积均为4平方厘米, 求三角形AEF的面积.。

7、设数法解题

7、设数法解题

第七讲 设数法解题一、精典例题例1:如果△△=□□□,△☆=□□□□,那么☆☆□=( )个△。

解: 由第一个等式可以设△=3,□=2,代入第二式得☆=5,再代入第三式左边是12,所以右边括号内应填4。

说明:本题如果不用设数代入法,直接用图形互相代换,显然要多费周折。

例2:足球门票15元一张,降价后观众增加一倍,收入增加51,问一张门票降价多少元? 【思路导航】初看似乎缺少观众人数这个条件,实际上观众人数于答案无关,我们可以随便假设一个观众数。

为了方便,假设原来只有一个观众,收入为15元,那么降价后有两个观众,收入为15×(1+51)=18元,则降价后每张票价为18÷2=9元,每张票降价15-9=6元。

即: 15-15×(1+51)÷2=6(元) 说明:如果设原来有a 名观众,则每张票降价: 15-15a ×(1+51)÷2a =6(元) 例3:小王在一个小山坡来回运动。

先从山下跑上山,每分钟跑200米,再从原路下山,每分钟跑240米,又从原路上山,每分钟跑150米,再从原路下山,每分钟跑200米,求小王的平均速度。

【思路导航】题中四个速度的最小公倍数是1200,设一个单程是1200米。

则四个单程的和:1200×4=4800(米),四个单程的时间分别是;1200÷200=6(分);1200÷240=5(分);1200÷150=8(分);1200÷200=6(分);小王的平均速度为:4800÷(6+5+8+6)=192(米)说明:(200+240+150+200)÷4=197.5(米)是速度的平均数,不是平均速度。

例4:某幼儿园中班的小朋友平均身高115厘米,其中男孩比女孩多51,女孩平均身高比男孩高10%,这个班男孩平均身高是多少?【思路导航】题中没有男、女孩的人数,我们可以假设女孩有5人,则男孩有6人。

第9讲 设数法解题

第9讲 设数法解题

第9讲 设数法解题一、知识要点在小学数学竞赛中,常常会遇到一些看起来缺少条件的题目,按常规解法似乎无解,但仔细分析就会发现,题目中缺少的条件对于答案并无影响,这时就可以采用“设数代入法”,即对题目中“缺少”的条件,随便假设一个数代入(当然假设的这个数要尽量的方便计算),然后求出解答。

二、精讲精练【例题1】如果△△=□□□,△☆=□□□□,那么☆☆□=( )个△。

练习1:1、已知△=○○□□,△○=□□,☆=□□□,问△□☆=( )个○。

2、五个人比较身高,甲比乙高3厘米,乙比丙矮7厘米,丙比丁高10厘米,丁比戊矮5厘米,甲与戊谁高,高几厘米?【例题2】足球门票15元一张,降价后观众增加一倍,收入增加51,问一张门票降价多少元?练习2:1、某班一次考试,平均分为70分,其中43及格,及格的同学平均分为80分,那么不及格的同学平均分是多少分?2、游泳池里参加游泳的学生中,小学生占30%,又来了一批学生后,学生总数增加了20%,小学生占学生总数的40%,小学生增加百分之几?【例题3】小王在一个小山坡来回运动。

先从山下跑上山,每分钟跑200米,再从原路下山,每分钟跑240米,又从原路上山,每分钟跑150米,再从原路下山,每分钟跑200米,求小王的平均速度。

练习3:1、小华上山的速度是每小时3千米,下山的速度是每小时6千米,求上山后又沿原路下山的平均速度。

2、张师傅骑自行车往返A 、B 两地。

去时每小时行15千米,返回时因逆风,每小时只行10千米,张师傅往返途中的平均速度是每小时多少千米?【例题4】某幼儿园中班的小朋友平均身高115厘米,其中男孩比女孩多51,女孩平均身高比男孩高10%,这个班男孩平均身高是多少?练习4:1、某班男生人数是女生的32,男生平均身高为138厘米,全班平均身高为132厘米。

问:女生平均身高是多少厘米?2、某班男生人数是女生的54,女生的平均身高比男生高15%,全班的平均身高是130厘米,求男、女生的平均身高各是多少?【例题5】狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。

2021-2022年六年级奥数第9讲 设数法解题

2021-2022年六年级奥数第9讲 设数法解题

1 第9讲 设数法解题
一、知识要点
在小学数学竞赛中,常常会遇到一些看起来缺少条件的题目,按常规解法似乎无解,但仔细分析就会发现,题目中缺少的条件对于答案并无影响,这时就可以采用“设数代入法”,即对题目中“缺少”的条件,随便假设一个数代入(当然假设的这个数要尽量的方便计算),然后求出解答。

二、精讲精练
【例题1】如果△△=□□□,△☆=□□□□,那么☆☆□=( )个△。

练习1:
1、已知△=○○□□,△○=□□,☆=□□□,问△□☆=( )个○。

2、五个人比较身高,甲比乙高3厘米,乙比丙矮7厘米,丙比丁高10厘米,丁比戊矮5厘米,甲与戊谁高,高几厘米?
【例题2】足球门票15元一张,降价后观众增加一倍,收入增加5
1,问一张门票降价多少元?。

设数法解题

设数法解题

设数法解题
1 .足球赛门票15元yz ,降价后观众增加一倍,收入增加
51,问一章门票降价多少元?
2.某班一次考试,平均分为70分,其中43
及格,及格的同学平均分为80分,那么不及
格的平均分是多少?
3.游泳池里参加游泳的学生中,小学生占30%,又来了一批学生后,学生总数增加20%,小学生占学生总数的40%,小学生增加百分之几?
4小民上山的速度是每小时3千米,下山的速度是每小时6千米,求上山后又沿原路下山的平均速度?
5张师傅骑自行车往返A,B 两地。

去时每小时行15千米,返回是每小时行10千米,求张师傅往返A,B 两地的平均速度?
6王师傅骑摩托车往返A,B 两地。

平均速度为每小时48千米,如果他去时每小时行42千米,那么他返回时的平均速度是多?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第9讲 设数法解题
一、知识要点
在小学数学竞赛中,常常会遇到一些看起来缺少条件的题目,按常规解法似乎无解,但仔细分析就会发现,题目中缺少的条件对于答案并无影响,这时就可以采用“设数代入法”,即对题目中“缺少”的条件,随便假设一个数代入(当然假设的这个数要尽量的方便计算),然后求出解答。

二、精讲精练
【例题1】如果△△=□□□,△☆=□□□□,那么☆☆□=( )个△。

练习1:
1、已知△=○○□□,△○=□□,☆=□□□,问△□☆=( )个○。

2、五个人比较身高,甲比乙高3厘米,乙比丙矮7厘米,丙比丁高10厘米,丁比戊矮5厘米,甲与戊谁高,高几厘米?
【例题2】足球门票15元一张,降价后观众增加一倍,收入增加5
1,问一张门票降价多少元?
练习2:
1、某班一次考试,平均分为70分,其中
4
3及格,及格的同学平均分为80分,那么不及格的同学平均分是多少分?
2、游泳池里参加游泳的学生中,小学生占30%,又来了一批学生后,学生总数增加了20%,小学生占学生总数的40%,小学生增加百分之几?
【例题3】小王在一个小山坡来回运动。

先从山下跑上山,每分钟跑200米,再从原路下山,每分钟跑240米,又从原路上山,每分钟跑150米,再从原路下山,每分钟跑200米,求小王的平均速度。

练习3:
1、小华上山的速度是每小时3千米,下山的速度是每小时6千米,求上山后又沿原路下山的平均速度。

2、张师傅骑自行车往返A 、B 两地。

去时每小时行15千米,返回时因逆风,每小时只行10千米,张师傅往返途中的平均速度是每小时多少千米?
【例题4】某幼儿园中班的小朋友平均身高115厘米,其中男孩比女孩多51,女孩平均身高比男孩高10%,这个班男孩平均身高是多少?
练习4:
1、某班男生人数是女生的
3
2,男生平均身高为138厘米,全班平均身高为132厘米。

问:女生平均身高是多少厘米?
2、某班男生人数是女生的54,女生的平均身高比男生高15%,全班的平均身高是130厘米,求男、女生的平均身高各是多少?
【例题5】狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。

问狗再跑多远,马可以追到它?
练习5:
1、猎狗前面26步远的地方有一野兔,猎狗追之。

兔跑8步的时间狗只跑5步,但兔跑9步的距离仅等于狗跑4步的距离。

问兔跑几步后,被狗抓获?
2、猎人带猎狗去捕猎,发现兔子刚跑出40米,猎狗去追兔子。

已知猎狗跑2步的时间兔子跑3步,猎狗跑4步的距离与兔子跑7步的距离相等,求兔再跑多远,猎狗可以追到它?
3、狗和兔同时从A 地跑向B 地,狗跑3步的距离等于兔跑5步的距离,而狗跑2步的时间等于兔跑3步的时间,狗跑600步到达B 地,这时兔还要跑多少步才能到达B 地?
三、课后作业
1、甲、乙、丙三个仓库原有同样多的货,从甲仓库运60吨到乙仓库,从乙仓库运45吨到丙仓库,从丙仓库运55吨到甲仓库,这时三个仓库的货哪个最多?哪个最少?最多的比最少的多多少吨?
2、五年级三个班的人数相等。

一班的男生人数和二班的女生人数相等,三班的男生是全部男生的2/5,全部女生人数占全年级人数的几分之几?
3、小王骑摩托车往返A、B两地。

平均速度为每小时48千米,如果他去时每小时行42千米,那么他返回时的平均速度是每小时行多少千米?
4、一个长方形每边增加10%,那么它的周长增加百分之几?它的面积增加百分之几?。

相关文档
最新文档