数学建模全国赛A题嫦娥三号软着陆轨道设计与控制策略

合集下载

2014高教社杯全国大学生数学建模竞赛A题论文答辩

2014高教社杯全国大学生数学建模竞赛A题论文答辩

70.9 48.8 29.9 91.3 2.588 1.056 2.498
75.7 37.4 33.3 90.8 1.838 1.168 1.702
总计
1.347 2.437 2.984 3.784 2.763
求解参数N与P的关系为
N (P 3) 3
P值太大,反而会影响计算效率,因此,取
P 30 为宜。
rpGM 1.6139 103 m / s ra a
沿运动轨迹切线方向
第2页,共15页。
1.问题一:着陆准备轨道近月点和远月点的位置
加速度为:
d 2Z dt 2
e i
d 2r dt 2
r d
dt
2
i
r
d 2
dt 2
2 dr dt
d
dt
对嫦娥三号进行受力分析,由牛顿第二定律得:
mMG ei
2014年高教社杯全国大学生数学建模竞赛
A题: 嫦娥三号软着陆轨道设计
与控制策略
第1页,共15页。
1. 问题一:嫦娥三号速度的大小和方向
vp
(1 e )
(1 e )a
(1 e )
va (1 e )a
联立上式可得近月点(近拱点),远月点(远拱点)的速度:
vp
va
raGM 1.6922 103 m / s rp a
当 rp 1752.013 103 m 时,解得 cos ,则-1 ; 180
当 ra 1837.013 103 m 时,解得 cos,则1 。 0
则在近月点的位置是 (180,1752.013 103 )
远月点的位置是 (0,1837.013 103 )
第4页,共15页。

华工第十六届数理大赛赛题发布会

华工第十六届数理大赛赛题发布会

2014全国数学建模竞赛题目 2015美国数学建模竞赛题目
2014全国数学建模竞赛题目 A题 嫦娥三号软着陆轨道设计与控制策略 B题 创意平板折叠桌 C题 生猪养殖场的经营管理 D题 储药柜的设计
2015 MCM&ICM Problems • Problem A:Eradicating Ebola • Problem B:Searching for a lost plane • Problem C:Managing Human Capital in Organizations • Problem D:Is it sustainable?
• Convex Optimization • Duality-Theory • Lagrange Multipliers • Kernels function
Deep Learning Neural Network
• • • • AlphaGo Zero强化学习战胜AlphaGo 人工智能推动数学建模 数学建模制造新的信息机器 丘成桐:工程上取得很大发展 但理论基础仍非常 薄弱 • 人工智能需要一个可以被证明的理论作为基础。 • 人工智能需要新数学理论
SVHN – real world image dataset
Image classification
Convolutiona Neural Network
全 连 接 卷 积
池 化
CNN- 图像分类和场景特色
数学建模生产的图形处理机器
LSTM- 翻译语言和语音识别机器
RNN - 语音识别和自然语言分析
2017A题
CT系统参数标定及成像

• 请建立相应的数学模型和算法,解决以下问题: • (1) 在正方形托盘上放置两个均匀固体介质组成的标定模板,模板的 几何信息如图2所示,相应的数据文件见附件1,其中每一点的数值反 映了该点的吸收强度,这里称为“吸收率”。对应于该模板的接收信 息见附件2。请根据这一模板及其接收信息,确定CT系统旋转中心在 正方形托盘中的位置、探测器单元之间的距离以及该CT系统使用的X 射线的180个方向。 • (2) 附件3是利用上述CT系统得到的某未知介质的接收信息。利用(1) 中得到的标定参数,确定该未知介质在正方形托盘中的位置、几何形 状和吸收率等信息。另外,请具体给出图3所给的10个位置处的吸收 率,相应的数据文件见附件4。 • (3) 附件5是利用上述CT系统得到的另一个未知介质的接收信息。利 用(1)中得到的标定参数,给出该未知介质的相关信息。另外,请具 体给出图3所给的10个位置处的吸收率。 • (4) 分析(1)中参数标定的精度和稳定性。在此基础上自行设计新模 板、建立对应的标定模型,以改进标定精度和稳定性,并说明理由。

全国大学生数学建模竞赛历年赛题

全国大学生数学建模竞赛历年赛题

全国大学生数学建模竞
赛历年赛题
Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT
全国大学生数学建模竞赛历年赛题
2009:AB
CD
2010:A储油罐的变位识别与罐容表标定
B2010年上海世博会影响力的定量评估
C输油管的布置
D对学生宿舍设计方案的评价
2011:A城市表层土壤重金属污染分析
B交巡警服务平台的设置与调度
C企业退休职工养老金制度的改革
D天然肠衣搭配问题
2012:A葡萄酒的评价
B太阳能小屋的设计
C脑卒中发病环境因素分析及干预
D机器人避障问题
2013:A车道被占用对城市道路通行能力的影响
B碎纸片的拼接复原
C古塔的变形
D公共自行车服务系统
2014:A嫦娥三号软着陆轨道设计与控制策略B创意平板折叠桌
C生猪养殖场的经营管理
D储药柜的设计
2015:A太阳影子定位
B“互联网+”时代的出租车资源配置
C月上柳梢头
D众筹筑屋规划方案设计。

嫦娥三号软着陆过程(数模竞赛附件2)

嫦娥三号软着陆过程(数模竞赛附件2)

附件2:嫦娥三号软着陆过程的六个阶段及其状态要求1. 嫦娥三号软着陆过程示意图附图4嫦娥三号软着陆过程示意图2.嫦娥三号软着陆过程分为6个阶段的要求(1)着陆准备轨道:着陆准备轨道的近月点是15KM,远月点是100KM。

近月点在月心坐标系的位置和软着陆轨道形态共同决定了着陆点的位置。

(2)主减速段:主减速段的区间是距离月面15km到3km。

该阶段的主要是减速,实现到距离月面3公里处嫦娥三号的速度降到57m/s。

(3)快速调整段:快速调整段的主要是调整探测器姿态,需要从距离月面3km到 2.4km处将水平速度减为0m/s,即使主减速发动机的推力竖直向下,之后进入粗避障阶段。

(4)粗避障段:粗避障段的范围是距离月面2.4km到100m区间,其主要是要求避开大的陨石坑,实现在设计着陆点上方100m处悬停,并初步确定落月地点。

嫦娥三号在距离月面2.4km处对正下方月面2300×2300m的范围进行拍照,获得数字高程如附图5所示(相关数据文件见附件3),并嫦娥三号在月面的垂直投影位于预定着陆区域的中心位置。

附图5:距月面2400m处的数字高程图该高程图的水平分辨率是1m/像素,其数值的单位是1m。

例如数字高程图中第1行第1列的数值是102,则表示着陆区域最左上角的高程是102米。

(5)精避障段:精细避障段的区间是距离月面100m到30m。

要求嫦娥三号悬停在距离月面100m 处,对着陆点附近区域100m范围内拍摄图像,并获得三维数字高程图。

分析三维数字高程图,避开较大的陨石坑,确定最佳着陆地点,实现在着陆点上方30m处水平方向速度为0m/s。

附图6是在距离月面100m处悬停拍摄到的数字高程图(相关数据文件见附件4)。

附图6:距离月面100m处的数字高程图该数字高程的水平分辨率为0.1m/像素,高度数值的单位是0.1m。

(6)缓速下降阶段:缓速下降阶段的区间是距离月面30m到4m。

该阶段的主要任务控制着陆器在距离月面4m处的速度为0m/s(合速度),即实现在距离月面4m处相对月面静止,之后关闭发动机,使嫦娥三号自由落体到精确有落月点。

25-杨金仓(开题报告)作业

25-杨金仓(开题报告)作业

宁夏师范学院本科生毕业论文(设计)开题报告姓名杨金仓院、系数学与计算机科学学院专业数学与应用数学班级2012级数学与应用数学2班学号201204110225 论文(设计)题目月球探测器软着陆轨道最优设计与控制策略题目来源2014年高教社杯全国大学生数学建模竞赛本课题研究的现状、意义、拟研究的主要问题、重点和难点、研究方法和步骤、预期效果:现状:在美、苏进行激烈的探月竞争的五、六十年代,我国由于国力所限,没有进行探月实践活动,但许多学者致力于探月轨道设计。

如今,我国的综合国力大大增强,以举世瞩目的成就被世界公认为航天大国。

但 94 年以前,我国在实际的月球探测方面仍是空白。

94 年 7 月我国计划在 97、98 年间的"921 工程”运载器试验时,搭载月球探测器,实现登月探测,代号为“50 工程”。

95 年又提出了的“嫦娥工程”。

中国首个月球探测计划“嫦娥工程”于 2004 年 3 月 1 日启动,分三个阶段实施该月球卫星将携带 CCD 立体相机、成像光谱仪、太阳宇宙射线监测器、低能粒子探测器等科学探测仪器。

其工作轨道为极月的圆轨道,轨道高度 200 千米,它的基本构型利用中国已有的成熟的东方红三号卫星为平台,各分系统充分继承了现有的技术和设备,进行适应性改造。

月球卫星将采用中国已有的成熟的运载火箭长征三号甲进行发射。

运载火箭把卫星送入地球静止转移轨道后与卫星分离,其后的轨道机动、中途修正、近月点制动等均由星上推进系统完成。

意义:本文所研究的制导控制方法正是为满足上述要求,应用现代控制理论,结合我国航天发展的实际情况而进行的。

本文以理论力学(万有引力、开普勒定律、万能守恒定律等)和卫星力学知识为理论基础,结合微分方程和微元法,借助MATLAB软件建立的最优轨道设计上进行仿真分析,实施月球探测将是继发射人造地球卫星和突破载人航天技术之后,中国航天活动的第三个里程碑。

月球是离地球最近的天体,自然成为空间探测的首选目标。

2014年数学建模A题-省一等奖

2014年数学建模A题-省一等奖

关键词:软着陆、SQP算法、轨道优化、景象匹配
1

1.1 问题的背景
问题重述
中国是继美国、前苏联之后的第三个能使卫星登上月球实现软着陆的国家。因此, 嫦娥三号如何实现软着陆以及能否成功成为外界关注的焦点。北京时间 12 月 10 日晚, 嫦娥三号已经成功降轨进入预定的月面着陆准备轨道,这是嫦娥三号“落月”前最后一 次轨道调整。在实施软着陆之前,嫦娥三号还将在这条近月点高度约 15 公里、远月点 高度约 100 公里的椭圆轨道上继续飞行。 嫦娥三号着陆地点选在较为平坦的虹湾区。但由于月球地形的不确定性,最终“落 月”地点的选择仍存在一定难度。但嫦娥三号的预定着陆点为 19.51W,44.12N,海拔为 -2641m。在大约距离月球 15 公里时,反推发动机就要点火工作;到离月球 100 米时, 卫星将暂时处于悬停状态,此时它已不受地球上工程人员的控制,因卫星上携带的着陆 器具有很高智能,它会自动选择一块平整的地方降下去,并在离月球表面 4 米的时候关 闭推进器,卫星呈自由落体降落,确保软着陆成功。为了确保探测器能够成功在月球表 面实现软着陆,需要认真设计降落过程中探测器的发动机的控制方案,使“嫦娥 3 号” 能够顺利完成科研任务,得到最大化的应用。由于月球上没有大气,嫦娥三号无法依靠 降落伞着陆,只能靠变推力发动机,才能完成中途修正、近月制动、动力下降、悬停段 等软着陆任务。 这将是中国航天器首次在地外天体的软着陆和巡视勘探, 同时也是 1976 年后人类探测器首次的落月探测。 嫦娥三号在着陆准备轨道上的运行质量为 2.4t, 其安装在下部的主减速发动机能够 产生 1500N 到 7500N 的可调节推力。在给定主减速发动机的推力方向后,能够自动通过 多个发动机的脉冲组合实现各种姿态的调整控制。 要保证准确地在月球预定区域内实现 软着陆,关键问题是着陆轨道与控制策略的设计。其着陆轨道设计的基本要求:着陆准 备轨道为近月点 15km,远月点 100km 的椭圆形轨道;着陆轨道为从近月点至着陆点,其 软着陆过程共分为 6 个阶段,要求满足每个阶段在关键点所处的状态;尽量减少软着陆 过程的燃料消耗。 1.2 提出问题 根据上述的叙述以及基本要求,提出以下三个问题: (1)确定着陆准备轨道近月点和远月点的位置,以及嫦娥三号相应速度的大小与 方向。

数学建模获奖论文A题-嫦娥三号软着陆轨道设计与控制策略

数学建模获奖论文A题-嫦娥三号软着陆轨道设计与控制策略

嫦娥三号软着陆轨道设计与控制策略摘要随着人类的进步和科技的发展,人类对太空和月球的探索已经取得了很大的进步。

我国的探月工程项目也一直走在世界前列。

嫦娥三号是我国首次实行外天体软着陆任务的飞行器,在世界上首先实现了地外天体软着陆自主避障。

对于嫦娥三号软着陆过程虽然有很多的研究成果,但这仍然是一个永远值得我们研究的问题。

本文首先分析了嫦娥三号运行轨道的近月点和远月点的速度,然后确定了近月点和远月点的位置。

在这基础上,对嫦娥三号软着陆轨道进行拟合确定,通过制导技术分析六个阶段最优控制策略。

最后,对确定的轨道和最优控制策略进行误差分析和敏感性分析。

在对问题一近月点和远月点位置确定和速度分析时,本文建立了动力学模型,通过万有引力定律求得在近月点的飞行速度为1.67km/s,在远月点的速度为1.63km/s,然后用微元迭代的方法,解得近月点的位置19.51W,32.67N,15km,远月点的位置160.49E,32.67S,100km。

在轨道的确定过程中,为了便于研究,将嫦娥三号软着陆的轨道划分为三个阶段。

第一个阶段是从近月点到距月球表面2400米的高空,在这一阶段的研究中,本文建立了基于软着陆二维动力学模型,然后根据所得到的数据确定轨道,进而用MATLAB拟合出轨道。

第二阶段是从距月球表面2400米到4米,考虑到要避开月球表面障碍物,所以,用MATLAB将附件 3中的图像进行平面和三维作图,从而根据所做出的图像确定出此阶段的运行轨道。

在第三阶段的划分是嫦娥三号从4米处开始做自由落体运动,这个阶段的轨迹是一条直线。

在六个阶段运动过程的最优控制策略研究中,首先运用显示制导法进行六个阶段燃料的最优控制,约束条件是嫦娥三号在每个阶段燃料的使用尽量少。

然后用模拟退火遗传算法对六个阶段的轨道最优化进行设计,得出嫦娥三号着陆过程每个阶段最优轨道控制,通过避障制导技术得出嫦娥三号软着陆六个阶段的最优控制策略。

关键词:二维动力学模型最优控制策略显示制导法一. 问题重述嫦娥三号于2013年12月2日1时30分成功发射,12月6日抵达月球轨道。

嫦娥三号软着陆轨道设计与控制策略建模

嫦娥三号软着陆轨道设计与控制策略建模

2014年高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): C我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期: 2009 年 9 月 12 日赛区评阅编号(由赛区组委会评阅前进行编号):2009高教社杯全国大学生数学建模培训竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):嫦娥三号软着陆轨道设计与控制策略摘要本文根据题目的要求建立了合理的嫦娥三号软着陆轨道设计与控制策略模型模型。

,我们借助多种数学软件的优势挖掘出大量数据潜在的信息,并将其合理运用,在此基础上,以最优控制策略为最大目标,长远发展为原则,制定出信息不足条件下的量化综合评价体系。

在本文所建立的模型中,我们采取了层次分析法(AHP)、数据统计拟合以及整数线性规划相结合的手段,这样既借鉴了层次分析法综合评价的优势,又克服了该法中主观因素的不确定性,使模型更具有科学性,要确定着陆准备轨道近月点和远日点的位置,以及嫦娥三号相应速度的大小和方向。

考虑了月球自转,针对三维空间内精确定点软着陆问题利用参数化控制解决了变推力软着陆最优控制问题,此外还针对仅知制动初始点到月心距离而具体位置未知的情况,对初始点(近月点)的选取进行了研究。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A题嫦娥三号软着陆轨道设计与控制策略摘要人类掌握航天技术之后,探测地外天体的首选目标就是月球。

我国嫦娥三号于2013年12月6日成功登陆月球,嫦娥三号是我国首次地外天体软着陆任务,由于外太空的各种因素对探测器的影响很难进行人工干扰,为了保证登月探测器在月球表面平稳降落和应对外太空的影响,本文对探测器的软着陆过程的进行了深入的研究和设计。

针对问题一,本文采用逆向推理和微元分析的思想方法,从着陆点进行倒推,将每段进行微分,分析受力和运动状态,在达到6个阶段状态要求的前提下,求解出探测器θ,最终确定近月点与的水平位移为514.8km,通过坐标变换公式得出偏转角=17.0437远月点位置为:近月点:位置——(19.51W,27.08N)正上方15km处,速度为1.68km/m,方向为探测器俯仰姿态角83.17o远月点:位置——(19.51E, 152.92S)正上方100km处,速度为1.60/km m,方向为远月点弧的切线方向。

针对问题二,在轨道设计中,本文主要考虑粗避障与精避障阶段,为了避开月球表面的大型坑洞和障碍物,本文将附录中的两幅图像都分化为100⨯100的小区域分别模拟着陆,最终利用优选法绘制出了安全区域和软着陆轨道的图像。

着陆轨道的优化是一非线性、终端时间自由且带有控制约束的最优控制问题。

本文利用着陆器质心动力学方程,对其进行归一化处理,采取直接求解法,将问题转化为目标函数为燃料最省的的优化问题,运用模拟退火算法求解,得出最小燃料消耗为468.25kg。

关键词嫦娥三号软着陆轨道优化模拟退火算法一.问题重述嫦娥三号于1时30分成功发射,抵达。

嫦娥三号在着陆准备轨道上的运行质量为2.4t,其安装在下部的主减速发动机能够产生1500N到7500N的可调节推力,其比冲(即单位质量的推进剂产生的推力)为2940m/s,可以满足调整速度的控制要求。

在四周安装有姿态调整发动机,在给定主减速发动机的推力方向后,能够自动通过多个发动机的脉冲组合实现各种姿态的调整控制。

嫦娥三号的预定着陆点为19.51W,44.12N,海拔为-2641m。

嫦娥三号在高速飞行的情况下,要保证准确地在月球预定区域内实现软着陆,关键问题是着陆轨道与控制策略的设计。

其着陆轨道设计的基本要求:着陆准备轨道为近月点15km,远月点100km的椭圆形轨道;着陆轨道为从近月点至着陆点,其软着陆过程共分为6个阶段,要求满足每个阶段在关键点所处的状态;尽量减少软着陆过程的燃料消耗。

根据上述的基本要求,请你们建立数学模型解决下面的问题:1.确定着陆准备轨道近月点和远月点的位置,以及嫦娥三号相应速度的大小与方向。

2.确定嫦娥三号的着陆轨道和在6个阶段的最优控制策略。

3.对于你们设计的着陆轨道和控制策略做相应的误差分析和敏感性分析。

二.问题分析嫦娥三号是我国首次地外天体软着陆任务,在世界上首次成功实现了利用机械视觉的地外天体软着陆自主避障技术。

为了保证登月探测器在月球表面平稳地降落并且有效应对外太空环境下各种因素造成的干扰,需要对着陆轨道的控制方案进行深入研究和认真的设计。

针对上述问题,我们进行分析:➢对于着陆准备轨道的近月点和远月点位置的确定,首先我们根据着陆点及着陆轨道6个阶段的要求分析,由于在软着陆过程中的各个阶段的加速度不同,我们采用逆向思想,从探测器的着落点进行倒推,再结合运动学和微积分方法来对每段进行分析,从而可以得到每段的相关参数,确定探测器从近月点到着陆点的水平位移,进而得到近月点和远月点的位置;我们根据万有引力定律和探测器的运动,可知近月点和远月点的速度大少及方向。

➢对于嫦娥三号的着陆轨道的设计,我们通过探测器的质心动力学方程和基于遗传模拟退火,将是非线性月球软着陆轨道控制问题转换为以易于处理的优化问题,进行。

对于6个阶段的最优控制策略,通过分析我们主要从降落避障和燃料消耗最两方面进行优化软着陆轨道,在主减速和快速调整阶段,因推力和探测器的姿态是可变的,故采用模拟退火方法,进行优化;在粗避障和精避障阶段,主要面临是快速确定降落点并达到避障目的,我们采用matlab工具,根据查询探测器下降对月面的要求对拍摄区域进行螺旋式搜索,既达到避障,也节省时间(即减少燃料消耗)。

本文流程图如图1所示:图1 本文流程图三.模型假设1)假设月球为不旋圆球,引力场均匀;2)假设在软着陆过程中,不考虑地球,太阳对探测器的引力作用;3)由于月球的形状变率太小,忽略对软着陆轨道设计的影响;四.模型建立与求解4.1. 模型一:着陆准备轨道的设计与求解4.1.1 模型准备软着陆:是指月球着陆器经地月转移到达月球附近后, 在制动系统的作用下以很小的速度近乎垂直地降落到月面上, 以保证宇航员的安全和试验设备的完好。

主减速:该段中,着陆器距离月面相对较高,且着陆器走过的月面距离比较长,由主减速发动机产生1500N到7500N的可调节推力,主要任务是减速制动。

快速调整:利用16台小型姿态调整发动机进行快速调整探测器姿态,主要任务是快速衔接主减速和后续的接近段,快速姿态机动到接近段入口姿态,发动机推力同步减到低推力水平。

粗避障:为了在较大着陆范围内剔除明显危及着陆安全的大尺度障碍,为精避障提供较好的安全点选择区域,避免近距离精避障无可避的风险。

考虑到探测器运动速度较大,要求成像快,计算快。

其飞行轨迹要保证成像敏感器能够持续观测预定着陆区,以及接近段飞行轨迹为满足特定姿态和下降轨迹要求接近的目标着陆点轨迹。

精避障:为了在粗避障选取比较安全区域内进行精确的障碍检测,识别剔除危及安全的小尺度障碍,确保了落点安全。

缓速下降:为了保证着陆月面的速度和姿态控制精确度,缓慢下降段要以较小的设定的速度匀速垂直下降,消除水平速度和加速度,保持着陆器水平位置。

自由落体:关闭发动机和推力器,着陆器自由下降到月面。

4.1.2 模型的建立对月球软着陆主减速段、快速调整段、粗避障段、精避障段、缓速下降段和自由落体段的飞行动力学模型进行了研究, 同时基于动力学模型对各阶段制导进行了计算;在接近段(主减速和快速调整),考虑到探测器的速度大,7500N主发动机羽流带来的不可见区域为半锥角约25的锥体,而成像敏感器视场为30,为了避免主发动机羽流对成像敏感器的影响,且使成像敏感器的视线距离尽可能短,取成像敏感器视线偏置40角。

为了保证在接近段成像敏感器视场能够观测到着陆区,确定采用下降轨迹接近于水平夹角45[1]的直线下降方式逐步接近着陆区。

我们首先对探测器处于主减速段情况进行受力分析如图2;图2 主减速阶段的受力分析接着结合运动学进行分析,将其近视为抛体运动;水平方向: 2201=F cos()F cos()=(1)()(sin())2t f a m a s λλννλ⨯⎧⎪⨯⎪⎨⎪-⨯=⨯⨯⎪⎩水平水平水平垂直方向: 2=sin()sin()=(2)()sin()t f mg F mg F a m mgh F h λλνλ-⨯⎧⎪-⨯⎪⎨⎪=-⨯⨯⎪⎩垂直垂直式中:f 水平为水平方向的力;F 为主减速发动机提供的推力;m 为探测器的质量,0ν水平速度;t ν垂直速度。

图3 主减速阶段速度与时间关系图从而可得出水平位移51 5.112410s m =⨯。

在快速调整过程中,通过图3的受力分析,相对于主减速阶段增加了对探测器的姿势调整,则该阶段的加速度在不断变化,通过受力分析如图3所示;图4 快速调整阶段的受力分析该过程中,λ将从045逐步变化到090,所以运用微积分思想,把λ的变化范围进行n 等份,每等份记为λ∆。

即第1次细分时夹角变为λλ∆+,第2次细分时夹角变为λλ∆⨯+2……那第i 次细分时夹角变为λλ∆⨯+i ……直到第n 次变为090。

当λ∆足够小时,那么被细分出来的线段就相当于是一条倾斜的线段,探测器在在这段线段中受力不变。

再对第i 段线段中的运动进行分析:2cos(i )[sin(i )]2(3)i f s m λλνλλ⨯+⨯∆⨯+⨯∆=⨯⨯22sin(i ){sin[(i 1)]}[sin(i )]2(4)i mg f h m λλνλλνλλ-⨯+⨯∆⨯+-⨯∆-⨯+⨯∆=⨯⨯ tan(i )(5)i i h s λλ+⨯∆=0(6)n i ii s s ==∑从而得到水平位移23564s m =在避障段,为了保证最后的避障落点精度和节省推进剂,着陆器精确避障和下降同时进行。

嫦娥三号在距离月面2.4km 处对正下方月面223002300m ⨯ 的范围进行拍照,在降落可以用螺旋式搜索进行障碍的筛选,从上述已求得的水平距离为909.9053km,而在水平偏移少于2300m ,对结果影响小,故忽略。

在精避障段对正下方月面2100100m ⨯ 的范围进行拍照,与精避障方法相同,因而将其简化成垂直向下运动。

对其受力分析如图4;图5 避障阶段的受力分析综合对各个阶段的分析,我们得到最终的水平位移为3514.80410m ⨯我们建立月心系坐标,对探测器的软着陆轨道进行进一步分析,从上述中已知探测器从近月点到着陆点的水平距离,来确定探测器在软着陆过程的偏角值,从而确定近月点的位置。

图6 探测器下降轨道分段示意图 通过上图分析,我们采用三角形的余弦定律;22=arccos(1)(7)2s r θ-可求得=17.0437θ通过资料得知,嫦娥三号在变月轨道是月球的卫星,而卫星分为赤道卫星和极地卫星。

从嫦娥三号的软着陆点来看,其轨道为极地卫星,从而可知近月点的位置为(19.51W,27.08N )正上方15km 处,则远月点的位置为(19.51E, 152.92S )正上方100km 处。

我们利用牛顿的万有引力定律分别对近月点和远月点的速度大小进行求解; 近月点:212G (8)(R h)+hmV Mm R =+得1V =1.68km /s ; 根据对近月点出受力分析,可知速度方向为探测器俯仰姿态角83.17o远月点:我们通过角动量守恒定律进行求解;根据质点系的角动量守恒定律:当质点系所受到的外力对某参考点的力矩的矢量和为零时,则质点系对该参考点的总角动量不随时间变化。

12m (15R)m (100R)(9)V V ⨯⨯+=⨯⨯+得2=1.60km/s V ; 方向远月点弧的切线方向。

4.2. 模型二:软着陆轨道的设计及6个阶段的最优控制策略4.2.1 软着陆轨道的设计建立模型时考虑月球表面没有大气层,且软着陆过程的时间较短,在几百米范围内,可以不考虑月球引力摄动,且月球自转速度比较小,也可以忽略。

我们可以利用二体模型描述系统的运动。

图7 月球软着陆极坐标系如图6所建立的月心极坐标系,在假设着陆轨道在纵向平面内,月心o 为坐标原点,oy 指向动力下降段的开始制动点,ox 指向探测器的开始运动方向。

相关文档
最新文档