带电粒子在圆形磁场区域的运动规律
带电粒子在磁场中的运动旋转圆问题

带电粒子在磁场中的运动是一个充满深度和广度的问题,涉及到物理学中的许多重要概念和原理。
从宏观到微观,从经典到量子,这一主题的探讨可以帮助我们更深入地理解粒子在磁场中的行为,以及相关的物理规律。
一、带电粒子在磁场中的受力和运动1.受力分析当带电粒子进入磁场时,它会受到洛伦兹力的作用,这个力会使粒子发生偏转,并导致其在磁场中运动。
洛伦兹力的大小和方向取决于粒子的电荷大小、速度方向以及磁场的强度和方向。
2.运动轨迹在磁场中,带电粒子的运动轨迹通常是圆形或螺旋形的,具体取决于粒子的速度和磁场的强度。
这种运动旋转圆问题是研究带电粒子在磁场中行为的重要内容之一。
二、经典物理学对带电粒子运动的描述1.运动方程根据洛伦兹力和牛顿定律,可以建立带电粒子在磁场中的运动方程。
通过对这个方程的分析,可以得到粒子在磁场中的运动轨迹和运动规律。
2.圆周运动对于静止的带电粒子,它会在磁场中做匀速圆周运动;而对于具有初始速度的带电粒子,它会做螺旋运动。
这种经典的描述为我们理解带电粒子在磁场中的运动提供了重要参考。
三、量子物理学对带电粒子运动的描述1.量子力学效应在微观尺度下,带电粒子在磁场中的运动会受到量子力学效应的影响,比如磁量子效应和磁旋效应等。
这些效应对带电粒子的运动规律产生重要影响,需要通过量子力学来描述。
2.自旋和磁矩带电粒子除了具有电荷和质量外,还具有自旋和磁矩。
这些特性在磁场中会影响粒子的运动,使得其运动规律更加复杂和微妙。
四、个人观点和理解对于带电粒子在磁场中的运动旋转圆问题,我认为它不仅具有重要的理论意义,还在许多实际应用中发挥着关键作用。
比如在核磁共振成像技术中,正是利用了带电粒子在外加磁场中的运动规律,实现了对人体组织和器官进行高分辨率成像。
深入理解这一问题,不仅可以帮助我们认识自然界的规律,还有助于科学技术的发展和进步。
总结回顾一下,带电粒子在磁场中的运动旋转圆问题是一个充满深度和广度的物理学问题,涉及到经典物理学和量子物理学的交叉领域。
带电粒子在圆形区域磁场中的运动问题探究

粒 子 与 圆筒 碰撞 3次 又 从 入射 孔 射 出 , 以 所 勰析 粒 子 在磁场 中运 动 的轨迹 为 4段半径 相 同的
圆 弧 , 段 圆 弧 的 偏 向 角 为 9 。 每 段 圆 弧 所 对 圆 心 角 每 O. 为 9 。整 个 运 动 用 时 f × 0. 一4 T— T- - .
彝
嚣
拿
速 圆周运 动 的周 期.或 用 t T 3 0计 算 , 中 0为 一0 / 6 其
圆弧所对 的圆心角 , 位 为度. 单
在 圆形 区域磁 场 中的匀 速 圆周 运动 问题作 一浅 析.
1 带 电粒 子在 圆形 区域 磁 场 中运 动轨 迹的 几何特 点
解 决 此题 的关 键 是 由碰 撞 次 数 确 定 每 次 碰 撞 后
直于 y轴 的速 度 从 Y轴 上 的 a点 射 人 第 一象 限 的
区域. 了使 该粒 子能从 z轴上 的 b点 垂 直于 z 轴射 为 出 , 图 2所 示 , 如 可在 适 当 的地 方 加一 个 垂 直 于 : r Oy 平面 的匀 强 磁 场 B. 该 磁 场 分 布 在 一 个 圆 形 区域 若
点连线 是 2个 圆弧 的公用 弦. ② 公用 弦 的中垂 线过 圆形 区 域磁 场 边 界 圆 和运 动粒 子轨迹 圆圆心 , 轨迹 关于 中垂 线对 称. ③ 若 入射 速度方 向指 向圆形 区域 磁场 边界 圆心 , 则 出射速 度 的反 向延 长 线 必 过 圆 形 区 域磁 场 边 界 圆 t 出射 速度 与圆形 区域 磁场 边 界 圆半 径 的夹 角 等 于 7; 入 射速 度与 圆形 区域磁 场边 界 圆半 径 的夹角 . ④ 垂直 入射 速度 和 出射 速度 分别作 垂线 , 两垂 线 的交点 就是轨 迹 圆心. ⑤ 轨 迹 圆弧所对 圆心 角等 于弦切 角 的 2倍 .
带电粒子在磁场中做圆周运动的分析方法

带电粒子在磁场中做圆周运动的分析方法湖北省郧西县第二中学王兴青带电粒子在有界、无界磁场中的运动类试题在高考试题中出现的几率几乎为l00%,涉及临界状态的推断、轨迹图象的描绘等。
试题综合性强、分值大、类型多,能力要求高,有较强的选拔功能,故平时学习时应注意思路和方法的总结。
解答此类问题的基本规律是“四找”:找圆心、找半径、找周期或时间、找几何关系。
一、知识点:若v⊥B,带电粒子在垂直于磁感线的平面内以入射速度v做匀速圆周运动,如右图所示。
1、轨道半径带电粒子在磁场中受到的洛伦兹力: F=qvB粒子做匀速圆周运动的向心力:v2F向=mrv2粒子受到的洛伦兹力提供向心力: qvB=mrm v所以轨道半径公式: r=Bq带电粒子在匀强磁场中做匀速圆周运动的半径跟粒子的运动速率成正比.速率越大.轨道半径也越大.2、周期由r=Bqm v 和T=v r π2得:T= qB m π2 带电粒子在匀强磁场中做匀速圆周运动的周期T 跟轨道半径r 和运动速度v 无关.二、带电粒子在磁场中做圆周运动的分析方法1、圆心的确定带电粒子进入一个有界磁场后的轨道是一段圆弧,如何确定圆心是解决问题的前提,也是解题的关键。
首先,应有一个最基本的思路:即圆心一定在与速度方向垂直的直线上。
在实际问题中圆心位置的确定极为重要,通常有四种情况:(1)已知入射方向和出射方向,通过入射点和出射点分别作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图l 所示,图中P 为入射点,M 为出射点)(2)已知入射方向和出射点的位置时,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心(如图2所示,P为入射点,M 为出射点)。
(3)两条弦的中垂线:如图3所示,带电粒子在匀强磁场中分别经过0、A 、B 三点时,其圆心O ’在OA 、OB 的中垂线的交点上. (4)已知入射点、入射方向和圆周的一条切线:如图4所示,过入射点A 做v 垂线A0.延长v 线与切线CD 交于C 点,做∠ACD 的角平分线交A0于0点,0点即为圆心,求解临界问题常用。
带电粒子在匀强磁场中的运动知识小结

带电粒子在匀强磁场中的运动(知识小结)一.带电粒子在磁场中的运动(1)带电粒子在磁场中运动时,若速度方向与磁感线平行,则粒子不受磁场力,做匀速直线运动;即 ① 为静止状态。
② 则粒子做匀速直线运动。
(2)若速度方向与磁感线垂直,带电粒子在匀强磁场中做匀速圆周运动,洛伦兹力起向心力作用。
(3)若速度方向与磁感线成任意角度,则带电粒子在与磁感线平行的方向上做匀速直线运动,在与磁感线垂直的方向上做匀速圆周运动,它们的合运动是螺线运动。
二、带电粒子在匀强磁场中的圆周运动1.运动分析:洛伦兹力提供向心力,使带电粒子在匀强磁场中做匀速圆周运动.(4)运动时间: (Θ 用弧度作单位 )1.只有垂直于磁感应强度方向进入匀强磁场的带电粒子,才能在磁场中做匀速圆周运动.2.带电粒子做匀速圆周运动的半径与带电粒子进入磁场时速率的大小有关,而周期与速率、半径都无关.三、带电粒子在有界匀强磁场中的匀速圆周运动(往往有临界和极值问题)(一)边界举例:1、直线边界(进出磁场有对称性)规律:如从同一直线边界射入的粒子,再从这一边射出时,速度与边界的夹角相等。
速度与边界的夹角等于圆弧所对圆心角的一半,并且如果把两个速度移到共点时,关于直线轴对称。
2、平行边界(往往有临界和极值问题)(在平行有界磁场里运动,轨迹与边界相切时,粒子恰好不射出边界)3、矩形边界磁场区域为正方形,从a 点沿ab 方向垂直射入匀强磁场:若从c 点射出,则圆心在d 处若从d 点射出,则圆心在ad 连线中点处4.圆形边界(从平面几何的角度看,是粒子轨迹圆与磁场边界圆的两圆相交问题。
)特殊情形:在圆形磁场内,沿径向射入时,必沿径向射出一般情形:磁场圆心O 和运动轨迹圆心O ′都在入射点和出射点连线AB 的中垂线上。
或者说两圆心连线OO ′与两个交点的连线AB 垂直。
(二)求解步骤:(1)定圆心、(2)连半径、(3)画轨迹、(4)作三角形.(5)据半径公式求半径,2.其特征方程为:F 洛=F 向. 3.三个基本公式: (1)向心力公式:qvB =m v 2R ; (2)半径公式:R =mv qB ; (3)周期和频率公式:T =2πm qB =1f ; 222m t qB m qB T θππθπθ==⨯=⨯v L =t再解三角形求其它量;或据三角形求半径,再据半径公式求其它量(6)求时间1、确定圆心的常用方法:(1)已知入射方向和出射方向(两点两方向)时,可以作通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心,如图3-6-6甲所示,P 为入射点,M 为出射点,O 为轨道圆心.(2)已知入射方向和出射点的位置时(两点一方向),可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心,如图3-6-6乙所示,P 为入射点,M 为出射点,O 为轨道圆心.(3)两条弦的中垂线(三点):如图3-6-7所示,带电粒子在匀强磁场中分别经过O 、A 、B 三点时,其圆心O ′在OA 、OB 的中垂线的交点上.(4)已知入射点、入射方向和圆周的一条切线:如图3-6-8所示,过入射点A 做v 垂线AO ,延长v 线与切线CD 交于C 点,做∠ACD 的角平分线交AO 于O 点,O 点即为圆心,求解临界问题常用到此法.(5)已知入射点,入射速度方向和半径大小2.求半径的常用方法 :由于已知条件的不同,求半径有两种方法:一是:利用向心力公式求半径;二是:利用平面几何知识求半径。
高中物理之带电粒子在磁场中的运动知识点

高中物理之带电粒子在磁场中的运动知识点带电粒子在磁场中的运动特点带电粒子在磁场中的运动往往比较复杂,我们只考虑其中几种特殊情况:不考虑粒子本身的重力(一般如:电子、质子、粒子、离子等不考虑它们的重力);磁场为匀强磁场。
①初速度v0与磁场平行:此时洛伦兹力F=0,粒子将沿初速度方向做匀速直线运动。
②初速度与磁场垂直:由于洛伦兹力总与粒子运动方向垂直,粒子在洛伦兹力作用下做匀速圆周运动,其向心力由洛伦兹力提供,所以其轨道半径为,运动周期为。
由此可见:荷质比相同的粒子以相同的速度进入同一磁场,其轨道半径相同;带电量相同的粒子以相同的动量进入同一磁场,其轨道半径相同。
它们运动的周期T与粒子的速度大小无关,与粒子的轨道半径R无关,只要是荷质比相同的粒子,进入同一磁场,其周期相同。
规律方法“一点、两画、三定、四写”求解粒子在磁场中的圆周运动问题(1)一点:在特殊位置或要求粒子到达的位置(如初位置、要求经过的某一位置等);(2)两画:画出速度v和洛伦兹力F两个矢量的方向;(3)三定:定圆心、定半径、定圆心角;(4)四写:写出基本方程带电粒子在匀强磁场中的运算1圆心的确定①因为洛伦兹力指向圆心,根据F洛⊥v,画出粒子运动轨迹中任意两点(一般是射入和射出磁场的两点,如下图甲的P、M两点)的F洛的方向,其延长线的交点即为圆心.(也可以说是任意两点的切线方向的垂直线交点)②做粒子入射点速度方向的垂直线,做出入射点、出射点连线的中垂线,两线的交点即是圆心O.2半径的确定和计算利用平面几何关系,求出该圆的可能半径(或圆心角)。
并注意以下两个重要的几何特点:①粒子速度的偏向角(φ)等于回旋角(α),并等于AB弦与切线的夹角(弦切角θ)的2倍,φ=α=2θ=ω。
②相对的弦切角(θ)相等,与相邻的弦切角(θ')互补,即θ+θ'=180°。
3粒子在磁场中运动时间的确定利用圆心角与弦切角的关系,或者是四边形内角和等于360°计算出圆心角ɑ的大小.由公式,可求出运动时间.如果ɑ为弧度制,则在磁场中运动时间的确定.利用圆心角与弦切角的关系,或者是四边形内角和等于360°计算出圆心角ɑ的大小.由公式,可求出运动时间.如果ɑ为弧度制,则注意圆周运动中有关对称规律如从同一边界射入的粒子,从同一边界射出时,速度与边界的夹角相等;在圆形磁场区域内,沿径向射入的粒子,必沿径向射出。
带电粒子在圆形匀强磁场中的运动规律

带电粒子在圆形匀强磁场中的运动规律作者:张敏来源:《知识窗·教师版》2020年第08期摘要:带电粒子在匀强磁场中的运动是高中物理常见的问题,其中有界磁场是经常考查的知识点,也是学生学习的难点。
究其根源,是学生不理解其中的规律。
关键词:圆形匀强磁场; ;軌迹圆; ;磁场圆; ;磁发散; ;磁聚焦处理带电粒子在匀强磁场中的圆周运动问题,本质是平面几何知识与物理知识的综合运动。
带电粒子在圆形匀强磁场中的运动,主要是从带电粒子射入磁场的方向是否沿着磁场圆的半径、轨迹圆半径与磁场圆半径的大小关系这两个方面入手研究。
一、入射方向沿半径方向射入带电粒子入射速度方向是沿着圆形匀强磁场的半径射入,则出射速度方向的反向延长线必过区域圆的圆心,也就是沿着径向入,必沿着径向出。
如图1所示,设正离子从磁场区域的b 点射出,射出速度方向的延长线与入射方向的直径交点为O’。
正离子在磁场中运动的轨迹为一段圆弧,该轨迹圆弧对应的圆心O’位于初、末速度方向垂线的交点,也在弦ab的垂直平分线上,O’b与区域圆相切,弦ab既是轨迹圆弧对应的弦,又是区域圆的弦。
由此可知,OO’就是弦ab的垂直平分线,O点就是磁场区域圆的圆心。
二、入射方向不沿半径方向射入入射速度方向(不一定指向磁场圆的圆心)与轨迹圆弧对应的弦的夹角为θ(弦切角),则出射速度方向与入射速度方向的偏转角为2θ,轨迹圆强对应的圆心角也为2θ,并且初末速度方向的交点,轨迹圆的圆心,磁场圆的圆心都在孤弦的要直平分线上。
如图2所示,带电粒子从a点射入匀强磁场区城,初速度方向不指向区域圆圆心,若出射点为b,轨迹圆的圆心O’在初速度v0方向的垂线和弦ab的垂直平分线的交点上,入射速度方向与该中垂线的交点为d,可以证明:出射速度方向的反向延长线也过d点,O、d、O’都在弦ab的垂直平分线上。
三、比较磁场圆的半径与轨迹圆的半径大小关系1.当轨迹圆的半径与磁场圆的半径相等时,存在两条特殊规律磁发散是指带电粒子从圆形有界磁场边界上某点射入磁场,若圆周运动的半径与磁场半径相同,则无论在磁场内的速度方向如何,则粒子的出射速度方向与圆形磁场上入射点的切线方向平行,如图3所示。
带电粒子在圆形磁场中运动的规律

带电粒子在磁场中的活动例1.如图所示,在宽度为d磁感应强度为B.程度向外的匀强磁场矩形区域内,一带电粒子以初速度v入射,粒子飞出时偏离原倾向60°,运用以上数据可求出下列物理量中的哪几个变式.若带电粒子以初速度v从A点沿直径入射至磁感应强度为B,半径为R 的圆形磁场,粒子飞出时偏离原倾向60°,运用以上数据可求出下列物理量中的哪几个运用1.如图所示,长方形 abcd 长 ad = ,宽 ab = , O.e分离是 ad.bc 的中点,以 ad 为直径的半圆内有垂直纸面向里的匀强磁场(鸿沟上无磁场),磁感应强度 B=0.25T .一群不计重力.质量 m =3 ×10-7 kg .电荷量 q =+2×10-3C 的带电粒子以速度v =5×l02m/s 沿垂直 ad 倾向且垂直于磁场射入磁场区域 ( )A.从 Od 边射入的粒子,出射点全体散布在 Oa 边 B.从 aO边射入的粒子,出射点全体散布在 ab 边C.从Od 边射入的粒子,出射点散布在Oa 边和 ab 边D.从aO边射入的粒子,出射点散布在ab 边和bc边运用2.在以坐标原点O为圆心.半径为r的圆形区域内,消失磁感应强度大小为B.倾向垂直于纸面向里的匀强磁场,如图10所示.一个不计重力的带电粒子从磁场鸿沟与x轴的交点A处以速度v沿-x倾向射入磁场,正好从磁场鸿沟与y轴的交点C处沿+y倾向飞出.(1)请断定该粒子带何种电荷,并求出其比荷q/m;(2)若磁场的倾向和地点空间规模不变,而磁感应强度的大小变成B′,该粒子仍从A处以雷同的速度射入磁场,但飞出磁场时的速度倾向相对于入射倾向转变了60°角,求磁感应强度B′多大?此次粒子在磁场中活动所用时光t是若干?例2.如图所示,一束电子流以不合速度,由鸿沟为圆形的匀强磁场的鸿沟上一点A,沿直径倾向射入磁场,已知磁感应强度倾向垂直圆平面,则电子在磁场中活动时:()A轨迹长的活动时光长B速度大的活动时光长C偏转角大的活动时光长D速度为某一值时不克不及穿出该磁场变式.如右图所示,直角三角形ABC中消失一匀强磁场,比荷雷同的两N O M P Q B B N O M P Q BB 个粒子沿AB 倾向射入磁场,分离从AC 边上的P.Q 两点射出,则例3.如右图所示,在半径为R 的圆形区域内充满磁感应强度为B 的匀强磁场,MN 是一竖直放置的感光板.从圆形磁场最高点P 垂直磁场射入大量的带正电.电荷量为q.质量为m.速度为v 的粒子,不斟酌粒子间的互相感化力,关于这些粒子的活动以下说法准确的是A.只要对着圆心入射,出射后均可垂直打在MN 上B.对着圆心入射的粒子,其出射倾向的反向延伸线不必定过圆心C.对着圆心入射的粒子,速度越大在磁场中经由过程的弧长越长,时光也越长m qBR v /=,沿不合倾向入射的粒子出射后均可垂直打在MN 上(出射速度有什么关系?)若雷同速度平行经由p 点的直径进入磁场,出射点又有什么纪律? 例4.如图所示,半径为R 的绝缘筒中为匀强磁场区域,磁感强度为B,磁感线垂直纸面向里.一个质量为m.电量为q 的正离子,以速度v 从圆筒上C 孔处沿直径倾向射入筒内,假如离子与圆筒碰撞两次(碰撞时不损掉能量,且碰撞所用的时光不计),从C 孔飞出,则离子在磁场中活动的时光为:( )A.v R π2B.v R π3C.qB m πD.qBm π32 拓展:一个质量为m.电量为q 的离子,以速度v 从圆筒上C 孔处沿直径倾向射入筒内,从R 孔飞出,则离子在磁场中活动的时光为( )例5.如图所示,直线MN 下方无磁场,上方空间消失一个匀强磁场,其鸿沟线是半径为R 的半圆,磁场倾向相垂直于纸面,磁感应强度大小为B.现有一质量为m.电荷量为q 的带负电微粒从P 点沿半径倾向向左侧射出,不计微粒的重力.P.O.Q 三点均在直线MN 上.(1)微粒在磁场中活动的周期?(2)可否回到Q 点?(3)若在半圆形内加一磁场强度也为B 的磁场,可否回到Q 点,若能请画出粒子的活动轨迹(至少三种).(4)小结:圆形磁场区域中速度与轨迹的几何特色? 运用1:如图所示,直线MN 下方无磁场,上方空间消失两个匀强磁场Ⅰ和Ⅱ,其分界限是以O 为圆心.半径为R 的半圆弧,Ⅰ和Ⅱ的磁场倾向相反且垂直于纸面,磁感应强度大小都为B.现有一质量为m.电荷量为q 的带负电微粒从P 点沿PM 倾向向左侧射出不计微粒的重力.P.O.Q 三点均在直线MN 上,求:(1)若微粒只在磁场Ⅰ中活动,可否到达Q 点? (2)画出可以或许到达Q 点的离子活动轨迹(至少二种) (3)求出可以或许到达Q 点的离子的最大速度.运用2.如图所示,直线MN 下方无磁场,上方空间消失两个匀强磁场,其分界限B 是半径为R 的半圆,两侧的磁场倾向相反且垂直于纸面,磁感应强度大小都为B .现有一质量为m.电荷量为q 的带负电微粒从P 点沿半径倾向向左侧射出,最终打到Q 点,不计微粒的重力.求:(1)微粒在磁场中活动的周期.(2)从P 点到Q 点,微粒的活动速度大小及活动时光.(3)若向里磁场是有界的,散布在以O点为圆心.半径为R 和2R 的两半圆之间的区域,上述微粒仍从P 点沿半径倾向向左侧射出,且微粒仍能到达Q 点,求其速度的最大值.3.结论:带电粒子进入圆形磁场,,中垂线经由两圆的圆心,课后演习1.在直径为d 的圆形区域内消失着平均磁场,磁感应强度为B,磁场倾向垂直于圆面指向纸外.一电荷量为q.质量为m 的带正电粒子,从磁场区域的一条直径AC 上的A 点沿纸面射入磁场,其速度倾向与AC 成︒=15α角,如图所示.若此粒子在磁场区域活动进程,速度的倾向一共转变了90º.重力可疏忽不计,求:(1)该粒子在磁场区域内活动所用的时光?(2)该粒子射入时的速度大小?3.如图,半径为R=10cm 的圆形匀强磁场,区域鸿沟跟y 轴相切于坐标原点O,磁感应强度B = 0.332T,倾向垂直纸面向里,在O 处有一放射源S,可沿纸面向各个倾向射出速度均为v=3.2×106m/s 的α粒子,已知α粒子质量为m=6.64×10-27kg,电荷量q=3.2×10-19C.(1)画出α粒子经由过程磁场空间做圆周活动的圆心点的连线线外形;(2)求出α粒子经由过程磁场的最大倾向角;(3)再以过O 并垂直纸面的直线为轴扭转磁场区域,能使穿过磁场区域且偏转角最大的α粒子射出磁场后,沿y 轴正倾向活动,则圆形磁场直径OA 至少应转过多大角度?4.如图(a)所示,在以O 为圆心,表里半径分离为R1和R2的圆环区域内,消失辐射状电场和垂直纸面的匀强磁场,表里圆间的电势差U 为常量,R1=R0,R2=3R0.一电荷量为+q.质量为m 的粒子从内圆上的A 点进入该区域,不计重力.(1)已知粒子从外圆上以速度v1射出,求粒子在A 点的初速度v0的大小(2)若撤去电场,如图(b),已知粒子从OA 延伸线与外圆的交点C 以速度v2射出,倾向与OA 延伸线成45°角,求磁感应强度的大小及粒子在磁场中活动的时光(3)在图19(b)中,若粒子从A 点进入磁场,速度大小为v3,倾向不肯定,要使粒子必定可以或许从外圆射出,磁感应强度应小于若干?解:(1)由 200v Bqv m R = (2分) 02r T v π= (2分)得2m T qBπ= (1分) (2)粒子的活动轨迹将磁场鸿沟分成n 等分(n=2,3,4……) 由几何常识可得:2n πθ= ;tan r Rθ= ; (1分)又 200v Bv q m r = (1分)得 0tan 2BqR v m n π= (n=2,3,4……) (1分) 当n 为偶数时,由对称性可得 2n nm t T Bqπ== (n=2,4,6……) (1分) 当n 为奇数时,t 为周期的整数倍加上第一段的活动时光,即21(1)22n n m n t T T nBqππππ+-+=+= (n=3,5,7……) (1分)得 2cos 1sin 22n n ππ>+ (当n=2时 不成立,如图 (1分)比较当n=3.n=4时的活动半径,知 当n=3时,活动半径最大,粒子的速度最大.tan 2mv r R n Bq π=== (2分)得:0v = (1分)。
带电粒子旋转圆问题有界磁场

带电粒子旋转圆问题
当一个带电粒子在有界磁场中旋转成圆形轨道时,其运动可由洛伦兹力和向心力共同决定。
洛伦兹力是由磁场和带电粒子的电荷性质决定的力,它始终垂直于带电粒子的速度和磁场方向。
向心力则是由带电粒子的质量和速度决定的力,它指向圆心,使得带电粒子保持在圆形轨道上。
首先,考虑洛伦兹力的作用。
洛伦兹力的大小与带电粒子的电荷大小、速度以及磁场强度相关。
在磁场中,洛伦兹力会使带电粒子受到一个向心力的作用,引导其沿着圆形轨道运动。
洛伦兹力的方向始终垂直于速度和磁场的方向,这使得带电粒子的速度方向会不断发生变化,从而导致其轨道是一个圆形。
其次,向心力也会参与其中。
向心力始终指向圆心,使得带电粒子保持在圆形轨道上。
向心力的大小与带电粒子的质量和速度有关。
在带电粒子绕圆形轨道运动时,向心力和洛伦兹力相等,使得带电粒子保持运动的稳定性。
需要注意的是,带电粒子的质量、电荷大小、速度和磁场强度等因素会影响带电粒子在有界磁场中旋转圆的半径和速度。
通过调节磁场强度或改变粒子的性质,可以实现对带电粒子旋转圆运动的调控。
总之,在有界磁场中,带电粒子旋转成圆形轨道的问题涉及到洛伦兹力和向心力的相互作用。
这种运动是通过调节带电粒子的性质和磁场强度来实现的,可以用来研究电磁场中粒子的运动规律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
带电粒子在圆形磁场区域的运动规律
处理带电粒子在匀强磁场中的圆周运动问题,关键就是综合运用平面几何知识与物理知识。
最重要的是,画出准确、清晰的运动轨迹。
对于带电粒子在圆形磁场区域中做匀速圆周运动,有下面两个规律,可以帮助大家准确、清晰画出带电粒子的圆周运动的轨迹。
规律一:带电粒子沿着半径方向射入圆形边界内的匀强磁场,经过一段匀速圆周运动偏转后,离开磁场时射出圆形区域的速度的反向延长通过边界圆的圆心。
规律二:入射速度方向(不一定指向区域圆圆心)与轨迹圆弧对应的弦的夹角为θ(弦切角),则出射速度方向与入射速度方向的偏转角为2θ,轨迹圆弧对应的圆心角也为θ2,并且初末速度方向的交点、轨迹圆的圆心、区域圆的圆心都在弧弦的垂直平分线上。
以上两个规律,利用几何知识很容易证明,在解题时,可以直接应用,请看下面的两个例子:
例1如图1所示,在平面坐标系xoy 内,第Ⅱ、Ⅲ象限内
存在沿y 轴正方向的匀强电场,第I 、Ⅳ象限内存在半径为L
的圆形匀强磁场,磁场圆心在M (L ,0)点,磁场方向垂直于坐标平面向外.一带正电粒子从第Ⅲ象限中的Q (一2L ,一L )点以速度0v 沿x 轴正方向射出,恰好从坐标原点O 进入磁场,从P (2L ,O )点射出磁场.不计粒子重力,求: (1)电场强度与磁感应强度大小之比 (2)粒子在磁场与电场中运动时间之比 解析:(1)设粒子的质量和所带正电荷分别为m 和q ,粒子在电场中运动,由平抛运动规律得:102t v L =
2
12
1at L =
,又牛顿运动定律得:ma qE = 粒子到达O 点时沿y +方向分速度为
0v at v y ==,1tan 0
==
v v y α 故045=α,粒
子在磁场中的速度为02v v =
,应用规律二,圆
心角为:0
902=α,画出的轨迹如图2所示,
由r
mv Bqv 2
=,由几何关系得L r 2=
得:
2
v B E = (2)在磁场中运动的周期v
r
T π2=
粒子在磁场中运动时间为0
2241v L T t π==
图
2
图1
得
4
12π
=t t 例2如图3所示,真空中有一以(r ,O )为圆心,半径为r 的圆柱形匀强磁场区域,磁场的磁感应强度大小为B ,方向垂直于纸面向里,在y ≤一r 的范围内,有方向水平向右的匀强电场,电场强度的大小为E 。
从0点向不同方向发射速率相同的电子,电子的运动轨迹均在纸面内。
已知电子的电量为e ,质量为m ,电子在磁场中的偏转半径也为r ,不计重力及阻力的作用,求:
(1)电子射入磁场时的速度大小; (2)速度方向沿x 轴正方向射入磁场的电子,到达y 轴所
需的时间;
(3)速度方向与x 轴正方向成30°角(如图3中所示)
射入磁场的电子,到达y 轴的位置到原点O 的距离 解析:(1)电子射入磁场后做匀速圆周运动,洛伦兹力提
供向心力
由r v m evB 2=得:m
eBr
v =
(2)电子沿x 轴正方向,即沿径向射入磁场,必沿径向射
出,又电子在磁场中的偏转半径也为r ,应用规律一可画
出运动轨迹如图4,即电子在磁场中经历了4
1
圆弧,以速度v 垂直于电场方向进入电场,由于eB m
v r T ππ22=
=,所以,电子在磁场中运动的时间为eB
m
T t 241π==
电子进入电场后做类平抛运动,沿电场方向运动r 后达到y 轴,因此有
2
221at r =
eE mr
a r t 222==
所求时间为eE
mr
eB
m
t t t 2221+
=
+=π (3)电子速度方向与x 轴正方向成30°角,电子在磁场中的偏转
半径和区域圆的半径都为r ,应用规律二可清晰、准确画出带电粒子的圆周运动的轨迹,如图5所示,可以看出电子在磁场中转过120°角后从P 点垂直电场方向进入电场,P 点距y 轴的距离为
r r r x 5.130sin 1=︒+=
设电子从进入电场到达到y 轴所需时间为t 3,则
由2
3121t m
eE x =
得:
图3
图4
图5
eE
mr
t 33=
在y 方向上电子做匀速直线运动,因此有mE er
Br
vt y 33==
所以,电子到达y 轴的位置与原点O 的距离为mE
er
Br
r 3+ 练习:
1在以坐标原点O 为圆心、半径为r 的圆形区域内,存在磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场,如图6所示。
一个不
计重力的带电量为q ,质量为m 的粒子经两个平
板加速,板间电压为U ,从磁场边界与x 轴的交点A 处沿-x 方向射入磁场,恰好从磁场边界与y
轴的交点C 处沿+y 方向飞出。
⑴ 请判断该粒子带何种电荷,并求出其荷质
比。
⑵ 若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B ′,该粒子仍从A 处射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°角,求磁感应强度B ′多大?
答案:(1)负电
Brm mqU 2 (2)
B 3
3
2如图7所示,在某空间实验室中,有两个靠在一起的等大的圆柱形区域,分别存在着等大反向的匀强磁场,磁感应强度B = 0.10 T ,磁场区域半径r =
3
3
2 m ,左侧区圆心为O 1,磁场向里,右侧区圆心为O 2,磁场向外,两区域切点为C 。
今有质量m=3.2×10-26 kg 、带电荷量q = 1.6×10-19 C 的某种离子,从左侧区边缘的A 点被电场加速,以速度v = 106 m/s 正对O 1的方向垂直射入磁场,它将穿越C 点后再从右侧区穿出。
求: ⑴ 该离子通过两磁场区域所用的时间。
⑵ 离子离开右侧区域的出射点偏离最初入射方向的侧移距离多大?(侧移距离指垂直初速度方向上移动的距离)。
答案: (1)4.19×10-6 s (2)32 m
图7
x
y O
A
B 图6 C。