带电粒子在圆形磁场中的运动

合集下载

带电粒子在磁场中的运动旋转圆问题

带电粒子在磁场中的运动旋转圆问题

带电粒子在磁场中的运动是一个充满深度和广度的问题,涉及到物理学中的许多重要概念和原理。

从宏观到微观,从经典到量子,这一主题的探讨可以帮助我们更深入地理解粒子在磁场中的行为,以及相关的物理规律。

一、带电粒子在磁场中的受力和运动1.受力分析当带电粒子进入磁场时,它会受到洛伦兹力的作用,这个力会使粒子发生偏转,并导致其在磁场中运动。

洛伦兹力的大小和方向取决于粒子的电荷大小、速度方向以及磁场的强度和方向。

2.运动轨迹在磁场中,带电粒子的运动轨迹通常是圆形或螺旋形的,具体取决于粒子的速度和磁场的强度。

这种运动旋转圆问题是研究带电粒子在磁场中行为的重要内容之一。

二、经典物理学对带电粒子运动的描述1.运动方程根据洛伦兹力和牛顿定律,可以建立带电粒子在磁场中的运动方程。

通过对这个方程的分析,可以得到粒子在磁场中的运动轨迹和运动规律。

2.圆周运动对于静止的带电粒子,它会在磁场中做匀速圆周运动;而对于具有初始速度的带电粒子,它会做螺旋运动。

这种经典的描述为我们理解带电粒子在磁场中的运动提供了重要参考。

三、量子物理学对带电粒子运动的描述1.量子力学效应在微观尺度下,带电粒子在磁场中的运动会受到量子力学效应的影响,比如磁量子效应和磁旋效应等。

这些效应对带电粒子的运动规律产生重要影响,需要通过量子力学来描述。

2.自旋和磁矩带电粒子除了具有电荷和质量外,还具有自旋和磁矩。

这些特性在磁场中会影响粒子的运动,使得其运动规律更加复杂和微妙。

四、个人观点和理解对于带电粒子在磁场中的运动旋转圆问题,我认为它不仅具有重要的理论意义,还在许多实际应用中发挥着关键作用。

比如在核磁共振成像技术中,正是利用了带电粒子在外加磁场中的运动规律,实现了对人体组织和器官进行高分辨率成像。

深入理解这一问题,不仅可以帮助我们认识自然界的规律,还有助于科学技术的发展和进步。

总结回顾一下,带电粒子在磁场中的运动旋转圆问题是一个充满深度和广度的物理学问题,涉及到经典物理学和量子物理学的交叉领域。

带电粒子在匀强磁场中的匀速圆周运动

带电粒子在匀强磁场中的匀速圆周运动

洛伦兹力提供向心力,使带电 粒子绕固定点做圆周运动。
运动过程中,带电粒子的速度 方向时刻改变,但速度大小保 持不变。
周期和半径公式
周期公式
$T = frac{2pi m}{qB}$,其中$m$是带电粒子的质量,$q$是带电粒子的电荷 量,$B$是匀强磁场的磁感应强度。
半径公式
$r = frac{mv}{qB}$,其中$v$是带电粒子运动的速度。
偏转方向和速度大小不变
偏转方向
带电粒子在匀强磁场中做匀速圆周运 动时,其偏转方向与磁场方向垂直。
速度大小不变
由于洛伦兹力始终与带电粒子的速度 方向垂直,因此洛伦兹力不做功,带 电粒子的速度大小保持不变。
04 带电粒子在磁场中的运动 规律
周期与速度的关系
总结词
带电粒子在匀强磁场中做匀速圆周运动时,其周期与速度无关,即T=恒定值。
域。
核聚变反应
在高温高压条件下,带电粒子在匀 强磁场中高速旋转,可以引发核聚 变反应,为未来的清洁能源提供可 能。
磁流体发电
利用高温导电流体在匀强磁场中做 高速旋转运动,可以将机械能转化 为电能,具有高效、环保的优点。
对未来研究的展望
1 2 3
探索极端条件下的运动特性
随着实验技术的不断发展,未来可以进一步探索 带电粒子在更高温度、更高磁感应强度等极端条 件下的运动特性。
详细描述
带电粒子在匀强磁场中受到洛伦兹力作用,该力提供向心力使粒子做匀速圆周运 动。根据牛顿第二定律和向心力公式,粒子的周期T与速度v无关,只与磁场强度 B和粒子的质量m有关。
周期与磁场强度的关系
总结词
带电粒子在匀强磁场中做匀速圆周运 动时,其周期与磁场强度成正比。
详细描述

带电粒子在磁场中的运动(磁聚焦和磁扩散)

带电粒子在磁场中的运动(磁聚焦和磁扩散)
Q
θR O/
OM
x
图 (b)
(3)带电微粒在y轴右方(X> O)的区域离开磁场并做 匀速直线运动.靠近上端发射出来的带电微粒在穿出 磁场后会射向X轴正方向的无穷远处,靠近下端发射 出来的带电微粒会在靠近原点之处穿出磁场.所以, 这束带电微粒与X轴相交的区域范围是X> 0.
装带 置点
微 粒 发 射
Pv Cr
(2)这束带电微粒都通过坐标原点。 如图(b)所示,从任一点P水平进入磁场的 带电微粒在磁场中做半径为R 的匀速圆周运动,圆 心位于其正下方的Q点,设微粒从M 点离开磁 场.可证明四边形PO’ MQ是菱形,则M 点就是坐 标原点,故这束带电微粒都通过坐标原点0.
y
v AC
R O/
O
x
图 (a)
y
Pv R
y
D
C
v0
O
x
A
B
S=2(πa2/4-a2/2) =(π-2)a2/2
解:(1)设匀强磁场的磁感应强度的大小为B。令圆弧AEC是自C点垂直于 BC入射的电子在磁场中的运行轨道。依题意,圆心在A、C连线的中垂线上, 故B点即为圆心,圆半径为a,按照牛顿定律有 ev0B= mv02/a,得B= mv0/ea。 (2)自BC边上其他点入射的电子运动轨道只能在BAEC区域中。因而,圆弧 AEC是所求的最小磁场区域的一个边界。
(1)从A点射出的带电微粒平行于x轴从C点进入有磁场区
域,并从坐标原点O沿y轴负方向离开,求电场强度和磁感
应强度的大小与方向。
y
(2)请指出这束带电微粒与x轴相 带
交的区域,并说明理由。
点 微

(3)在这束带电磁微粒初速度变为
发 射

带电粒子在磁场中的运动动态圆法课件

带电粒子在磁场中的运动动态圆法课件
应用潜力。
探索动态圆法与其他物理方法的结合, 以解决更复杂、更广泛的物理问题。
开发基于动态圆法的计算机模拟软件, 为实验研究和工程应用提供更准确、更
便捷的工具。
THANKS
感谢观看
稳定性
动态圆在磁场中的运动是稳定的 ,只要洛伦兹力与向心力平衡, 带电粒子就会做稳定的圆周运动 。
05
动态圆法在物理实验中的应用
实验原理和步骤
• 实验原理:动态圆法是一种通过观察带电粒子在磁场中的运动 轨迹来研究磁场特性的实验方法。通过改变磁场强度或粒子速 度,可以观察到轨迹圆半径的变化,从而得到磁场与粒子运动 之间的关系。
课程目标和意义
掌握动态圆法的基本原理和计算 方法,能够运用动态圆法解决实
际问题。
理解带电粒子在磁场中运动的物 理机制,提高对电磁学原理的理
解和应用能力。
通过学习动态圆法,培养学生的 逻辑思维和数学分析能力,为进 一步学习物理学和相关领域打下
基础。
02
带电粒子在磁场中的基本性质
电荷在磁场中的受力
在等离子体物理实验中,动态圆法也 被用来研究等离子体的特性和行为。
在粒子加速器、回旋加速器、核聚变 装置等实验设备中,需要利用动态圆 法来研究带电粒子的运动轨迹和行为。
04
带电粒子在磁场中的动态圆运动
动态圆在磁场中的受力分析
洛伦兹力
带电粒子在磁场中受到的力称为洛伦兹力,其方向由左手定则确定,大小为$F = qvBsintheta$,其中$q$是带电粒子的电荷量,$v$是速度,$B$是磁感应 强度,$theta$是速度与磁感应强度的夹角。
实验结果和结论
实验结果
通过动态圆法实验,可以观察到带电粒子在磁场中的运动轨迹呈现圆形,并且随着磁场强度的增加或粒子速度的 减小,轨迹圆的半径逐渐减小。实验结果与理论值基本一致。

带电粒子在圆形匀强磁场中的运动规律

带电粒子在圆形匀强磁场中的运动规律

带电粒子在圆形匀强磁场中的运动规律作者:张敏来源:《知识窗·教师版》2020年第08期摘要:带电粒子在匀强磁场中的运动是高中物理常见的问题,其中有界磁场是经常考查的知识点,也是学生学习的难点。

究其根源,是学生不理解其中的规律。

关键词:圆形匀强磁场; ;軌迹圆; ;磁场圆; ;磁发散; ;磁聚焦处理带电粒子在匀强磁场中的圆周运动问题,本质是平面几何知识与物理知识的综合运动。

带电粒子在圆形匀强磁场中的运动,主要是从带电粒子射入磁场的方向是否沿着磁场圆的半径、轨迹圆半径与磁场圆半径的大小关系这两个方面入手研究。

一、入射方向沿半径方向射入带电粒子入射速度方向是沿着圆形匀强磁场的半径射入,则出射速度方向的反向延长线必过区域圆的圆心,也就是沿着径向入,必沿着径向出。

如图1所示,设正离子从磁场区域的b 点射出,射出速度方向的延长线与入射方向的直径交点为O’。

正离子在磁场中运动的轨迹为一段圆弧,该轨迹圆弧对应的圆心O’位于初、末速度方向垂线的交点,也在弦ab的垂直平分线上,O’b与区域圆相切,弦ab既是轨迹圆弧对应的弦,又是区域圆的弦。

由此可知,OO’就是弦ab的垂直平分线,O点就是磁场区域圆的圆心。

二、入射方向不沿半径方向射入入射速度方向(不一定指向磁场圆的圆心)与轨迹圆弧对应的弦的夹角为θ(弦切角),则出射速度方向与入射速度方向的偏转角为2θ,轨迹圆强对应的圆心角也为2θ,并且初末速度方向的交点,轨迹圆的圆心,磁场圆的圆心都在孤弦的要直平分线上。

如图2所示,带电粒子从a点射入匀强磁场区城,初速度方向不指向区域圆圆心,若出射点为b,轨迹圆的圆心O’在初速度v0方向的垂线和弦ab的垂直平分线的交点上,入射速度方向与该中垂线的交点为d,可以证明:出射速度方向的反向延长线也过d点,O、d、O’都在弦ab的垂直平分线上。

三、比较磁场圆的半径与轨迹圆的半径大小关系1.当轨迹圆的半径与磁场圆的半径相等时,存在两条特殊规律磁发散是指带电粒子从圆形有界磁场边界上某点射入磁场,若圆周运动的半径与磁场半径相同,则无论在磁场内的速度方向如何,则粒子的出射速度方向与圆形磁场上入射点的切线方向平行,如图3所示。

带电粒子旋转圆问题有界磁场

带电粒子旋转圆问题有界磁场

带电粒子旋转圆问题
当一个带电粒子在有界磁场中旋转成圆形轨道时,其运动可由洛伦兹力和向心力共同决定。

洛伦兹力是由磁场和带电粒子的电荷性质决定的力,它始终垂直于带电粒子的速度和磁场方向。

向心力则是由带电粒子的质量和速度决定的力,它指向圆心,使得带电粒子保持在圆形轨道上。

首先,考虑洛伦兹力的作用。

洛伦兹力的大小与带电粒子的电荷大小、速度以及磁场强度相关。

在磁场中,洛伦兹力会使带电粒子受到一个向心力的作用,引导其沿着圆形轨道运动。

洛伦兹力的方向始终垂直于速度和磁场的方向,这使得带电粒子的速度方向会不断发生变化,从而导致其轨道是一个圆形。

其次,向心力也会参与其中。

向心力始终指向圆心,使得带电粒子保持在圆形轨道上。

向心力的大小与带电粒子的质量和速度有关。

在带电粒子绕圆形轨道运动时,向心力和洛伦兹力相等,使得带电粒子保持运动的稳定性。

需要注意的是,带电粒子的质量、电荷大小、速度和磁场强度等因素会影响带电粒子在有界磁场中旋转圆的半径和速度。

通过调节磁场强度或改变粒子的性质,可以实现对带电粒子旋转圆运动的调控。

总之,在有界磁场中,带电粒子旋转成圆形轨道的问题涉及到洛伦兹力和向心力的相互作用。

这种运动是通过调节带电粒子的性质和磁场强度来实现的,可以用来研究电磁场中粒子的运动规律。

带电粒子在圆形边界磁场中运动 (微课课件)

带电粒子在圆形边界磁场中运动 (微课课件)
带电粒子在圆形边界磁场中运动
1交于圆心:带电粒子沿指向圆心的方向进入磁场,则出磁 场时速度矢量的反向延长线一定过圆心,即两速度矢量相交于 圆心;如左下图所示. b. 直径最小:带电粒子从圆与某直径的一个交点射入磁场则从 该直径与圆的另一交点射出时,磁场区域最小.如右下图所示.
3、环状磁场区域
a. 带电粒子沿(逆)半径方向射入磁场,若能返回同一边界, 则一定逆(沿)半径方向射出磁场 b. 最值相切:如下图,当带电粒子的运动轨迹与圆相切时,粒 子有最大速度vm或磁场有最小磁感应强度B.
4、事例分析
地磁场可以“屏蔽”来自太空的带电粒子,防止这些高速运动的带 电粒子对地球带来的危害.在高能物理实验中, 为了避免宇宙射线中的带电粒子对实验的影响, 可在实验装置外加磁场予以屏蔽.如图所示,半 径为r2的圆管形实验通道为实验中高能带电粒子 的通道,在r2到r1的圆环形加有匀强磁场.假设来 自太空的带电粒子的最大速度为v,粒子均沿半 径方向射入磁场区,为了使这些粒子均不能进入实验通道,则磁感应强 度B至少为多大?已知带电粒子的质量均为m,电荷量均为-q.

带电粒子在磁场中的运动

带电粒子在磁场中的运动

带电粒子在磁场中的运动因为洛伦兹力F始终与速度v垂直,即F只改变速度方向而不改变速度的大小,所以运动电荷非平行与磁感线进入匀强磁场且仅受洛伦兹力时,一定做匀速圆周运动,由洛伦磁力提==2/。

带电粒子在磁场中运动问题大致可分两种情况:1. 做供向心力,即F qvB mv R完整的圆周运动(在无界磁场或有界磁场中);2. 做一段圆弧运动(一般在有界磁场中)。

无论何种情况,其关键均在圆心、半径的确定上。

1. 找圆心方法1:若已知粒子轨迹上的两点的速度方向,则可根据洛伦兹力F⊥v,分别确定两点处洛伦兹力F的方向,其交点即为圆心。

方法2:若已知粒子轨迹上的两点和其中一点的速度方向,则可作出此两点的连线(即过这两点的圆弧的弦)的中垂线,再画出已知点v的垂线,中垂线与垂线的交点即为圆心。

2. 求半径圆心确定下来后,半径也随之确定。

一般可运用平面几何知识来求半径的长度。

3. 画轨迹在圆心和半径确定后可根据左手定则和题意画出粒子在磁场中的轨迹图。

4. 应用对称规律带电粒子如果从一直线边界进入又从该边界射出,则其轨迹关于入射点和出射点线段的中垂线对称,入射速度方向与出射速度方向与边界的夹角相等,利用这一结论可以轻松画出粒子的轨迹。

临界点是粒子轨迹发生质的变化的转折点,所以只要画出临界点的轨迹就可以使问题得解。

一、由两速度的垂线定圆心例1. 电视机的显像管中,电子(质量为m,带电量为e)束的偏转是用磁偏转技术实现的。

电子束经过电压为U的加速电场后,进入一圆形匀强磁场区,如图1所示,磁场方向垂直于圆面,磁场区的中心为O,半径为r。

当不加磁场时,电子束将通过O点打到屏幕的中心M点。

为了让电子束射到屏幕边缘P,需要加磁场,使电子束偏转一已知角度θ,此时磁场的磁感强度B应为多少?图1解析:如图2所示,电子在匀强磁场中做圆周运动,圆周上的两点a、b分别为进入和射出的点。

做a、b点速度的垂线,交点O1即为轨迹圆的圆心。

图2设电子进入磁场时的速度为v,对电子在电场中的运动过程有=22/eU mv对电子在磁场中的运动(设轨道半径为R)有=2/evB mv R由图可知,偏转角θ与r、R的关系为θ2=r Rtan(/)/联立以上三式解得θ122=(/)/tan(/)B r mU e二、由两条弦的垂直平分线定圆心例2. 如图3所示,有垂直坐标平面的范围足够大的匀强磁场,磁感应强度为B,方向向里。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

带电粒子在圆形磁场中的运动
1.如图所示,在真空中半径为r=3×10-2m的圆形区域内,有一匀强磁场,磁场的磁感应强度B=0.2T,方向垂直纸面向外.一带正电粒子以v0=1.2×106m/s的初速度从磁场边界上的直径AB一端a点射入磁场,已知该粒子的比荷q/m=1.0×108C/kg,不计粒子的重力,
(1)若已知初速度方向AB方向,求粒子通过磁场的偏向角和时间。

(2)如果不改变磁场,你有哪些方法改变偏向角?
(3)粒子以什么角度入射,在磁场中运动的时间最长?最长时间是多少?
请总结:带电粒子通过圆形磁场的轨迹特点和解题策略。

(4)如果磁场不变,粒子正对AB射入,要使粒子射出场区时的速度与入射方向的夹角为90°,则需要具备什么条件?
(5)在上一问题的前提下,如果粒子以任意角度从A点射入磁场,则正离子射出磁场区域的方向有什么特点?
(6)设在某一平面内有M、N两点,由M点向平面内各个方向发射速率均为的电子,请设计一种匀强磁场的分布,使所有从M点出射的电子均能汇集到N点。

2.(09年浙江卷)25.(22分)如图8.5-11所示,x轴正方向水平向右,y轴正方向竖直向上。

在xOy平面内有与y轴平行的匀强电场,在半径为R的圆内还有与xOy平面垂直的匀强磁场。

在圆的左边放置一带电微粒发射装置,它沿x轴正方向发射出一束具有相同质量m、电荷量q(q>0)和初速度v的带电微粒。

发射时,这束带电微粒分布在0<y<2R的区间内。

已知重力加速度大小为g。

(1)从A点射出的带电微粒平行于x轴从C点进入有磁场区域,并从坐标原点O沿y 轴负方向离开,求点场强度和磁感应强度的大小和方向。

(2)请指出这束带电微粒与x轴相交的区域,并说明理由。

(3)若这束带电微粒初速度变为2v,那么它们与x轴相交的区域又在哪里?并说明理由。

3.匀强磁场,磁场方向垂直于xy平面,在xy平面上,磁场分布在以O为中心的一个圆形区域内。

一个质量为m、电荷量为q的带电粒子,由原点O开始运动,初速为v,方向沿x正方向。

后来,粒子经过y轴上的P点,此时速度方向与y轴的夹角为30°,P到O 的距离为L,如图所示。

不计重力的影响。

求磁场的磁感应强度B的大小和xy平面上磁场区域的半径R。

(甘肃等四省理综卷)。

相关文档
最新文档