半导体生产流程
半导体生产工艺流程

半导体生产工艺流程1.原材料准备:半导体生产的原材料主要包括硅、氮化镓、砷化镓、硒化镉等。
首先需要对原材料进行加工和准备,以确保其质量和纯度。
2.原料制备:原材料通过熔炼、混合等工艺制备成为用于生产半导体的原料。
3.单晶生长:利用单晶生长技术,在高温下将原料转化为单晶硅或其他单晶半导体材料。
这一步骤是半导体生产的核心步骤,决定了半导体器件的质量和性能。
4.切割:将生长的单晶材料切割成片,通常为几毫米到几十毫米的薄片。
这些切割片将用于制造半导体器件。
5.清洗:将切割后的半导体片进行清洗,以去除表面的杂质和污染物。
6.晶圆制备:将清洗后的半导体片进行研磨和打磨,使其表面光滑均匀,并进行化学处理,以增强半导体片的表面特性。
7.掺杂和扩散:将半导体片通过高温处理,将掺杂剂引入其表面,使其在特定区域具有特定的电子特性。
8.晶圆涂覆:在半导体片表面涂覆保护层,以防止金属和氧气等杂质的侵入。
9.制造半导体器件:在半导体片上通过光刻、蒸发等工艺制造半导体器件的结构和元件。
这些器件可能包括晶体管、二极管、集成电路等。
10.清洗和测试:对制造完成的半导体器件进行清洗和测试,以验证其质量和性能。
11.封装和封装测试:将半导体器件封装在塑料或陶瓷封装中,并进行封装测试,以确保器件的可靠性和稳定性。
12.探针测试:将封装好的器件进行探针测试,以验证其电性能和功耗等指标。
13.成品测试和筛选:对探针测试合格的器件进行成品测试和筛选,以确保其质量符合要求。
14.包装和成品测试:将成品封装好,并进行最终的成品测试和筛选,以确保其质量和性能。
15.成品存储和交付:将符合要求的成品进行分类、存储和交付,以供后续使用或销售。
以上是半导体生产工艺流程的主要步骤,其中涉及多种专业技术和设备的应用。
这些步骤的顺序和细节可能会因不同的半导体产品而有所不同,但总体流程是大致相似的。
半导体生产工艺的不断改进和创新,是推动半导体产业发展和技术进步的重要驱动力量。
半导体的生产工艺流程

半导体的生产工艺流程1.晶圆制备:晶圆制备是半导体生产的第一步,通常从硅片开始。
首先,取一块纯度高达99.9999%的单晶硅,然后经过脱氧、精炼、单晶生长和棒状晶圆切割等步骤,制备出硅片。
这些步骤的目的是获得高纯度、无杂质的单晶硅片。
2.晶圆加工:晶圆加工是将硅片加工成具有特定电子器件的过程。
首先,通过化学机械抛光(CMP)去除硅片上的表面缺陷。
然后,利用光刻技术将特定图案投射到硅片上,并使用光刻胶保护未被刻蚀的区域。
接下来,使用等离子刻蚀技术去除未被保护的硅片区域。
这些步骤的目的是在硅片上形成特定的电子器件结构。
3.器件制造:器件制造是将晶圆上的电子器件形成完整的制造流程。
首先,通过高温扩散或离子注入方法向硅片中掺杂特定的杂质,以形成PN结。
然后,使用化学气相沉积技术在硅片表面沉积氧化层,形成绝缘层。
接下来,使用物理气相沉积技术沉积金属薄膜,形成电压、电流等电子元件。
这些步骤的目的是在硅片上形成具有特定功能的电子器件。
4.封装测试:封装测试是将器件封装成实际可使用的电子产品。
首先,将器件倒装到封装盒中,并连接到封装基板上。
然后,通过线缆或焊接技术将封装基板连接到主板或其他电路板上。
接下来,进行电极焊接、塑料封装封装,形成具有特定外形尺寸和保护功能的半导体芯片。
最后,对封装好的半导体芯片进行功能性测试和质量检查,以确保其性能和可靠性。
总结起来,半导体的生产工艺流程包括晶圆制备、晶圆加工、器件制造和封装测试几个主要步骤。
这些步骤的有机组合使得我们能够生产出高性能、高效能的半导体器件,广泛应用于电子产品和信息技术领域。
半导体制造工艺流程大全

半导体制造工艺流程大全首先是晶圆切割。
晶圆是通过单晶片生长得到的,为了制造半导体器件,需要将晶圆划分成小块。
切割过程通常使用钻孔或锯片进行,切割后需要将晶圆边缘进行光刻处理。
接下来是晶圆清洗。
切割后的晶圆上会附着一些杂质和残留物,需要通过化学溶液进行清洗,以确保表面的纯净度。
然后是研磨抛光。
为了使晶圆表面更加平整和光滑,需要进行研磨和抛光处理。
通过旋转研磨盘和特殊磨料进行处理,可以去除晶圆表面的不平整和杂质。
接下来是掩膜光刻。
在晶圆上制作电路图案,需要使用掩膜光刻技术。
将铬掩膜覆盖在晶圆表面,通过紫外光和化学反应来形成图案。
掩膜光刻是制造半导体器件中最为关键的步骤之一然后是化学气相沉积。
掩膜光刻后需要进行一层绝缘层的沉积,以保护电路。
接下来是扩散。
为了控制晶体电阻,需要在晶圆表面扩散一层掺杂物。
将晶圆放入炉内,在高温下进行热扩散,使掺杂物渗入到晶圆表面。
然后是离子注入。
离子注入是制造器件的关键步骤之一,通过注入高能粒子改变晶圆表面的材料特性。
注入的离子种类和剂量会对晶圆的电学性质产生重要影响。
接下来是金属薄膜制备。
为了制造金属电极和连线,需要在晶圆表面蒸镀一层金属薄膜。
这层金属薄膜主要用于电子连接和传导。
最后是封装测试。
将制造好的晶圆进行封装,以保护器件免受环境和机械损坏。
通过测试和筛选,可以保证器件的质量和性能。
总结以上所述,半导体制造工艺流程包括晶圆切割、晶圆清洗、研磨抛光、掩膜光刻、化学气相沉积、扩散、离子注入、金属薄膜制备等多个关键步骤。
这些步骤不仅要求高度精确和耐心,而且需要高科技设备和专业技能的支持。
半导体制造工艺的不断改进和创新将推动半导体技术的进一步发展和应用。
半导体制造工艺流程

半导体制造工艺流程半导体制造工艺是半导体芯片制造的基础流程,也是一项复杂且精细的工艺。
下面是一份大致的半导体制造工艺流程,仅供参考。
1. 半导体材料的准备:半导体材料通常是硅,需要经过精细的提纯过程,将杂质降低到一定程度,以确保半导体器件的性能。
还需要进行晶体生长、切割和抛光等工艺,以制备出适用于制造芯片的晶片。
2. 晶片清洗和处理:经过前面的准备步骤后,晶片需要进行清洗,以去除表面的杂质和污染物。
清洗包括化学溶液浸泡和超声波清洗等步骤。
之后,通过化学气相沉积等工艺,在晶片上形成氧化层或氮化层,以保护晶片表面。
3. 光刻和光刻胶涂布:在晶片表面涂布一层光刻胶,然后通过光刻机将设计好的芯片图案投射在胶涂层上,形成光刻胶图案。
光刻胶图案将成为制作芯片电路的模板。
4. 蚀刻:将光刻胶图案转移到晶片上,通过干式或湿式蚀刻工艺,将未被光刻胶保护的部分材料去除,形成电路图案。
蚀刻可以通过化学溶液或高能离子束等方式进行。
5. 激光刻蚀:对于一些特殊材料或细微的电路结构,可以使用激光刻蚀来实现更高精度的图案形成。
激光刻蚀可以通过激光束对材料进行精确的去除。
6. 金属薄膜沉积:在晶片表面沉积金属薄膜,以形成电路中的金属导线和连接器。
金属薄膜通常是铝、铜等材料,通过物理气相沉积或化学气相沉积等工艺进行。
7. 金属薄膜刻蚀和清洗:对金属薄膜进行蚀刻和清洗,以去除多余的金属,留下需要的导线和连接器。
8. 测量和测试:对制造好的芯片进行电学性能的测试和测量,以确保其符合设计要求。
9. 封装和封装测试:将芯片封装在外部环境中,通常采用芯片封装材料进行密封,然后进行封装测试,以验证封装后芯片的性能和可靠性。
10. 最终测试:对封装好的芯片进行最终的功能和性能测试,以确保其满足市场需求和客户要求。
以上是半导体制造的基本流程,其中每个步骤都需要高度的精确性和专业技术。
半导体制造工艺的不断改进和创新,是推动半导体技术不断进步和发展的重要驱动力。
半导体流程介绍

半导体流程介绍1.接收硅晶圆:半导体制造的第一步是从硅晶圆制造厂接收晶圆。
晶圆是由纯度极高的硅材料制成,通常为直径8英寸或12英寸。
晶圆表面经过抛光,形成平整的平面。
2.清洗和清除外层杂质:接收到晶圆后,首先需要进行清洗和清除外层杂质的步骤。
这是为了确保晶圆的表面干净,并移除表面的有机和无机杂质。
3.表面氧化:在表面清洁完毕后,需要通过表面氧化来生成氧化硅层。
这个步骤是为了形成介电层,保护晶圆的表面,同时也为后续工序提供基础。
4.晶圆层堆叠:在形成氧化硅层后,需要进行晶圆层堆叠的步骤。
这个步骤涉及将不同的材料沉积在晶圆上,以形成所需的结构和电路。
5.光刻:光刻是半导体制造中的核心步骤之一、在这个步骤中,使用掩膜和光刻胶在晶圆表面定义出要制造的电路图形。
6.刻蚀:在光刻完成后,需要对晶圆表面进行刻蚀,以去除未被光刻胶所保护的部分。
这个步骤是为了形成电路的结构和图案。
8.步进:步进是半导体制造中的重要步骤之一、在这个步骤中,通过将晶圆逐步移动到不同位置,并重复相同的制造步骤,可以在晶圆上制造多个相同的芯片。
9.清洗和检查:在完成所有制造步骤后,需要对晶圆进行清洗和检查,以确保芯片质量和性能。
这个过程通常包括清洗和红外检查。
10.切割和分离:最后一步是将晶圆切割成单个的芯片。
这个步骤涉及使用钻石刀将晶圆切割成正确大小的芯片,并将这些芯片分离出来。
以上是半导体制造流程的主要步骤。
半导体制造的过程非常复杂,需要严格的控制和高度精确的操作。
不同种类的半导体芯片可能会有一些差异,但总的流程大致相同。
半导体制造流程及生产工艺流程

半导体制造流程及生产工艺流程半导体是一种电子材料,具有可变电阻和电子传导性的特性,是现代电子器件的基础。
半导体的制造流程分为两个主要阶段:前端工艺(制造芯片)和后端工艺(封装)。
前端工艺负责在硅片上制造原始的电子元件,而后端工艺则将芯片封装为最终的电子器件。
下面是半导体制造流程及封装的主要工艺流程:前端工艺(制造芯片):1.晶片设计:半导体芯片的设计人员根据特定应用的需求,在计算机辅助设计(CAD)软件中进行晶片设计,包括电路结构、布局和路线规划。
2.掩膜制作:根据芯片设计,使用光刻技术将电路结构图转化为光刻掩膜。
掩膜通过特殊化学处理制作成玻璃或石英板。
3.芯片切割:将晶圆切割成单个的芯片,通常使用钻孔机或锯片切割。
4.清洗和化学机械抛光(CMP):芯片表面进行化学清洗,以去除表面杂质和污染物。
然后使用CMP技术平整芯片表面,以消除切割痕迹。
5.纳米技术:在芯片表面制造纳米结构,如纳米线或纳米点。
6.沉积:通过化学气相沉积或物理气相沉积,将不同材料层沉积在芯片表面,如金属、绝缘体或半导体层。
7.重复沉积和刻蚀:通过多次沉积和刻蚀的循环,制造多层电路元件。
8.清洗和干燥:在制造过程的各个阶段,对芯片进行清洗和干燥处理,以去除残留的化学物质。
9.磊晶:通过化学气相沉积,制造晶圆上的单晶层,通常为外延层。
10.接触制作:通过光刻和金属沉积技术,在芯片表面创建电阻或连接电路。
11.温度处理:在高温下对芯片进行退火和焙烧,以改善电子器件的性能。
12.筛选和测试:对芯片进行电学和物理测试,以确认是否符合规格。
后端工艺(封装):1.芯片粘接:将芯片粘接在支架上,通常使用导电粘合剂。
2.导线焊接:使用焊锡或焊金线将芯片上的引脚和触点连接到封装支架上的焊盘。
3.封装材料:将芯片用封装材料进行保护和隔离。
常见的封装材料有塑料、陶瓷和金属。
4.引脚连接:在封装中添加引脚,以便在电子设备中连接芯片。
5.印刷和测量:在封装上印刷标识和芯片参数,然后测量并确认封装后的器件性能。
请简述半导体器件工艺的十大流程

请简述半导体器件工艺的十大流程半导体器件工艺是制造半导体器件的工艺流程,是半导体工程领域的重要组成部分。
半导体器件工艺流程包括十大流程,分别是晶圆生长、晶圆切割、清洁和清洗、化学氧化、物理氧化、光刻、蚀刻、沉积、离子注入和退火。
下面将详细介绍这十大流程。
首先是晶圆生长。
晶圆生长是制备半导体材料的第一步,也是半导体器件制造的基础。
它是利用化学气相沉积技术在单晶衬底上生长出高质量的半导体材料晶体。
晶圆生长的材料通常是硅、砷化镓等半导体材料。
其次是晶圆切割。
晶圆切割是将生长好的半导体晶体切割成一定大小的薄片,这些薄片被称为晶片。
晶圆切割的精度和质量直接影响到后续工艺的成功与否。
接着是清洁和清洗。
这一步是为了去除晶片表面的杂质和污染物,保证后续工艺的顺利进行。
清洁和清洗通常采用多种化学试剂和超声波清洗等方法。
然后是化学氧化和物理氧化。
化学氧化和物理氧化是为了在晶片表面形成一层氧化物膜,以保护晶片表面并提供绝缘层,以便后续形成电路结构。
接下来是光刻。
光刻是一种非常重要的半导体器件制造工艺,它通过选择性照射光源和光刻胶的方式,在晶片表面形成所需的图案。
这是制造半导体器件电路结构的关键步骤。
然后是蚀刻。
蚀刻是利用化学或物理方法去除光刻胶未被照射的部分,从而形成所需的图案。
蚀刻的精度和准确度对电路的性能和稳定性有着很大的影响。
接着是沉积。
沉积是将金属、氧化物等材料以化学气相沉积或物理气相沉积的方式沉积在晶片表面,形成电路结构所需的电极、导线和绝缘层等材料。
然后是离子注入。
离子注入是将掺杂剂以离子束的方式注入晶片内部,改变晶片的电学性能,以形成所需的电子器件。
最后是退火。
退火是通过加热晶片,以改变晶体结构和去除注入后的损伤,提高器件的性能和稳定性。
以上就是半导体器件工艺的十大流程。
这些流程相互关联,缺一不可,任何一步出现问题都会影响整个器件的性能和稳定性。
因此,在实际生产中,需要严格控制每一个环节,不断优化工艺流程,不断提高制造技术水平,以满足市场需求和技术发展的要求。
半导体制造流程及生产工艺流程

半导体制造流程及生产工艺流程1.原料准备:半导体制造的原料主要是硅(Si),通过提取和纯化的方式获得高纯度的硅单晶。
2. 晶圆制备:将高纯度的硅原料通过Czochralski或者Float Zone方法,使其形成大型硅单晶圆(晶圆直径一般为200mm或300mm)。
3.表面处理:进行化学机械抛光(CMP)和去杂质处理,以去除晶圆表面的污染物和粗糙度。
4.晶圆清洗:使用化学溶液进行清洗,以去除晶圆表面的有机和无机污染物。
5.硅片扩散:通过高温反应,将所需的杂质(如磷或硼)掺杂到硅片中,以改变其电子性质。
6.光刻:在硅片上涂覆光刻胶,并使用掩模板上的图案进行曝光。
然后将光刻胶显影,形成图案。
7.蚀刻:使用化学溶液进行蚀刻,以去除未被光刻胶所保护的区域,暴露出下面的硅片。
8.金属蒸镀:在硅片表面沉积金属层,用于连接电路的不同部分。
9.氧化和陶瓷:在硅片表面形成氧化层,用于隔离不同的电路元件。
10.电极制备:在硅片上形成金属电极,用于与其他电路元件连接。
11.测试和封装:将晶圆切割成单个芯片,然后对其进行测试和封装,以确保其性能符合要求。
以上是半导体制造的主要步骤,不同的半导体产品可能还涉及到其他特定的工艺流程。
此外,半导体制造过程还需要严格的质量控制和环境控制,以确保产品的可靠性和性能。
不同的半导体生产流程会有所不同,但大致上都包含以下几个关键的工艺流程:1. 前端制程(Front-end Process):包括晶圆清洗、来料检测、扩散、光刻、蚀刻、沉积等步骤。
这些步骤主要用于在硅片上形成电子元件的结构。
2. 中端制程(Middle-end Process):包括溅射、化学机械抛光、化学物理蚀刻、金属蒸镀等步骤。
这些步骤主要用于在晶圆上形成连接电子元件的金属线路。
3. 后端制程(Back-end Process):包括划片、电极制备、测试、封装等步骤。
这些步骤主要用于将芯片进行切割、封装,以及测试芯片的性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
半导体生产流程所谓的半导体,是指在某些情况下,能够导通电流,而在某些条件下,又具有绝缘体效用的物质;而至于所谓的IC,则是指在一半导体基板上,利用氧化、蚀刻、扩散等方法,将众多电子电路组成各式二极管、晶体管等电子组件,作在一微小面积上,以完成某一特定逻辑功能(例如:AND、OR、NAND等),进而达成预先设定好的电路功能。
自1947年12月23日第一个晶体管在美国的贝尔实验室(BellLab)被发明出来,结束了真空管的时代,到1958年TI开发出全球第一颗IC成功,又意谓宣告晶体管的时代结束,IC的时代正式开始。
从此开始各式IC 不断被开发出来,集积度也不断提升。
从小型集成电路(SSI),每颗IC包含10颗晶体管的时代;一路发展MSI、LSI、VLSI、ULSI;再到今天,短短50年时间,包含千万个以上晶体管的集成电路已经被大量生产,并应用到我们的生活的各领域中来,为我们的生活带来飞速的发展。
不能想象离开半导体产业我们的生活将会怎样,半导体技术的发展状况已成为一个国家的技术状况的重要指针,电子技术也成为一个国家提高国防能力的重要途径。
ﻫ半导产品类别目前的半导体产品可分为集成电路、分离式组件、光电半导体等三种。
ﻫ集成电路(IC),是将一电路设计,包括线路及电子组件,做在一片硅芯片上,使其具有处理信息的功能,有体积小、处理信息功能强的特性。
依功能可将IC分为四类产品:内存IC、微组件、逻辑IC、模拟IC。
ﻫ分离式半导体组件,指一般电路设计中与半导体有关的组件。
常见的分离式半导体组件有晶体管、二极管、闸流体等。
ﻫ光电式半导体,指利用半导体中电子与光子的转换效应所设计出之材料与组件。
主要产品包括发光组件、受光组件、复合组件和光伏特组件等。
ﻫIC产品介绍IC产品可分为四个种类,这些产品可细分为许多子产品,分述如下:ﻫ内存IC:顾名思义,内存IC是用来储存资料的组件,通常用在计算机、电视游乐器、电子词典上。
依照其资料的持久性(电源关闭后资料是否消失)可再分为挥发性、非挥发性内存;挥发性内存包括DRAM、SRAM,非挥发性内存则大致分为MaskRO M、EPROM、EEPROM、FlashMemory四种。
ﻫ微组件IC:指有特殊的资料运算处理功能的组件;有三种主要产品:微处理器指微电子计算器中的操作数件,如计算机的CPU;微控制器是计算机中主机与接口中的控制系统,如声卡、影视卡...等的控制组件;数字讯号处理IC可将模拟讯号转为数字讯号,通常用于语音及通讯系统。
ﻫ模拟IC:低复杂性、应用面积大、整合性低、流通性高是此类产品的特色,通常用来作为语言及音乐IC、电源管理与处理的组件。
ﻫ逻辑IC:为了特殊信息处理功能(不同于其它IC用在某些固定的范畴)而设计的IC,目前较常用在电子相机、3DGame、IC产业IC的制造可由上游至下游分为三种工业,一是与IC的制造有直接关系的工业、包括晶圆制造业、IC制造业、IC封装业;二是辅助IC制造的工业,包括IC设计、光罩制造、IC测试、化学品、导线架工业;三是提供IC制造支持的产业,如设备、仪器、计算机辅助设计工具工业...等。
ﻫ IC(集成电路)制作过程简介ﻫ集成电路的生产过程极其复杂,习惯上将其分为前置作业,电路的制作,晶圆及晶粒测试和后段的封装测试等。
因为IC是由很多的电路集合而成的,而这些电路组件和线路是以晶圆为基础并以层状分布的,制造过程也是一层层的建造出来的,类似于建楼房的过程。
ﻫ其中前置作业类似于楼房的设计和建造地基,包括电路的设计、光罩设计和晶圆的制作,电路设计即是根据使用的要求设计出各层的线路和架够,光罩设计则类似于照像底片,依靠其将设计好的电路印到芯片上,而制作硅晶圆就是将硅晶体通过加热熔化,再用一定的方法拉成晶棒,并切片、研磨成符合要求的芯片的过程。
ﻫ电路制作是在硅片的基础上制成一层层的电路的过程,因为线路极其细微,其制造过程也就有很高的难度,生产上是使用类似照相技术的报光,显影,蚀刻,冲洗的方法来实现的(下面将做详细的介绍)。
晶圆及晶粒测试是对各制造流程的结果的测试,目的是对各流程有很好的控制,并能及时的发现生产中的不良产品,尽早进行修部或剔除,以减少不良成本,经过各道测试并最终生产出来的芯片才能进入到下一道封装测试的过程。
封装和测试是将功能测试良好的晶粒切割开,并封装,拉出联线再进行全面测试的过程,要经过芯片切割,粘晶,焊线,封料,切割/成形,印字,电镀,及检验等过程。
直到这里,一个合格的集成电路才算制造完成。
IC制造业特性ﻫIC制造业中,有几个不同于其它制造业的特性,分列如下:ﻫ机器的折旧占成本大部分:制造IC所用的机器设备价格高,而且汰旧快,通常采二至四年加速折旧(此为实际作法;大多数股市上市说明书则宣称四至八年平均折旧),因此机器折旧的费用很高;一般说来,机器的折旧占制造成本的20%以上。
良率影响产品单位成本:晶圆上可划分为许多方块,而一个IC的线路就都做在这个方块上,再送至封装厂中切割包装,就可将这些方块制成一片片的IC;而包装好经测试可使用的IC占晶圆割下IC总数的比率称为良率。
IC的制造过程非常精密,只要在其中一步骤稍有不慎,就会使IC毁损,而成为不能使用的产品,不像其它制造业的产品,有制造过程的错误,大多只会成为品质不良的产品,非不能使用的产品;因此IC制造业的良率要较传统的工业制造良率来的低,而且变异大,不论是在品质管制及成本控制上都是一大问题;通常IC的制造中,影响良率的原因有两种:(a)晶圆的大小:在晶圆上做IC,通常边缘的部分都因晶圆的圆弧而无法做出完整的方块;晶圆的直径愈大,则其圆弧的曲度愈小,边缘要舍弃的面积占晶圆的比率也就愈小,良率就愈高;因此IC厂都在努力提升自己的制程能在更大的晶圆上做出产品。
(b)线上的管制:集成电路制造是极精密的工业,且制造环境特殊(无尘室);在制造过程中所犯的一个小过失,影响良率的程度就很大,通常可达20%以上,因此线上的管制在集成电路制造中是很重要的。
ﻫ制程复杂影响机器使用率:IC制造厂中,由于制程重复且步骤多,若制造排程不良,容易造成某些工作站忙线、有些站闲置,而使得机器设备无法充分利用;机器设备的折旧又是占了IC制造成本中的大部分,若机器使用率不高,那幺便会耗费大量的折旧成本;充分的利用机器,是IC制造厂管理中重要的一环。
ﻫ晶圆代工ﻫ因为IC 的生产过程复杂,从设计到生产的生产线长,而且生产过程的主要成本是机台的成本,固定成本高,且产品多样化,批量小,更新速度快,因此很少有厂家能从前到后的整条线生产自己的产品,而很多厂商都只是加工整个制程中的一段,再形成供应链式的组合,联合制造产品,以实现规模效应。
晶圆代工就是基于此而产生的,这种企业只负责生产不进行设计,因此也可以说晶圆代工厂并没有自己的产品,传统上讲只是指wafer(晶圆)的制作过程,即是在wafer上做出一层层的电路而现在逐渐延伸出广义的晶圆代工,其除了原来晶圆制造的功能外,还包括了上游的光罩制作和下游的切割、封装、测试等过程,因此一个IC设计企业只要将自己的设计交给晶圆代工厂,便可以得到符合自己要求的IC成品, 模块制程wafer生产的基本原理集成电路尽管种类不同,其制程相似;差别在不同的光罩会有不同的电路图样;CVD、离子植入时投入的材料不同,会产生不同的组件,而使制造出来的IC 有所差异。
IC制程中,制造作业种类通常只有十多种,但由于不断重复这些作业,使得一片IC从晶圆投入到可以切割包装,要经过百次以上的制造步骤。
一个IC产品制作电路后的结构,是以芯片为基础逐层的建造起来的,上面已经提到,每一层的生产都是使用类似照相技术的报光,显影,蚀刻,冲洗的方法来实现的,因此生产过程中,每一层的制造都是几个类似的过程,而整个晶圆的制造就是这几个过程的重复循环,每个过程的生产都在特定的区域来完成,这些区域有:薄膜(thin-film),黄光(photo),蚀刻(etch),扩散(diffusion).薄膜(thin-film)薄膜区间是尘积介电质或金属层的地方,介电质是用于隔离开各层金属的多为玻璃层,而金属层是集成电路中的导线,多采用铝或铜或铝铜合金,因此介电质和金属沉积也是集成电路的制程中的重要制程。
薄膜技术有物理气象沉积(包括蒸镀既借着对被蒸镀物体加热,利用被蒸镀物在高温时所具备的饱和蒸气压,来进行薄膜的沉积.和溅镀既利用电浆所产生的离子,借着离子对被溅镀物体电极的轰击,使电浆的气相内具有被镀物的粒子,来产生沈积薄膜的.)和化学气象沈积既利用化学反应的方式,在反应器内将反应物(通常为气体)生成固态的生成物,并沉积在芯片表面的一种薄膜沉积技术。
ﻫ黄光(Photo)ﻫ微影技术是制造集成电路的重要之一,通过暴光和显影的程序它可以将光罩上设计的图案转移到晶圆表面的光阻上,其主要过程包括光阻涂抹,烘拷,对准,暴光及显影等程序,由于光学上的需要,此段制程之照明采用偏黄的可见光,因此习惯上将此区称为黄光区。
在黄光区内,利用整合型的晶圆轨道机——步进机系统来完成这个过程,其利用紫外光线或深紫外光线来照射光阻,以引起化学反应,将设计的光罩上的图形印到晶圆或光阻上,这也是集成电路厂中最昂贵的工具,每台的价格都可达到数百万美元,因此也常成为生产中的瓶颈。
ﻫ蚀刻(Etch)Etch作为IC制程中的主要环节之一,其目的是化学物质的反应来去除wafe r表面多余的物质,根据各stedp的目的不同有多种具体方式,但从其基本的原来可将其分为两种,既WetEtching(湿蚀刻)和DryEtching(干蚀刻),Wet Etching是用将wafer放入化学溶液中,通过化学反应将要蚀刻掉的物质腐蚀掉,而干蚀刻是将化学气体吹到weafer表面上,与其发生反应,以实现蚀刻的目的。
两者相比,后者的过程中的关键参数容易控制,用物理或化学的方法均可实现,且对图形的控制能力较强,而前者只能通过化学的方法实现,且对关键参数的控制能力较差,尤其是当线宽越来越细时,湿蚀刻将无法使用,但对于不同的蚀刻对象和环境,两者各有各自适合的范围,两种方法要根据工艺的要求不同来选择。
在湿蚀刻的过程中还有一个重要的技术过程是waferdrying,因为湿的waf er是无法进入到下一道工序的,必须通过一些方法使其干燥,常用的方法有:Down-FlowSpinDryer既是利用高速旋转的方法,靠离心力的作用干燥;和IPAVaporDryer,MarangoniDryer等,其中Down-FlowSpinDryer因为力的作用,易形成watermark,且增加wafer的应力,转动过程中还会形成摩擦,而IPAVaporDryer和MarangoniDryer可防止watermark但时间较长,且化学用量多。