轧制理论基础

合集下载

轧制理论)轧制原理PPT

轧制理论)轧制原理PPT
数值模拟软件
开发专门的数值模拟软件,如MSC.Marc、ABAQUS等,可实现轧制过程的可视化模拟, 提高模拟的准确性和效率。
模拟结果验证
通过与实际轧制实验数据的对比,验证计算机模拟结果的准确性和可靠性,为实际生产 提供指导。
人工智能技术在轧制理论中的应用
神经网络模型
应用神经网络模型对轧制过程进行建模和预测,可以实现轧制参数 的优化和自适应控制,提高产品质量和生产效率。
制压力和力矩。
05 轧制过程中的温度场和应力场分析
CHAPTER
温度场分析的基本原理和方法
热传导方程
描述物体内部温度分布随时间变 化的偏微分方程,是温度场分析 的基础。
初始条件和边界条

确定热传导方程的解,初始条件 为物体初始时刻的温度分布,边 界条件为物体表面与周围环境之 间的热交换情况。
有限差分法
02 轧制变形基本原理
CHAPTER
轧制变形的基本概念
轧制变形
指金属坯料在两个旋转轧辊的缝 隙中受到压缩,产生塑性变形, 获得所需断面形状和尺寸的加工
方法。
轧制产品
通过轧制变形得到的产品,如板材、 带材、线材、棒材等。
轧制方向
金属在轧辊作用下变形的方向,通 常与轧辊轴线平行。
轧制变形的力学基础
利用塑性变形区的滑移线 场,通过数学解析计算轧 制压力。
上限法
基于塑性变形理论的上限 定理,通过构建速度场计 算轧制压力的上限值。
轧制力矩的计算方法
能量法
根据轧制过程中的能量守恒原理,通过计算变形 功来计算轧制力矩。
解析法
基于弹性力学和塑性力学理论,通过数学解析计 算轧制力矩。
有限元法
利用有限元分析软件,对轧制过程进行数值模拟, 从而计算轧制力矩。

轧钢工艺基础理论培训讲义

轧钢工艺基础理论培训讲义

轧钢⼯艺基础理论培训讲义轧钢基础理论培训讲义第⼀章钢材品种及其⽣产系统⼀、钢材的压⼒加⼯⽅法1、压⼒加⼯⽅法:就是⽤不同的⼯具,对⾦属施加压⼒,使之产⽣塑性变形,制成⼀定形状产品的加⼯⽅法。

除轧制外还有锻造、冲压、挤压、冷拔、热扩、爆炸成型等。

2、轧钢:在旋转的轧辊间改变钢锭、钢坯形状的压⼒加⼯过程并希望得到需要的形状和改善钢的内部质量,提⾼钢的⼒学性能叫做轧钢。

⽬的:得到需要的形状(精确成形)、改善钢的内部质量,提⾼钢的⼒学性能。

3、热轧:⾦属在⾼于再结晶温度以上的轧制为热轧。

4、冷轧:⾦属在低于再结晶温度的轧制称为冷轧。

钢的再结晶温度⼀般在450~600℃⼆、轧钢成品的种类1、轧钢产品品种:是指轧制产品的钢种、形状、⽣产⽅法、⽤途和规格的总和。

轧制品种的多少是衡量轧钢⽣产技术⽔平的⼀个重要标志。

2、板管⽐:按照轧制产品的断⾯形状特征和⽤途,通常热轧钢材可以分为板材、管材和型材等种类。

在热轧钢材总量中板材和管材产量所占的百分⽐称为板管⽐。

⼯业发达国家的板管⽐以达到60%以上。

我国⽬前板管⽐已接近40%。

板管⽐的⼤⼩在⼀定程度上反映了⼀个国家的钢铁⼯业发展⽔平。

三、轧钢⽣产系统1、型钢⽣产系统:是单⼀化的轧钢⽣产系统。

基本轧机是⽅坯轧机、中⼩型轧机和各类成品型轧机。

2、钢板⽣产系统:是⽣产各类钢板、带钢的轧钢⽣产系统。

⼀般⽣产规模较⼤,年产量在300万t以上。

3、钢管⽣产系统:⽣产各类钢管的轧钢⽣产系统。

4、混合⽣产系统:⽣产型钢、板带钢和钢管或其中任何两类轧制产品的轧钢⽣产系统。

5、冶⾦⽣产过程的短流程冶⾦⽣产过程⼤体可以分为三个阶段。

第⼀阶段到20世纪40年代,⽣产⼯艺过程的基本模式是:炼焦——烧结——⾼炉冶炼——平炉冶炼——铸锭——初轧开坯——成品轧制;第⼆阶段到20世纪50年代,⽣产⼯艺过程的基本模式是:炼焦——烧结——⾼炉冶炼——转炉冶炼——连铸——各类成品轧机轧制;第三阶段到20世纪80年代,⽣产⼯艺过程的基本模式是:电炉(炉外精炼)——连铸——成品连轧。

轧制原理第一章第一讲

轧制原理第一章第一讲
2) 充满变形区阶段 轧件被咬入后,随着轧辊的转动,轧件前端AB由入口断面向 出口断面运动,直至充满变形区,此阶段称为”充满变形区 阶段”,见图1(b)。
3) 稳定轧制阶段 轧件前端运行出轧辊后,一般情况下就不存在咬入问题了,
。 故此时为稳定轧制阶段,见图1(c)
a
(a)
(b)
(c)
图1 轧制过程三阶段示意
F0 1F1,F1 2 F2,F2 3 F3 ,Fn1 n Fn

n
F0 Fn 12 3 n
i
n p
i 1

p n
③ 压下率之间的关系
这里指积累压下率与道次压下率(与)之间的关系,根据定
义,积累压下率为 道次压下率为
h0 hn h0
1
h0 h0
h1
2
h1 h2 h1
n
1.1.2 变形区基本参数计算
1. 压下,宽展及延伸变形
设工件在轧制前的尺寸为及(断面积),轧制后变为及 (断面积),则变形区内的高度、宽度及长度方向的变形 参数可列为下表1-1
表1-1 各种变形参数的表示
压下
绝对变形 相对变形 变形系数 对数变形系数
h H h e1 h H H h
lnH h
2. 各参数之间的关系 ① 变形系数之间的关系:
根据体积不变条件,有 H B L h b l 1
h b l 1, 1 1, 也即 ln 1 ln ln 0
H BL
可见变形系数之间满足体积不变条件。
② 延伸系数之间的关系 这里指总延伸系数、道次延伸系数、平均延伸系数,即三者 之间的关系。根据定义,有
宽展 b b B e2 b B b B
lnb B
延伸 l l L e3 l L l L

轧制理论知识点

轧制理论知识点

金属压力加工:即金属塑性加工,对具有塑性的金属施加外力作用使其产生塑性变形,而不破坏其完整性,改变金属的形状、尺寸和性能获得所要求的产品的一种加工方法按温度特征分类 1.热加工:在充分再结晶温度以上的温度范围内所完成的加工过程,T=∽熔。

2.冷加工:在不产生回复和再结晶温度以下进行的加工T=熔以下。

3.温加工:介于冷热加工之间的温度进行的加工.按受力和变形方式分类:由压力的作用使金属产生变形的方式有锻造、轧制和挤压轧制轧制:金属坯料通过旋转的轧辊缝隙进行塑性变形。

轧制分成纵轧(金属在相互平行且旋转方向相反的轧辊缝隙间进行塑性变形)横轧和斜轧。

内力:物体受外力作用产生变形时,内部各部分因相对位置改变而引起的相互作用力。

分析内力用切面法。

应力(全应力):单位面积上的内力全应力可分解成两个分量,正应力σ和剪应力τ)主变形和主变形图示:绝对主变形:压下量Dh=H-h 宽展量Db=b-B 延伸量Dl=l-L 相对主变形:相对压下量e1=(l-L)/L*100% 相对宽展量e2=(b-B)/B*100% 相对延伸量e3=(H-h)/H*100% 延伸系数m=l/L 压下系数h=H/h 宽展系数w=b/B ①物体变形后其三个真实相对主变形之代数和等于零;②当三个主变形同时存在时,则其中之一在数值上等于另外两个主变形之和,且符号相反。

③当一个主变形为0时,其余两个主变形数值相等符号相反金属塑性变形时的体积不变条件:金属塑性变形时,金属体积改变都很小,其变形前的体积V1和变形后的体积V2相等.这种关系称之为体积不变条件,用数学式表示为V1=V2 最小阻力定律认为:如果变形物体内各质点有向各个方向流动的可能,则变形物体内每个质点将沿力最小方向移动。

影响金属塑性流动和变形的因素:摩擦的影响变形区的几何因素的影响工具的形状和坯料形状的影响外端的影响变形温度的影响金属性质不均的影响基本应力:由外力作用所引起的应力叫做基本应力。

轧制理论基础

轧制理论基础

后滑值
• 如果将前滑式中的分子和分母各乘以轧 制时间 t ,则得
3)前滑值的实验测定 • 如果事先在轧辊 表面上刻出距离 为LH 的两个小坑 则轧制后测量 Lh 即可用实验方 法计算出轧制时 的前滑值。
4.2 前后滑与有关工艺参数的关系
• 1)体积不变定律 • 按秒流量体积相等的条件
l BH BHL bhl L bh
• • • • • •
Δh=H-h ΔL=l -L ΔB=b -B 式中 h ,H —— 轧件轧后、轧前高度; l,L—— 轧件轧后、轧前长度; b,B—— 轧件轧后、轧前宽度;
相对变形量的表示法
H h h 100 % 100 % H H
相对压下量 相对宽展量
H h 100 % h h ln
物理概念
• 根据物理概念: • 摩擦系数可用摩擦角表示,即摩擦角的正 切就是摩擦系数f。 • tgβ=f • 则 tgβ≥tgα • β≥α!!! • 轧制过程中的咬入条件为摩擦角大于咬入 角, Β=α为临界条件。
咬入的几何意义
α
β
β
α =β :临界 态
α
β
αபைடு நூலகம்
β >α 咬入
β <α 不能咬入
当合力R方向沿轧制方向倾斜,实现自然咬入;反之不能咬 入.
l 式中 μ = —延伸系数 L b .宽展系数 B H 压下系数 h
5)变形区参数
α
B C
D
Δ b/2
Δ h/2
A
• (1)咬入角:α 是 指轧件开始轧入轧辊 时,轧件和轧辊最先 接触的点和轧辊中 心连线与轧辊中心 线所构成的圆心角。
咬入角α与轧辊直径 D和压下量Δh 之间的关系

轧制加工基础知识

轧制加工基础知识

实际与理论的不同 并不否定简单轧制情况的理论学习意义 非简单轧制情况: 张力轧制、变速轧制、异步轧制、孔型轧制 简单轧制的非理想情况: 变形沿轧件断面高度和宽度不是完全均匀的 金属质点沿轧件断面高度和宽度运动速度不是均匀的 是加速过程而非匀速过程 轧制压力和摩擦力沿接触弧长度上分布不是均匀的 摩擦-粘着状态不是确定的 轧机轧辊不是刚性的

2
T P tan

2 T P
tan f
tan

2


2
可见:按照金属进入轧辊的程度,咬入条件向有利 的一方面转化,亦即最初咬入时,所需的摩擦条件 最高。随轧件逐渐进入轧辊,越易咬入。
3 中性面—相对运动(水平)、绝对运动
中性面对应的圆心角叫中性角,常用γ表示。 金属质点相对轧辊向入口流动形成后滑。 金属质点相对轧辊向出口流动形成前滑。 向两侧流动形成宽展。 前滑和后滑是相对轧辊的。 但绝对速度是向前的。
v h v v H
轧件出口速度大于轧辊圆周速度
vh v
轧件入口速度小于轧辊入口处 水平分速度
v H v co s
中性面处轧件水平速度等 于此处轧辊水平速度
v v co s
问答: 1 在中性面处,哪两个速度相等? 思考: 根据上边的初步分析,已经揭示了轧制过程的内在矛盾:如要加大压下量以 提高轧机生产能力,根据咬入条件则应增加摩擦,但由于金属质点与轧辊表面有 相对滑动,摩擦增加导致轧辊磨损,是轧件表面质量变坏,而且增加了力、能消 耗。为了解决这一矛盾,在开坯轧机,咬入条件成为主要矛盾时,甚至在轧辊上 人为刻痕,以增加摩擦改善咬入条件来提高压下量。而当冷轧薄板时,表面质量 成为组要矛盾时,则采用润滑剂来降低摩擦,改善表面质量,同时降低力、能消 耗。 从公式Δh=D(1-cosα)和咬入条件α≤β可知,在相同摩擦条件下,增加辊径可 以提高压下量,同时可以提高轧辊强度,这是有利的一面。但是随着辊径增加, 接触弧长度增加,因而使应力状态增强,引起轧制力急剧增加。这是不利的一面。 当轧薄板道次压下量不大而工具强度和刚度成为主要矛盾时,不得不采用小直径 轧辊的轧机来生产,这时要采用支撑辊,因而引起了轧机辊系结构的复杂化。 下节课讲各类型的轧机。

轧制理论基础

轧制理论基础

第一章轧制理论基础第一节轧制的基本概念1、轧制金属通过两个旋转方向相反的轧辊时,在轧辊压力作用下,使金属生产塑性变形。

从而改变其断面的形状和尺寸,这种工艺过程称为轧制,被轧制的金属称为轧件。

轧制按轧制时的温度不同,分为冷轧和热轧。

在金属再结晶温度以下进行轧制叫冷轧,在金属再结晶温度以上轧制叫热轧。

2、变形区以平辊轧制矩形轧件为例,轧辊直径为D,辊身长度为B,轧制前的轧件厚度为ho,轧制后的轧件厚度为h1,轧制前的轧件宽度为bo,轧制后的轧件宽度为b1,轧件的入口速度为v o ,轧件的出口速度为v1,如图2-1所示。

轧件开始与轧辊接触的平面AA’,称入口平面,轧件从轧辊离开的平面BB’,称出口平面。

入口平面AA’,出口平面BB’,轧辊与轧件的接触弧面AB和A’B’构成轧件在轧制时的变形区.轧件在变性区内发生塑性变形。

3、变形量轧件轧制前和轧制后的厚度之差称为绝对压下值,用△h表示△h =ho -h1:绝对压下量△h与轧前厚度的比值称为相对压下量,常用Y表示。

即:Y=△h/ho 相对压下量可用小数和百分数来表示。

轧件轧制后与轧制前的宽度之差称为绝对宽展量,用△b表示。

△b=b1-bo。

绝对压下量与绝对宽展量是经常使用的两个变形参数。

轧件轧制前的长度为1o ,轧制后的长度为11,轧制后与轧制前的轧件长度之差称为绝对延展量,用△1表示。

故有△1=11-1o。

轧前厚度与轧后厚度之比,称为压下系数,通常用η表示。

即η=ho /h1;轧后宽度与轧前宽度之比,称为侧压系数,通常用k 表示。

即 k=b 1/b 0; 轧后长度与轧前长度之比,称为延伸系数,通常用μ表示。

即μ=l 1/l 0。

4、咬入弧与咬入角轧辊与轧件接触部分的A ⌒B 和A ’⌒B ’弧称为咬入弧(又称接触弧)。

与咬入弧 A ⌒B 和A ’⌒B ’所对应的圆心角α称为咬入角。

由图2-1中的几何关系可知,△ABC ∽△EBA ,由此可得: AB 2=BE ⨯BC 式中 BE=2R BC=(h o -h 1)/2=△h/2所以咬入弧所对的弦长AB=hR ∆。

冷轧基础理论知识

冷轧基础理论知识

冷轧基础理论知识一、概要冷轧基础理论知识是金属加工领域中的重要组成部分,涉及到金属材料的塑性变形、力学性能和加工技术等方面。

本文旨在介绍冷轧技术的原理、发展历程以及应用领域,概述冷轧过程中的基础理论和关键工艺参数,包括材料选择、设备配置、工艺流程、冷却方式等。

通过学习本文,读者可以了解冷轧技术的核心知识体系,掌握冷轧过程中的基本理论和实际操作技巧,为后续的深入研究和实践打下坚实基础。

本文还将探讨冷轧技术的未来发展趋势,展望其在金属材料加工领域的应用前景。

1. 简述冷轧技术的定义与发展历程。

冷轧技术是一种利用金属板材在常温下的可塑性,通过一系列辊轮对其施加压力进行加工的方法。

其基本过程是在常温下将金属材料进行连续轧制,改变其形状和尺寸,获得所需的厚度、宽度和平整度的金属板材。

与传统的热轧工艺相比,冷轧技术以其优良的加工精度和良好的材料性能得到了广泛的应用。

发展历程上,冷轧技术起始于工业革命时期的欧洲,随着钢铁工业的迅猛发展而逐渐成熟。

早期的冷轧技术主要运用于有色金属的轧制,随着技术的进步,逐渐扩展到黑色金属的轧制领域。

随着材料科学和工艺技术的不断进步,冷轧技术也在不断地发展。

从简单的单机轧制到现代化的连续自动化生产线,从传统的模拟控制到数字化和智能化控制,冷轧技术已经成为现代制造业不可或缺的重要工艺手段。

其发展历程不仅体现了技术的进步,也反映了人类对材料性能的不断追求和探索。

2. 阐述冷轧技术在工业领域中的重要性。

冷轧技术在工业领域中的重要性不言而喻。

随着现代工业的发展,对于材料性能的要求越来越高,而冷轧技术作为一种先进的金属加工技术,能够满足这种高性能的需求。

冷轧过程通过控制金属的塑性变形和再结晶行为,可以显著提高金属的强度和硬度,同时保持良好的韧性和表面质量。

这使得冷轧材料在汽车、航空、建筑、电子等多个行业中得到广泛应用。

在汽车行业,冷轧技术用于生产高质量的钢板和带材,用于制造车身、发动机等关键部件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Δh/2
式中 R ---- 轧辊半径。
α
A B
D C
Δb/2
(2)接触弧长与变形区长
• 根据几何关系,接触弧长s为: s=Rα
• 接触弧之水平投影叫做变形区长度
• 变形区长度的确定(接触弧长与轧制条件有关, 可分为三种情况)
①等径
α
A B
D C
Δh/2
由几何关系: L2
R2
R h 2 2
压力垂直分量 后滑区摩擦分力 ψ ------变形区内任一角度;(略)
前滑区摩擦分力
❖ 前后滑存在一定关系 ❖ 前后滑是延伸得组成部分 ❖ 当αμ一定,Sh升则 SH降。
实际应用中只要研究一种现象即 可
由前滑公式得:vh v(1 sh)
vH
v
(1
s
)
h
由后滑公式得:sH
1
vH
v COS
1
V
(1
s
)
h
V COS
(1 sh) (1 sH )COS
5.轧制压力及轧机主电机的力矩确定
K y 合力作用点系数
x
稳定轧制条件下咬入角(虚拟的可能值) y
1.2.3 咬入阶段与稳定轧制阶段的咬入条件比较
• 极限咬入条件 α= β
• 极限稳定咬入条件αy = βy kx • 令K= αy / α= kx βy / β • αy =α kx βy / β
• 上式说明 αy 与α差别取决于kx 及βy / β
α
p
αα
轧件受力分析
轧辊受力分析
受力分析
α
p
αα
轧件受力分析
轧辊受力分析
轧件受垂直合力: (使轧件受压变形)
F y T sin p cos (T Pf )
水平合力:
F x T cos p sin 当 F x 0轧件才可能被咬入, 完成轧制.
结论
T sin tg P cos f tg (咬入条件)
金属除按最小阻力法则沿纵向延伸外,在 横向也产生变形,称之为横变形。轧制前、 后轧件沿横向尺寸的绝对差值,称为绝对 宽展简称为宽展.
2)研究宽展的意义
• (1)拟订轧制工艺时需要确定轧件宽展. • (2) 孔型轧制中,必须正确地确定宽展的大小,否则不
是孔型充不满,就是过充满. • 由于问题本身的复杂性,到目前为止,还没有一个能
轧件的总展宽量为: ΔB=ΔB1 +ΔB2 +ΔB 3
• 上述宽展的组成及其相互的关系,由下图清楚地 表示出来。
宽展的组成及其相互的关系
4 轧制过程中的纵变形—前滑和后滑
• 轧制时存在前滑和后滑现象,这种现象使轧件的出辊 速度与轧辊的圆周速度不相一致。
• 这个速度差在轧制过程中并非始终保持不变的,它受 许多因素的影响而变化。
b B
.宽展系数
H h
压下系数
ln 1/η +lnω+lnμ=0
5)变形区参数
α
A B
D C
Δh/2
• (1)咬入角:α 是 指轧件开始轧入轧辊 时,轧件和轧辊最先 接触的点和轧辊中 心连线与轧辊中心 线所构成的圆心角。
Δb/2
咬入角α与轧辊直径 D和压下量Δh 之间的关系
h H h 2R(1 COS) D(1 COS)
• 在立轧孔内轧制钢轨时是强制宽展的最好例子,如下图所示。
轧制宽扁钢时采用的'切展'孔型也是说明强制宽展的实例。 • 确定金属在孔型内轧制时的展宽是十分复杂的,尽管做过大
量的研究工作,但在限制或强迫宽展孔型内金属流动的规律 还不十分清楚。
3、宽展的组成
• 轧辊与轧件接触摩擦 • 变形区几何形状和尺寸的不同
H
H
H h 100% h
ln h
H
相对宽展量
b B 100% b 100%
B
B
b B 100% b
ln b B
相对延伸量 l L 100% l 100%
L
L
l L 100% l
ln l L
变形系数的表示法
轧制时表示各向变形系数的关系式
1 1
.

l 式中 μ= L —延伸系数
得L
R
h
(
h
2
)
R h
2
② 不等径

△h2
L R 2
2
1 1
2
R1h1
2
2 R1 h1 h1
L 1
D1h1
L R 2 2
2
2
R
2 h 2
2
2
2R2h2h 2
L 2
D2h2
L L 假定 12
因h1h2h
R1h1R2h2R2h R2h1
h1
R R
2
2
R1
h
LL1L2
2R2 R1 h R2 R1
β>α 咬入
β<α不能咬入
当合力R方向沿轧制方向倾斜,实现自然咬入;反之不能咬 入.
1.2.2 稳定轧制条件
• 在轧件被咬入后,轧辊给轧件压力P合力作用点与摩擦 力T已不作用于开始接触点处,而是向变形区出口方向 移动.
α
α
α
ψ
ψ
δ
开始咬入阶段
轧件充填辊缝的 过程
合力作用点中心角
稳定轧制阶段
轧件前端与轧辊轴心连线夹角
• 使沿接触表面上金属质点的流动轨迹与接 触面附近的区域和远离的区域是不同的。
• 组成: ✓滑动宽展ΔB1 ✓翻平宽展ΔB2 ✓鼓形宽展ΔB3
1)滑动宽展
• 滑动宽展变形金属在轧辊的接触面上,由于产 生相对滑动使轧件宽度增加的量以ΔB1 表示, 展宽后此部分的宽度为 :

B1 =BH+ΔB1
2)翻平宽展
说明咬入角的正切等于 轧件与轧辊之间的摩擦系数
物理概念
• 根据物理概念: • 摩擦系数可用摩擦角表示,即摩擦角的正
切就是摩擦系数f。 • tgβ=f • 则 tgβ≥tgα • β≥α!!! • 轧制过程中的咬入条件为摩擦角大于咬入
角, Β=α为临界条件。
咬入的几何意义
α
α
α
β
β
β
α=β:临界 态
• 一般都以二辊作为研究轧制过程的开端。
送料

支承

工作 辊平 整

图 1 星行轧机
3)简单轧制过程图示
α
A B
D C
Δh/2
简单轧制过程: (1)上下轧辊直径相同 (2)转速相等 (3)轧辊无切槽 (3)均为主动(传动)辊 (4)无外力或推力 (5)轧辊为刚性的 (6)轧件在入辊处和出辊 处速度均匀 (7)轧件的力学性质均匀

• (1)后滑:轧件进入轧辊的速度υH小于轧辊 在该点处线速度 υ 的水平分量 υcosα,这种现 象叫做后滑。
• (2)前滑:轧件的出口速度 υ 大于轧辊在该 处的线速度υh,这种现象叫做前滑。
• 2)前滑值的定义公式
后滑值
• 如果将前滑式中的分子和分母各乘以轧 制时间 t ,则得
3)前滑值的实验测定
•利用外推力将轧件强制推入轧辊中,外力作用使轧件前端被压扁,相当于楔形外 端降低压下量,有利于咬入.
2)提高β的方法
• (1) 改善轧辊或轧件表面状态,以使β升高 • 初轧粗轧在轧辊刻槽焊点滚花等目的均使f升,
β升. • 精轧通过立轧高压水去除氧化皮等办法改善轧
件表面状态,使f升, β升. • (2) 合理调节轧制速度 • 利用稳定轧制条件下的剩余摩擦力,采用低速
Δb/2
4)轧制变形的表示方法
轧制时绝对变形量(压下,延伸,宽展)表示
• Δh=H-h • ΔL=l -L • ΔB=b -B • 式中 h ,H —— 轧件轧后、轧前高度; • l,L—— 轧件轧后、轧前长度; • b,B—— 轧件轧后、轧前宽度;
相对变形量的表示法
相对压下量
H h 100% h 100%
受到压缩进行塑性变形的过程,通过轧制使金 属具有一定尺寸、形状和性能。 • 2) 分类 ❖轧制方式按轧件运动分:有纵轧、横轧、斜轧。
• 纵轧:金属在两个旋转方向相反的轧辊之间通过,并 在其间产生塑性变形的过程。
• 横轧 :轧件变形后运动方向与轧辊轴线方向一致 • 斜轧:轧件作螺旋运动,轧件与轧辊轴线非特角
力仅为合力的垂直分量Y。
2)确定合力假设
在确定轧件对轧辊的 合力,首先应考虑接 触区内轧件与轧辊间 的力的作用情况
❖ 忽略轧件沿宽度方向 上接触应力的变化
❖ 假定变形区某一微分 面积上作用着轧辊给 轧件的单位压力 p x 和单位接触摩擦力 t x
3)公式推导
• 设轧件宽B=1 • 接触微分面积ds=Bdx/cosψ • 轧制压力p包括变形区接触面上所有垂直分量
• 连轧机上轧制和周期断面钢材的轧制等都要求确切知 道轧件进出轧辊的实际速度。
那么,轧件的速度与轧辊周速之间存在什么关系呢? 这就是本节要讨论的问题。
4.1轧制时的前滑与后滑
• 前滑与后滑概念的引出及定义 • 1)前滑与后滑概念的引出
金属流动分界线
说明轧件的延伸是被压下金属向轧辊入口和出 口两方向流动的结果
适应多种情况下准确地计算宽展的理论公式。所以在 生产实际中习惯于使用一些经验公式和数据,来适应 各自的具体情况。
2、宽展的种类
• 根据金属沿横向上流动的自由程度,宽展可分为:自 由宽展、限制宽展和强迫宽展.
• 1)自由宽展 :坯料在轧制过程中,被压下的 金属体积可以自由展宽的量。
• 此时,金属流动除来自轧辊的摩擦阻力外,不受任何其它的阻 碍和限制。因此,自由宽展的轧制是轧制变形中的最简单的情 况。在平辊上或者是沿宽度上有很大富余的扁平孔型内轧制时, 就属于这种情况。
相关文档
最新文档