满堂支架受力分析
满堂支架计算

满堂支架计算1、荷载计算根据支架布置方案,采用满堂支架,对其刚度、强度、稳定性必须进行检算。
钢管的内径Ф41mm 外径Ф48mm 、壁厚3.5mm 。
截面积转动惯量回转半径 截面模量钢材弹性系数钢材容许应力,按照《钢管满堂支架预压技术规程》中关于旧钢管抗压强度设计值的规定需要乘以折减系数0.85,故验算时按照170MPa 的容许应力进行核算。
1、支架结构验算荷载计算与荷载的组合:A 、钢筋混凝土自重:W 砼= 0.4×26=10.4KN/m2(钢筋混凝土梁重量按26kN/m 3计算)B 、支架模板重① 模板重量:(竹胶板重量按24.99kN/m 3计算)②主次楞重量:主楞方木:(方木重量按8.33KN/m3计算)次楞钢管:C 、人员与机器重W =1KN/ m 2 (《JGJ166-2008 建筑施工碗扣式脚手架安全技术规X 》)D 、振捣砼时产生的荷载2/4.0015.099.24m kN h W p =⨯==模板模板ρ2/47.033.81.01.025.011.01.06.01m kN h W p =⨯⨯⨯+⨯⨯==)(方木方木ρ22222893.44)1.48.4(14.34/)(cm d D A =÷-⨯=-=π344078.5)8.432()]1.48.4(14.3[cm =⨯÷-⨯=D d D W 32/)(44-=πcmA J i 58.1)/(2/1==44444187.1264)1.48.4(14.364/)(cm d D J =÷-⨯=-=πMPa E 51005.2⨯=MPa f 205][=2/12.0105.33.01m kN kg W =⨯⨯=钢管W =2KN/ m 2 ( 《JGJ166-2008 建筑施工碗扣式脚手架安全技术规X 》) E 、倾倒混凝土时冲击产生的荷载W =3KN/ m 2 (采用汽车泵取值3.0KN/m 2)F 、风荷载按照《建筑施工碗扣式脚手架安全技术规X 》,风荷载W k =0.7u z u s W o其中u z 为风压高度变化系数,按照《建筑结构荷载规X 》取值为1;u s 为风荷载体型系数,按照《建筑结构荷载规X 》取值为0.8;W o 为基本风压,按照XX 市市郊离地高度5m 处50年一遇值为0.3 KN/m 2。
满堂支架计算

番禺11号公路跨线桥连续箱梁满堂支架计算一、计算依据《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2001)上海市工程建设规范《钢管扣件水平模板的支撑系统安全技术规程》(DG/TJ08-016-2004)二、支架设计方案番禺11号公路跨线桥,桥面全宽34.5m,分左右幅,半幅桥宽16.75m,箱梁与桥面同宽,共分为3联:(30m×4)+(35m×8)+(40m×2+25m),第一联、第三联设计为现浇预应力连续箱梁,第二联设计为预制安装组合箱梁,第一联梁高1.7m,第二联梁高1.8m,第三联梁高2.0m。
第一联、第三联现浇箱梁设计为半幅单箱双室,箱梁底宽12m,连续箱梁现浇支架拟采用Ф48×3.5mm 扣件式钢管支架,支架高度为5~9m。
第三联 12~15号敦,在13、14号中墩两侧各2m 长度范围按照50×30cm 布置立杆,在两个中墩两侧各2m~7m 长度范围内按照60×30cm(纵向×横向)布置立杆,其余范围按照6 0×60cm 布置立杆。
12、15号墩是现浇梁端部,靠近墩的位置按13、14号中墩一侧的尺寸布置立杆。
水平横杆按照120cm 步距布置,中间纵横向每5m 在横断面设连续剪刀撑,两侧面及端面分别设置剪刀撑,每4.5m 高设置一道水平剪刀撑。
竖向调节钢管扣件全部采用3 个扣件扣住。
为了保证扣件的受力满足设计及规范要求,均需在方木下添加一根纵向钢管。
具体详见“番禺11号公路跨线桥现浇箱梁支架布置示意图”。
三、支架力学验算(一)、最不利荷载位置计算综合考虑该跨连续梁的结构形式,在中墩的位置最重,按箱梁底宽计算,该断面面积为12×2.0=24㎡,该位置长度为2.0 m。
对该位置进行支架检算:1、支架布置以50×30cm 布置考虑,钢筋砼重量以26KN/m3 计每延米重量为:24×1×26=624(KN)则单位面积承重为:q1=624KN/(12×1)=52 (KN/㎡)由于钢管布置为50cm×30cm,则单根承载力为:52 KN/㎡×0.5×0.3=7.8(KN/根)2、底模及内模构造荷载取q2=5KN/ ㎡3、扣件式钢管支架自重(按9m 高度计算)a、立杆自重(采用Ф48×3.5mm 钢管单位重量为3.84kg/m)q31=0.0384KN/m×9m=0.313 (KN/根)b、可调托座q32=0.045KN/m×1 个=0.045 (KN/根)c、横杆自重q33=0.0384KN/m×8×0.8=0.246(KN/根)d、扣件自重直角扣件: q34=0.0132KN/m×(8×2+3)个=0.251 (KN/根)对接扣件: q35=0.0184KN/m×1 个=0.0184 (KN/根)所以扣件式钢管支架自重: q3= q31+ q32+ q33+ q34+ q35=0.313+0.045+0.246+0.251+0.184=1.039 (KN/根)4、施工活荷载(参照规范4.2.2 表中结构脚手架施工均布活荷载标准值,以3KN/ ㎡计,基于安全考虑,取5KN/ ㎡)q4=5KN/ ㎡5、单根钢管设计轴向力荷载组合:施工恒载:NGK=(q1+ q2)×0.5×0.3+ q3=( 52+5)×0.5×0.3+1.039=9.589 (KN/根)活荷载: NQK= q4×0.5×0.3=5×0.5×0.3=0.75 (KN/根)轴向力:N=1.2 NGK+1.4NQK=1.2×9.589+1.4×0.75=12.557 (KN/根)6、钢管支架的稳定性检算单根钢管截面面积(由于是旧管,按壁厚3mm计,另外乘以0.75折减系数):A=423.9×0. 75=318mm2;回转半径:i=1.58cm由于λ=l0/i=(h+2a)/i=(120+2×40)/1.58=127查得φ=0.412N/(φ×A)= 12557 /(0.412×318)=95.84 MPa≤164Mpa(其中,Q235 钢管容许应力为205Mpa×80%=164 Mpa,80%为旧管疲劳折减系数) 根据以上计算可知,钢管立杆的稳定性符合要求,安全系数164/95.84=1.7,其中未计算剪刀撑重量。
满堂支架受力计算

支架高度以7米计算: 则支架自重:P=7×0.0384+6×0.6×0.0384=0.41KN 支架最大荷载为N=21.54+0.41=21.95KN 立杆长细比,查表得=0.676 [N]=>N 查表得外径48mm壁厚3.5mm钢管在步距120mm时,容许荷载 [N]=33.1KN>N。 故在此应力下,立杆是安全的 5)地基承载力计算 支架底托下辅设30*30*7cmC30砼块。其单根立杆有效承压面积为 30cm×30cm=0.09㎡ 地基承载力: 3.腹板处受力计算(60cm×60cm间距处) 其荷载与横梁处相同。 因横梁处支架是满足施工要求的,故腹板处也是满足要求的。
最大弯矩为:
弯曲强度: 最大挠度: <600/400=1.5 4) 支架受力 模板自重:0.43KN/㎡ 支架顶承受重力为:23.0KN/㎡+0.43KN/㎡=23.43KN/㎡ N1=0.9×0.6×23.43=12.65KN 支架高度以7米计算: 则支架自重:P=7×0.0384+6×0.9×0.0384=0.48KN 支架最大荷载为N=12.65+0.48=13.13 立杆长细比,查表得=0.676 [N]=>N 查表得外径48mm壁厚3.5mm钢管在步距120mm时,容许荷载 [N]=33.1KN>N。 故在此应力下,立杆是安全的。 5)地基承载力计算 支架底托下辅设30*30*7cmC30砼块。其单根立杆有效承压面积为 30cm×30cm=0.09㎡ 地基承载力:<15 2、横梁处受力计算(60cm×60cm间距处)
一、横杆和钢管架受力计算
1、标准截面处受力计算(90cm×60cm间距处) 1)荷载 箱梁自重:q=ρgh=2.6×10×0.5=13.0KN/㎡ (钢筋砼密度按ρ=2.6*10kg/m,g=10N/KG,h为砼厚度) 施工荷载和风载:10KN/㎡ 总荷载:Q=13.0+10=23.0KN/㎡ 2)顺向条木受力计算(10cm×10cm) 大横杆间距为90cm,顺向条木间距为30cm,故单根单跨顺向条木
盘扣式与碗扣式落地满堂支架对比分析

盘扣式与碗扣式支架体系应用对比分析目前项目施工中,现浇模板支架主要以碗扣式、盘扣式、扣件式以及少支点等类型支架为主,特别是盘扣式和碗扣式支架,由于其具备应用灵活、搭设方便、周转率高等优点,在司属基础设施类项目中应用十分广泛。
本文基于方案设计的合理性、安全性以及经济性等方面,对此两类支架的应用进行了对比分析。
1.应用简介1.1碗扣式支架碗扣式支架钢管标准规格Φ48.3mm×3.5mm,市场常见材质为Q235,立杆模数为0.6m,水平杆模数为0.3m。
斜杆、剪刀撑等以扣件式钢管配合使用。
根据公司前期调研情况,目前市场碗扣式钢管材料质量波动较大,壁厚多在3.0mm以下,不满足规范要求。
1.2盘扣式钢管盘扣式支架立杆标准规格为Φ60mm×3.2mm以及Φ48mm×3.2mm,材质为Q345A,立杆模数为0.5m;水平杆标准规格Φ48mm×2.5mm以及Φ42mm×2.5mm,材质为Q235B,模数为0.3m。
斜杆等采用配套专用杆件。
根据公司前期调研情况,目前市场盘扣式钢管材料质量相对良好,基本满足规范要求。
2.应用分析2.1方案设计现以桥梁施工中常见箱梁结构30m长、20m宽、2.4m高单跨箱梁为例,分别设计盘扣式及碗扣式落地满堂支架方案进行应用对比,现支架设计如下表:表2-1 支架方案设计碗扣式支架设计图如下:图2-1 碗扣支架方案标准横断面设计图2-2 碗扣支架方案纵断面设计盘扣式支架设计图如下:图2-3 盘扣支架方案标准横断面设计图2-4 盘扣支架方案纵断面设计2.2方案计算对比分析经计算分析,碗扣式和盘扣式方案均能满足规范要求,主要计算结果如下表:表2-2 支架方案结构计算分析对比2、单肢利用率=单肢承受荷载/单肢设计荷载;3、主分配梁采用I12.6,材质为Q235B,[σ]=205MPa,[τ]=120MPa,允许挠度为l/400;4、次分配梁采用10×10cm方木,[σ]=13MPa,[τ]=1.5MPa,允许挠度为l/400。
满堂支架设计计算

满堂支架计算书一、设计依据1.《小乌高速公路改2 + 122.6互通桥工程施工图》2.《公路钢筋砼及预应力砼桥涵设计规范》JTJ023-853.《公路桥涵施工技术规范》JTJ041-20044.《扣件式钢管脚手架安全技术规范》JGJ130-20015.《公路桥涵钢结构及木结构设计规范》JTJ025-866.《简明施工计算手册》二、地基容许承载力本桥实际施工已新建土模为基础,在原地面清表后采用砾类土分层填筑,分层填筑层厚不大于30cm。
要求碾压后压实度不小于95%,经检测合格后再进行下一层的填筑,填筑至砾类土顶面,然后填筑厚30cm的砾石土,以提高地基承载力。
为了增加土模表面的强度,保证地基承载力不小于12t/*浇注一层10cm 厚C30垫层。
钢管支架和模板铺设好后,按120%设计荷载进行预压,避免不均匀沉降。
三、箱梁砼自重荷载分布根据BK2 + 122.6互通立交桥设计图纸,上部结构为25+35x2+25m 一联现浇预应力连续箱梁。
箱梁采用碗扣式支架现场浇筑施工,箱梁下部宽8.50 m , 顶宽13.00 m,梁高2.0m。
箱梁采用C50混凝土现浇,箱梁混凝土数量为1186.6m3。
25m 边跨梁单重为704.67t( 247.21x2.6+61.92 ); 35m 中跨梁单重为986.52t( 346.09x2.6+86.68 )。
墩顶实心段砼由设于墩顶的底模直接传递给墩身,此部分不予检算。
对于空心段箱梁,箱梁顶板厚0.25m,底板厚0.22m,翼缘板前端厚0.20m,根部0.45m,翼板宽2.0m,腹板厚0.5m,根据荷载集度分部情况的分析,腹板处荷载集度最大为最不利位置,故取腹板下杆件进行检算。
四、模板、支架、枕木等自重及施工荷载本桥箱梁底模、外模均采用6=12mm厚竹胶板,芯模采用6=10mm竹胶板。
底模通过纵横向带木支撑在钢管支架顶托上,支架采用①48mmx3.5mm钢管,通过顶托调整高度。
公路工程现浇箱梁施工满堂支架受力检算分析

公路工程现浇箱梁施工满堂支架受力检算分析摘要:结合箭沱湾互通G匝道桥现浇箱梁施工实例对现浇箱梁满堂支架受力验算进行分析。
现浇箱梁结构相对简单,结构受力明确,造价相对较低,后期运营维修成本低,施工方便等优点,在我国高速公路桥梁建设工程中应用广泛。
满堂支架工艺在现浇梁施工过程中应用极为普遍,支架的设计和受力验收是从事桥梁施工技术人员必须熟练掌握的基本技能之一。
但是,在施工过程中由于模型选取部正确,导致受力计算错误,加上现场实际搭设过程中,支架搭设不规范、支架的材料进场验收不严格等原因,时常发生支架失稳跨塌,造成重大人员伤亡及财产损失,为了进一步提高受力验收的准确性,本文采用有限元软件建立力学模型,对支架的受力进行计算,能够与传统的手算方法互相验证,是传统手算方法的一种补充,目前已广泛应用于各类桥梁结构受力验收,具有较高的可靠性。
关键词:现浇箱梁,盘扣支架,荷载组合,地基承载力,有限元理论计算1引言现浇箱梁结构相对简单,结构受力明确,造价相对较低,后期运营维修成本低,施工方便等优点,在我国高速公路桥梁建设工程中应用广泛。
但是,在施工过程中由于模型选取部正确,导致受力计算错误,加上现场实际搭设过程中,支架搭设不规范、支架的材料进场验收不严格等原因,时常发生支架失稳跨塌,造成重大人员伤亡及财产损失。
本文结合箭沱湾互通G匝道桥现浇箱梁施工实例对现浇箱梁满堂支架受力验算进行详细分析,对现浇箱梁支架施工具有重要的指导意义。
实践证明,只要采取合理的支架搭设方案,建立正确的计算模型,就能保住现浇箱梁施工的安全和质量。
2工程概况箭沱湾互通G匝道桥跨越山间谷地,结合本桥地形地质条件及桥梁高度以及互通平面线型,统筹本合同段桥梁的跨径选择,着重考虑桥梁经济性能及施工的组织,经综合比选,本桥分别采用30mT梁及现浇箱梁方案。
桥梁中心桩号为GK0+454.4,孔径布置为 19*30m,桥梁全长为577m。
桥梁墩台均采用右偏角90°正交,墩台径向布置。
拱桥满堂支架计算书

满堂支架计算书一、工程概况1、主拱肋截面采用宽9.6m,高1.3m的单箱三室普通钢筋混凝土箱型断面,顶、底板厚度均为22cm,腹板厚度均为35cm,拱脚根部段为2m长的实体段。
拱肋混凝土标号为C40,混凝土数量共计426.7m³,钢筋数量共计182994.5kg。
2、支架采用满堂式碗扣脚手架,平面尺寸为58m*9.6m。
其立杆在桥墩处横距为60cm、纵距60cm;其余横距为60cm、纵距为90cm、横杆步距为120cm组合形式布置纵横向均设置斜向剪力撑,以增加整个支架的稳定性。
3、拱盔采用φ48(d=3.5mm)钢管,钢管壁厚不得小于3.5 mm(+0.025mm)弯制。
4、底模采用15mm竹胶板,竹胶板后背10*8木方,木方横桥向布置,布置间距30cm控制。
二、满堂支架计算书1、支架荷载分析计算依据《公路桥涵施工技术规范》(JTG/F50-2011)《建筑施工碗扣式脚手架安全技术规范》(JGJ166-2008)《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2011)《路桥施工计算手册》其他现行规范。
2、荷载技术参数a.新浇钢筋混凝土自重荷载25KN/㎡b.振捣混凝土产生的荷载2.0KN/㎡(JTG_TF50-2011 公路桥涵施工技术规范P182)c.施工人员、材料、机具荷载2.5KN/㎡(JTG_TF50-2011 公路桥涵施工技术规范P182)d.模板、支架自重荷载2.5KN/㎡e.风荷载标准值采用0.6KN/㎡f.验算倾覆稳定系数2(JTG_TF50-2011 公路桥涵施工技术规范P182)3、荷载值的确定进行支架设计时,所采用的荷载设计值,取荷载标准值分别乘以下述相应的荷载分项系数,然后组合而得;本工程满堂支架采用碗扣式脚手架搭设,其立杆在桥墩处横距为60cm、纵距60cm;其余横距为60cm、纵距为90cm、横杆步距为120cm组合形式布置,其上设可调顶托,上铺钢管和方木形成模板平台,支架承载最不利情况为拱板混凝土浇注完毕尚未初凝前底板范围内的杆件承载。
建筑技术丨满堂脚手架和满堂支撑架搭设规定

建筑技术丨满堂脚手架和满堂支撑架搭设规定1、满堂脚手架和满堂支撑架结构体系1.1 满堂脚手架定义为在纵、横方向,由不少于三排立杆并与水平杆、水平剪刀撑、竖向剪刀撑、扣件等构成的脚手架。
该架体顶部作业层的施工荷载通过水平杆传递给立杆,顶部立杆呈偏心受压状态。
1.2 满堂支撑架定义为在纵、横方向,由不少于三排立杆并与水平杆、水平剪刀撑、竖向剪刀撑、扣件等构成的承力支架。
该架体顶部的施工荷载通过可调托撑传给立杆,顶部立杆呈轴心受压状态。
1.3 满堂支撑架可分为普通型和加强型二种。
当架体沿外侧周边及内部纵、横向每隔5m~8m,设置由底至顶的连续竖向剪刀撑,在竖向剪刀撑顶部交点平面设置连续水平剪刀撑,且水平剪刀撑距架体底平面或相邻水平剪刀撑的间距不超过8m时,定义为普通型满堂支撑架;当连续竖向剪刀撑的间距不大于5m,连续水平剪刀撑距架体底平面或相邻水平剪刀撑的间距不大于6m时,定义为加强型满堂支撑架。
1.4 当架体高度不超过8m且施工荷载不大时,扫地杆布置层可不设水平剪刀撑。
1.5 满堂脚手架的支撑布置方法同普通型满堂支撑架。
2、满堂脚手架和满堂支撑架的结构性能2.1 支撑体系设置完善的满堂脚手架或满堂支撑架,在极限荷载作用下的可能破坏形式为:2.1 .1 以水平剪刀撑设置层为反弯点的沿较弱方向的架体大波整体失稳。
2.1.2 架体较大步距间立杆段的局部弯曲失稳。
2.1.3 满堂支撑架有可能发生顶步距立杆段的局部弯曲失稳。
2.1.4 通常情况下,架体的极限承载力由架体大波整体失稳时的承载力值确定。
当架体的步距过大时,其立杆段的稳定承载力可能低于整体失稳时的承载力。
当满堂支撑架的顶步距过大或顶步距以上立杆悬伸长度过大,其立杆段的稳定承载力可能低于整体失稳时的承载力。
2.1.5 满堂支撑架的整体稳定整体失稳破坏时,满堂支撑架呈现出纵横立杆与纵横水平杆组成的空间框架,沿刚度较弱方向大波鼓曲现象;无剪刀撑的支架,支架达到临界荷载时,整架大波鼓曲。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
附件1 支架计算书
箱梁施工采用满堂碗扣脚手支架,以下受力验算取武汉某立交高度最高的支架27#~28#墩进行。
受力情况不验算箱梁翼板而只计算梁底受力情况。
支架步距采用90cm,横向间距在一般截面为60+90+120+90+60+90+120+90+60+90+120+90+60cm,在墩顶截面为19×60cm,竹胶板下顺桥向布置10×10cm木方,木方下横桥向布置工10工字钢,具体见箱梁一般截面受力分析图和箱梁墩顶截面受力分析图。
箱梁一般截面受力分析图
39KN/m
箱梁墩顶截面受力分析图
1. 支架计算与基础验算
资料
(1)HB碗扣为Φ48×3.5mm钢管;(2)立杆、横杆承载性能;
立杆横杆
步距(m)允许载荷(KN)横杆长度(m)
允许集中荷载
(KN))
允许均布荷载
(KN)
0.6400.9 4.512
1.230 1.2 3.57
1.825 1.5
2.5 4.5
2.420 1.8 2.0
3.0(3)根据《工程地质勘察报告》,本桥位处地基容许承载力在100Kpa以上。
2. 荷载分析计算
(1)恒载(砼):
混凝土荷载按照24.2KN/m3考虑,增加钢筋重量并相应减去占用混凝土体积后,综合按照26.8KN/m3考虑。
箱梁一般截面恒载受力计算成果表
木方编号
受力
(KN/m)
木方编号
受力
(KN/m)
立杆编号
受力
(KN)
1 1.9521 3.12111.63
211.7022 3.12214.09
38.7823 3.12310.15
4 4.6824 3.54410.46
箱梁墩顶截面恒载受力计算成果表
(2)模板荷载:
a、内模(包括支撑架):按q=1.2KN/m2考虑
b、外模(包括侧模支撑架):按q=2.4KN/m2考虑
(3)施工荷载:
因施工时面积分布广,需要人员及机械设备不多,按q=2.8KN/m2考虑(施工中要严格控制其荷载量)
(4)碗扣脚手架及分配梁荷载:
按27#~28#墩最高位置考虑,一般截面单根立杆最大受力2.5KN,墩顶截面单根立杆最大受力2.3KN。
箱梁一般截面支架活载受力计算成果表
箱梁墩顶截面支架活载受力计算成果表
3. 碗扣立杆受力计算
箱梁一般截面支架受力计算(恒载)合成成果表
箱梁一般截面支架受力计算(活载)合成成果表
立杆受力计算公式N=1.2N恒+1.4N活
箱梁一般截面支架受力计算合成成果表
箱梁墩顶截面支架受力计算合成成果表
立杆受力结果均小于30KN ,满足受力要求。
4. 地基受力计算
由工程地质勘察报告,地基容许承载力[N]=80KN
单根立杆受力为N =27.90KN ,分布地基受力面积为0.6m ×0.6m ,则: 地基应力σ=77.5Kpa<[σ]=100 Kpa 地基传力方式如下:
5. 杆件稳定性验算
根据杆件受力原理,多排多列(超过3排3列)整体支架的整体验算均可转化为最大单肢杆件验算。
现取受力最大的杆件进行压杆稳定验算。
碗扣采用Φ48×3.5mm 钢管,横杆步距在一般截面为0.6、0.9和1.2m 。
钢管截面积A=4.893×10-4(m 2)
回转半径i=15.8mm 长细比i
l 0
=
λ=76,查表得ϕ=0.744。
精选
σ=KN/( *A)=1.5×27.9×103/0.744/4.893×10-4=114.96×106pa<195Mpa 可以满足要求。
可编辑。