关于极值点的几个题目
极值点好题

(木),由(i)知j勋:一1112勋一1=m一(1), 【肋‘一In2kb一1 0…【2),
2
(1)一(2):k(a+6)(口-b)一111(口/b)=0,贝0k(a+b)= lIl(口/b)/(a—b)代入(+),则只需证明lIl@/b)/(a-b) 一2/(口+b)>0亡,1n;一2(口一6)/(口+6)>0.
(xo一而)】),得到f(xa)>f(2xo一恐)(或地)<八‰一x2));
(5)结合f(x)单调性得到五>2‰一屯(或‘< 2Xo一%),从而(X1+z2)/2>Xo(或(五十x2)/2<‰). 4牛刀小试 例5(2014年3月厦门市质检・理20) (ii)解设G(x)=F(xo+工)-F(xo—z)=4向【0工+
(III)如果五≠X2,且f(x1)=f(x:),证明葺+屯
>2.
万方数据
38
福建中学数学
2015年第9期
分析要证x。+X2>2,即证(五+恐)/2>1,(五+
0,当弋<x<o时G(x)>G(O)=0,故F(xo+功>F(xo-x).
x2)/2就是直线y=h(h=f(xL)=厂(屯))被函数Y=侧
(4)由,(五)=f(x2)=f[Xo一(Xo—x2)】>f[Xo+ (‰一X2)]=f(2Xo—X2)(或=f[Xo一(Xo—x2)]<f[xo+
=:2{・3』!:苎!::芋—-(——1)j1,——————i■———一 。:x—.o而:+-..、,n1,。:x—.o%:}
=2(n+1)(而2一x2)2(一二)”“.
所截线段中点的横坐标,不等式右边的1恰是函数 f(x)=xe。的极值点. (Ⅲ)因为x。≠x2,不妨设五<x:,由(I)可 知xl<1,X2>1,所以厂(五)=f(x2)>g(x2)=f(2一X2). 因为而>1,2--X2<1,根据单调性xl>2一X2,
有关极值点的几个题目

关于极值点与零点的几个题一.解答题(共7小题)1.已知函数.(1)若y=f(x)在(0,+∞)恒单调递减,求a的取值范围;(2)若函数y=f(x)有两个极值点x1,x2(x1<x2),求a的取值范围并证明x1+x2>2.2.已知函数f(x)=xlnx﹣x2﹣x+a(a∈R)在定义域内有两个不同的极值点(1)求a的取值范围;(2)记两个极值点x1,x2,且x1<x2,已知λ>0,若不等式x1•x2λ>e1+λ恒成立,求λ的取值范围.3.已知函数f(x)=ln﹣ax2+x,(1)讨论函数f(x)的极值点的个数;(2)若f(x)有两个极值点x1,x2,证明:f(x1)+f(x2)>3﹣4ln2.4.已知函数f(x)=(e为自然对数的底数).(1)若a=,求函数f(x)的单调区间;(2)若f(1)=1,且方程f(x)=1在(0,1)内有解,求实数a的取值范围.5.已知函数f(x)=lnx﹣ax.(Ⅰ)若函数f(x)在(1,+∞)上单调递减,求实数a的取值范围;(Ⅱ)当a=1时,函数有两个零点x1,x2,且x1<x2.求证:x1+x2>1.6.已知f(x)=ln(mx+1)﹣2(m≠0).(1)讨论f(x)的单调性;(2)若m>0,g(x)=f(x)+存在两个极值点x1,x2,且g(x1)+g(x2)<0,求m的取值范围.7.已知函数f(x)=x(lnx﹣ax)(a∈R),g(x)=f′(x).(1)若曲线y=f(x)在点(1,f(1))处的切线与直线3x﹣y﹣1=0平行,求实数a的值;(2)若函数F(x)=g(x)+x2有两个极值点x1,x2,且x1<x2,求证:f (x2)﹣1<f(x1)关于极值点的几个题目------有点难参考答案与试题解析一.解答题(共7小题)1.(2017•达州模拟)已知函数.(1)若y=f(x)在(0,+∞)恒单调递减,求a的取值范围;(2)若函数y=f(x)有两个极值点x1,x2(x1<x2),求a的取值范围并证明x1+x2>2.【分析】(1)求出函数的导数,问题转化为,令,根据函数的单调性求出g(x)的最大值,从而求出a的范围即可;(2)求出函数f(x)的导数,令F(x)=f'(x)=lnx﹣ax+1,求出函数F(x)的导数,通过讨论a的范围求出a的范围,证明即可.【解答】解:(1)因为f'(x)=lnx﹣ax+1(x>0),所以由f'(x)≤0在(0,+∞)上恒成立得,令,易知g(x)在(0,1)单调递增(1,+∞)单调递减,所以a≥g(1)=1,即得:a≥1…(5分)(2)函数y=f(x)有两个极值点x1,x2(x1<x2),即y=f'(x)有两个不同的零点,且均为正,f'(x)=lnx﹣ax+1(x>0),令F(x)=f'(x)=lnx﹣ax+1,由可知1)a≤0时,函数y=f(x)在(0,+∞)上是增函数,不可能有两个零点.2)a>0时,y=F(x)在是增函数在是减函数,此时为函数的极大值,也是最大值.当时,最多有一个零点,所以才可能有两个零点,得:0<a<1…(7分)此时又因为,,,令,φ(a)在(0,1)上单调递增,所以φ(a)<φ(1)=3﹣e2,即综上,所以a的取值范围是(0,1)…(8分)下面证明x1+x2>2由于y=F(x)在是增函数在是减函数,,可构造出构造函数则,故m(x)在区间上单调减.又由于,则,即有m(x1)>0在上恒成立,即有成立.由于,,y=F(x)在是减函数,所以所以成立…(12分)【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,是一道综合题.2.(2017•天心区校级一模)已知函数f(x)=xlnx﹣x2﹣x+a(a∈R)在定义域内有两个不同的极值点(1)求a的取值范围;(2)记两个极值点x1,x2,且x1<x2,已知λ>0,若不等式x1•x2λ>e1+λ恒成立,求λ的取值范围.【分析】(1)由导数与极值的关系知可转化为方程f′(x)=lnx﹣ax=0在(0,+∞)有两个不同根;再转化为函数y=lnx与函数y=ax的图象在(0,+∞)上有两个不同交点;(2)原式等价于>,令t=,t∈(0,1),则不等式lnt<在t∈(0,1)上恒成立.令h(t)=lnt﹣,t∈(0,1),根据函数的单调性求出即可.【解答】解:(1)由题意知,函数f(x)的定义域为(0,+∞),方程f′(x)=0在(0,+∞)有两个不同根,即方程lnx﹣ax=0在(0,+∞)有两个不同根;转化为函数y=lnx与函数y=ax的图象在(0,+∞)上有两个不同交点,如图示:,可见,若令过原点且切于函数y=lnx图象的直线斜率为k,只须0<a<k.令切点A(x0,lnx0),故k=y′|x=x0=,又k=,故=,解得,x0=e,故k=,故0<a<;(2)因为e1+λ<x1•x2λ等价于1+λ<lnx1+λlnx2.由(1)可知x1,x2分别是方程lnx﹣ax=0的两个根,即lnx1=ax1,lnx2=ax2所以原式等价于1+λ<ax1+λax2=a(x1+λx2),因为λ>0,0<x1<x2,所以原式等价于a>,又由lnx1=ax1,lnx2=ax2作差得,ln =a(x1﹣x2),所以原式等价于>,因为0<x1<x2,原式恒成立,即ln<恒成立.令t=,t∈(0,1),则不等式lnt<在t∈(0,1)上恒成立.令h(t)=lnt﹣,t∈(0,1),又h′(t)=,当λ2≥1时,可见t∈(0,1)时,h′(t)>0,所以h(t)在t∈(0,1)上单调增,又h(1)=0,h(t)<0在t∈(0,1)恒成立,符合题意.当λ2<1时,可见t∈(0,λ2)时,h′(t)>0,t∈(λ2,1)时h′(t)<0,所以h(t)在t∈(0,λ2)时单调增,在t∈(λ2,1)时单调减,又h(1)=0,所以h(t)在t∈(0,1)上不能恒小于0,不符合题意,舍去.综上所述,若不等式e1+λ<x1•x2λ恒成立,只须λ2≥1,又λ>0,所以λ≥1.【点评】本题考查了导数的综合应用及分类讨论,转化思想,数形结合的思想方法的应用,是一道综合题.3.(2017•湖北模拟)已知函数f(x)=ln﹣ax2+x,(1)讨论函数f(x)的极值点的个数;(2)若f(x)有两个极值点x1,x2,证明:f(x1)+f(x2)>3﹣4ln2.【分析】(1)求出函数的导数,通过讨论a的范围,得到函数的单调区间,从而求出函数的极值的个数;(2)根据x1,x2是方程2ax2﹣x+1=0的两根,得到,,求出f(x1)+f(x2),根据函数的单调性证明即可.【解答】解:(1)由,得:,(ⅰ)a=0时,,x∈(0,1),f′(x)<0,x∈(1,+∞),f′(x)>0,所以x=1,f(x)取得极小值,x=1是f(x)的一个极小值点.(ⅱ)a<0时,△=1﹣8a>0,令f′(x)=0,得显然,x1>0,x2<0,∴,f(x)在x=x1取得极小值,f(x)有一个极小值点.(ⅲ)a>0时,△=1﹣8a≤0即时,f′(x)≤0,f(x)在(0,+∞)是减函数,f(x)无极值点.当时,△=1﹣8a>0,令f′(x)=0,得当x∈(0,x1)和x∈(x2,+∞)f′(x)<0,x∈(x1,x2)时,f′(x)>0,∴f(x)在x1取得极小值,在x2取得极大值,所以f(x)有两个极值点.综上可知:(ⅰ)a≤0时,f(x)仅有一个极值点;(ⅱ)当时,f(x)无极值点;(ⅲ)当时,f(x)有两个极值点.(2)证明:由(1)知,当且仅当a∈(0,)时,f(x)有极小值点x1和极大值点x2,且x1,x2是方程2ax2﹣x+1=0的两根,∴,,===,设,,∴时,g(a)是减函数,,∴,∴f(x1)+f(x2)>3﹣4ln2.【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论数思想,是一道综合题.4.(2016•包头校级三模)已知函数f(x)=(e为自然对数的底数).(1)若a=,求函数f(x)的单调区间;(2)若f(1)=1,且方程f(x)=1在(0,1)内有解,求实数a的取值范围.【分析】(1)若a=,求函数的导数,利用函数单调性和导数之间的关系即可求函数f(x)的单调区间;(2)根据函数与方程之间的关系转化为函数存在零点问题,构造函数,求函数的导数,利用函数极值和函数零点之间的关系进行转化求解即可.【解答】解:(1)若a=,f(x)=(x2+bx+1)e﹣x,则f′(x)=(2x+b)e﹣x﹣(x2+bx+1)e﹣x=﹣[x2+(b﹣2)x+1﹣b]e﹣x=﹣(x﹣1)[x﹣(1﹣b)]e﹣x,由f′(x)=0得﹣(x﹣1)[x﹣(1﹣b)]=0,即x=1或x=1﹣b,①若1﹣b=1,即b=0时,f′(x)=﹣(x﹣1)2e﹣x≤0,此时函数单调递减,单调递减区间为(﹣∞,+∞).②若1﹣b>1,即b<0时,由f′(x)=﹣(x﹣1)[x﹣(1﹣b)]e﹣x>0得(x ﹣1)[x﹣(1﹣b)]<0,即1<x<1﹣b,此时函数单调递增,单调递增区间为(1,1﹣b),由f′(x)=﹣(x﹣1)[x﹣(1﹣b)]e﹣x<0得(x﹣1)[x﹣(1﹣b)]>0,即x<1,或x>1﹣b,此时函数单调递减,单调递减区间为(﹣∞,1),(1﹣b,+∞),③若1﹣b<1,即b>0时,由f′(x)=﹣(x﹣1)[x﹣(1﹣b)]e﹣x>0得(x ﹣1)[x﹣(1﹣b)]<0,即1﹣b<x<1,此时函数单调递增,单调递增区间为(1﹣b,1),由f′(x)=﹣(x﹣1)[x﹣(1﹣b)]e﹣x<0得(x﹣1)[x﹣(1﹣b)]>0,即x<1﹣b,或x>1,此时函数单调递减,单调递减区间为(﹣∞,1﹣b),(1,+∞).(2)若f(1)=1,则f(1)=(2a+b+1)e﹣1=1,即2a+b+1=e,则b=e﹣1﹣2a,若方程f(x)=1在(0,1)内有解,即方程f(x)=(2ax2+bx+1)e﹣x=1在(0,1)内有解,即2ax2+bx+1=e x在(0,1)内有解,即e x﹣2ax2﹣bx﹣1=0,设g(x)=e x﹣2ax2﹣bx﹣1,则g(x)在(0,1)内有零点,设x0是g(x)在(0,1)内的一个零点,则g(0)=0,g(1)=0,知函数g(x)在(0,x0)和(x0,1)上不可能单调递增,也不可能单调递减,设h(x)=g′(x),则h(x)在(0,x0)和(x0,1)上存在零点,即h(x)在(0,1)上至少有两个零点,g′(x)=e x﹣4ax﹣b,h′(x)=e x﹣4a,当a≤时,h′(x)>0,h(x)在(0,1)上递增,h(x)不可能有两个及以上零点,当a≥时,h′(x)<0,h(x)在(0,1)上递减,h(x)不可能有两个及以上零点,当<a<时,令h′(x)=0,得x=ln(4a)∈(0,1),则h(x)在(0,ln(4a))上递减,在(ln(4a),1)上递增,h(x)在(0,1)上存在最小值h(ln(4a)).若h(x)有两个零点,则有h(ln(4a))<0,h(0)>0,h(1)>0,h(ln(4a))=4a﹣4aln(4a)﹣b=6a﹣4aln(4a)+1﹣e,<a<,设φ(x)=x﹣xlnx+1﹣e,(1<x<e),则φ′(x)=﹣lnx,令φ′(x)=﹣lnx=0,得x=,当1<x<时,φ′(x)>0,此时函数φ(x)递增,当<x<e时,φ′(x)<0,此时函数φ(x)递减,则φ(x)max=φ()=+1﹣e<0,则h(ln(4a))<0恒成立,由h(0)=1﹣b=2a﹣e+2>0,h(1)=e﹣4a﹣b>0,得<a<,当<a<时,设h(x)的两个零点为x1,x2,则g(x)在(0,x1)递增,在(x1,x2)上递减,在(x2,1)递增,则g(x1)>g(0)=0,g(x2)<g(1)=0,则g(x)在(x1,x2)内有零点,综上,实数a的取值范围是(,).【点评】本题主要考查函数单调性和单调区间的求解和判断,利用函数单调性的性质以及函数单调性和导数之间的关系是解决本题的关键.综合性较强,难度较大.5.(2016•宁城县模拟)已知函数f(x)=lnx﹣ax.(Ⅰ)若函数f(x)在(1,+∞)上单调递减,求实数a的取值范围;(Ⅱ)当a=1时,函数有两个零点x1,x2,且x1<x2.求证:x1+x2>1.【分析】(Ⅰ)求出函数的导数,根据函数的单调性,分离参数a,问题转化为:当x>1时恒成立,解出即可;(Ⅱ)求出个零点x1,x2,得到.构造函数,根据函数的单调性证明即可.【解答】解:(I)因为f(x)=lnx﹣ax,则,若函数f(x)=lnx﹣ax在(1,+∞)上单调递减,则1﹣ax≤0在(1,+∞)上恒成立,即当x>1时恒成立,所以a≥1.(5分)(II)证明:根据题意,,因为x1,x2是函数的两个零点,所以,.两式相减,可得,(7分)即,故.那么,.令,其中0<t<1,则.构造函数,(10分)则.因为0<t<1,所以h'(t)>0恒成立,故h(t)<h(1),即.可知,故x1+x2>1.(12分)【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及函数恒成立问题,考查不等式的证明,是一道综合题.6.(2016•河南三模)已知f(x)=ln(mx+1)﹣2(m≠0).(1)讨论f(x)的单调性;(2)若m>0,g(x)=f(x)+存在两个极值点x1,x2,且g(x1)+g(x2)<0,求m的取值范围.【分析】(1)求出函数的导数,通过讨论m的范围,确定函数的单调性;(2)求出g(x)的导数,通过讨论m的范围,求出函数的单调区间,从而求出函数的最值,判断是否符合题意,从而判断出m的范围即可.【解答】解:(1)由已知得mx+1>0,f′(x)=,①若m>0时,由mx+1>0,得:x>﹣,恒有f′(x)>0,∴f(x)在(﹣,+∞)递增;②若m<0,由mx+1>0,得:x<﹣,恒有f′(x)<0,∴f(x)在(﹣∞,﹣)递减;综上,m>0时,f(x)在(﹣,+∞)递增,m<0时,f(x)在(﹣∞,﹣)递减;(2)g(x)=ln(mx+1)+﹣2,(m>0),∴g′(x)=,令h(x)=mx2+4m﹣4,m≥1时,h(x)≥0,g′(x)≥0,g(x)无极值点,0<m<1时,令h(x)=0,得:x1=﹣2或x2=2,由g(x)的定义域可知x>﹣且x≠﹣2,∴﹣2>﹣且﹣2≠﹣2,解得:m≠,∴x1,x2为g(x)的两个极值点,即x1=﹣2,x2=2,且x1+x2=0,x1•x2=,得:g(x1)+g(x2)=ln(mx1+1)+﹣2+ln(mx2+1)+﹣2=ln(2m﹣1)2+﹣2,令t=2m﹣1,F(t)=lnt2+﹣2,①0<m<时,﹣1<t<0,∴F(t)=2ln(﹣t)+﹣2,∴F′(t)=<0,∴F(t)在(﹣1,0)递减,F(t)<F(﹣1)<0,即0<m<时,g(x1)+g(x2)<0成立,符合题意;②<m<1时,0<t<1,∴F(t)=2lnt+﹣2,F′(t)=<0,∴F(t)在(0,1)递减,F(t)>F(1)=0,∴<m<1时,g(x1)+g(x2)>0,不合题意,综上,m∈(0,).【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及函数恒成立问题,考查分类讨论思想,是一道综合题.7.(2016•湖北模拟)已知函数f(x)=x(lnx﹣ax)(a∈R),g(x)=f′(x).(1)若曲线y=f(x)在点(1,f(1))处的切线与直线3x﹣y﹣1=0平行,求实数a的值;(2)若函数F(x)=g(x)+x2有两个极值点x1,x2,且x1<x2,求证:f (x2)﹣1<f(x1)【分析】(1)利用导数的几何意义求切线斜率,解a;(2)利用极值点与其导数的关系求出a的范围,进一步求出f(x)的解析式,通过求导判断其单调性以及最值.【解答】解:(1)∵f′(x)=ln x﹣2ax+1,∴f′(1)=1﹣2a因为3x﹣y﹣1=0的斜率为3.依题意,得1﹣2a=3;则a=﹣1.…(4分)(2)证明:因为F(x)=g(x)+x2=ln x﹣2ax+1+x2,所以F′(x)=﹣2a+x=(x>0),函数F(x)=g(x)+x2有两个极值点x1,x2且x1<x2,即h(x)=x2﹣2ax+1在(0,+∞)上有两个相异零点x1,x2.∵x1x2=1>0,∴∴a>1.…(6分)当0<x<x1或x>x2时,h(x)>0,F′(x)>0.当x1<x<x2时,h(x)<0,F′(x)<0.所以F(x)在(0,x1)与(x2,+∞)上是增函数,在区间(x1,x2)上是减函数.因为h(1)=2﹣2a<0,所以0<x1<1<a<x2,令x2﹣2ax+1=0,得a=,∴f(x)=x(ln x﹣ax)=xln x﹣x3﹣x,则f′(x)=ln x﹣x2+,设s(x)=ln x﹣x2+,s′(x)=﹣3x=,…(8分)①当x>1时,s′(x)<0,s(x)在(1,+∞)上单调递减,从而函数s(x)在(a,+∞)上单调递减,∴s(x)<s(a)<s(1)=﹣1<0,即f′(x)<0,所以f(x)在区间(1,+∞)上单调递减.故f(x)<f(1)=﹣1<0.又1<a<x2,因此f(x2)<﹣1.…(10分)②当0<x<1时,由s′(x)=>0,得0<x<.由s′(x)=<0,得<x<1,所以s(x)在[0,]上单调递增,s(x)在[,1]上单调递减,∴s(x)≤s max=ln<0,∴f(x)在(0,1)上单调递减,∴f(x)>f(1)=﹣1,∵x1∈(0,1),从而有f(x1)>﹣1.综上可知:f(x2)<﹣1<f(x1).…(12分)【点评】本题考查了导数的几何意义以及利用导数求函数的单调区间和最值;考查了讨论的数学思想,属于难题.。
高三数学利用导数求最值和极值试题答案及解析

高三数学利用导数求最值和极值试题答案及解析1.函数的极小值是 .【答案】.【解析】,令,解得,列表如下:极大值极小值故函数在处取得极小值,即.【考点】函数的极值2.已知a≤+lnx对任意的x∈[,2]恒成立,则a的最大值为________.【解析】令f(x)=+lnx,f′(x)=,当x∈[,1)时,f′(x)<0,当x∈(1,2]时,f′(x)>0,∴f(x)=f(1)=0,∴a≤0,故a最大值为0.min3.一个圆柱形圆木的底面半径为1m,长为10m,将此圆木沿轴所在的平面剖成两个部分.现要把其中一个部分加工成直四棱柱木梁,长度保持不变,底面为等腰梯形(如图所示,其中O 为圆心,在半圆上),设,木梁的体积为V(单位:m3),表面积为S(单位:m2).(1)求V关于θ的函数表达式;(2)求的值,使体积V最大;(3)问当木梁的体积V最大时,其表面积S是否也最大?请说明理由.【答案】(1);(2);(3)是.【解析】(1)本题求直四棱柱的体积,关键是求底面面积,我们要用底面半径1和表示出等腰梯形的上底和高,从图形中可知高为,而,因此面积易求,体积也可得出;(2)我们在(1)中求出,这里的最大值可利用导数知识求解,求出,解出方程在上的解,然后考察在解的两边的正负性,确定是最大值点,实质上对应用题来讲,导数值为0的那个唯一点就是要求的极值点);(3),上(2)我们可能把木梁的表面积用表示出来,,由于在体积中出现,因此我们可求的最大值,这里可不用导数来求,因为,可借助二次函数知识求得最大值,如果这里取最大值时的和取最大值的取值相同,则结论就是肯定的.试题解析:(1)梯形的面积=,. 2分体积. 3分(2).令,得,或(舍).∵,∴. 5分当时,,为增函数;当时,,为减函数. 7分∴当时,体积V最大. 8分(3)木梁的侧面积=,.=,. 10分设,.∵,∴当,即时,最大. 12分又由(2)知时,取得最大值,所以时,木梁的表面积S最大. 13分综上,当木梁的体积V最大时,其表面积S也最大. 14分【考点】(1)函数解析式;(2)用导数求最值;(3)四棱柱的表面积及其最值.4.已知常数a,b,c都是实数,f(x)=ax3+bx2+cx-34的导函数为f′ (x),f′(x)≤0的解集为{x|-2≤x≤3},若f(x)的极小值等于-115,则a的值是()A.-B.C.2D.5【答案】C【解析】依题意得f′(x)=3ax2+2bx+c≤0的解集是[-2,3],于是有3a>0,-2+3=-,-2×3=,解得b=-,c=-18a,函数f(x)在x=3处取得极小值,于是有f(3)=27a+9b+3c-34=-115,-a=-81,a=2,故选C.5.已知函数f(x)的导函数f′(x)=a(x+1)(x-a),若f(x)在x=a处取到极大值,则a的取值范围是________.【答案】(-1,0)【解析】根据函数极大值与导函数的关系,借助二次函数图象求解.因为f(x)在x=a处取到极大值,所以x=a为f′(x)的一个零点,且在x=a的左边f′(x)>0,右边f′(x)<0,所以导函数f′(x)的开口向下,且a>-1,即a的取值范围是(-1,0).6.已知函数f(x)=x3+ax2+x+2(a>0)的极大值点和极小值点都在区间(-1,1)内,则实数a的取值范围是().A.(0,2]B.(0,2)C.[,2)D.(,2)【答案】D【解析】由题意可知f′(x)=0的两个不同解都在区间(-1,1)内.因为f′(x)=3x2+2ax+1,所以根据导函数图象可得又a>0,解得<a<2,故选D.7.已知e为自然对数的底数,设函数f(x)=(e x-1)(x-1)k(k=1,2),则().A.当k=1时,f(x)在x=1处取到极小值B.当k=1时,f(x)在x=1处取到极大值C.当k=2时,f(x)在x=1处取到极小值D.当k=2时,f(x)在x=1处取到极大值【答案】C【解析】当k=1时,f′(x)=e x·x-1,f′(1)≠0,∴f(1)不是极值,故A,B错;当k=2时,f′(x)=(x-1)(x e x+e x-2),显然f′(1)=0,且x在1的左侧附近f′(x)<0,x在1的右侧附近f′(x)>0,∴f(x)在x=1处取到极小值.故选C.8.设函数,则函数的各极小值之和为()A.B.C.D.【答案】D【解析】,令,则,令,则,所以当时,取极小值,其极小值为所以函数的各极小值之和,故选D.【考点】1.函数的极值求解;2.数列的求和.9.设函数,其中.(1)若在处取得极值,求常数的值;(2)设集合,,若元素中有唯一的整数,求的取值范围.【答案】(1);(2)【解析】(1)由在处取得极值,可得从而解得,此问注意结合极值定义检验所求值是否为极值点;(2)分,,和三种情况得出集合A,然后由元素中有唯一的整数,分析端点,从而求出的取值范围.试题解析:(1),又在处取得极值,故,解得.经检验知当时,为的极值点,故.(2),当时,,则该整数为2,结合数轴可知,当时,,则该整数为0,结合数轴可知当时,,不合条件.综上述,.【考点】1.利用导数处理函数的极值;2.集合元素的分析10.已知函数在处取得极值,则取值的集合为 .【答案】.【解析】,,依题意有,从而有,且有,即,解得或,当时,,此时,此时函数无极值,当时,,此时,此时函数有极值,故.【考点】函数的极值11.函数最小值是___________.【答案】【解析】函数求导得.当时,,即在上单调递减;当时,,即在上单调递增,因此函数在处取得最小值,即.【考点】利用导数求函数的最值.12.已知函数(,,且)的图象在处的切线与轴平行. (1)确定实数、的正、负号;(2)若函数在区间上有最大值为,求的值.【答案】(1),;(2).【解析】(1)先求导数,因为切线与轴平行,所以导数为0,列出等式,判断出的符号;(2)求导数,令导数为0,解出方程的根,利用导数的正负判断出函数的单调性,通过分类讨论的方法找到最大值,让最大值等于,解出的值.试题解析:(1) 1分由图象在处的切线与轴平行,知,∴. 2分又,故,. 3分(2) 令,得或. 4分∵,令,得或令,得.于是在区间内为增函数,在内为减函数,在内为增函数.∴是的极大值点,是极小值点. 5分令,得或. 6分分类:①当时,,∴ .由解得, 8分②当时,, 9分∴.由得 . 10分记,∵, 11分∴在上是增函数,又,∴, 12分∴在上无实数根. 13分综上,的值为. 14分【考点】1.用导数求切线的斜率;2.用导数求函数最值.13.设函数,(1)求函数的极大值;(2)记的导函数为,若时,恒有成立,试确定实数的取值范围.【答案】(1);(2) .【解析】(1)由导函数或求得函数的单调区间,再找极大值;(2) 的导函数是一元二次函数,转化为一元二次函数在上的最值,再满足条件即可.试题解析:(1)令,且当时,得;当时,得或∴的单调递增区间为;的单调递减区间为和,故当时,有极大值,其极大值为 6分(2)∵ 7分①当时,,∴在区间内单调递减∴,且∵恒有成立∵又,此时, 10分②当时,,得因为恒有成立,所以,即,又得, 14分综上可知,实数的取值范围 . 15分【考点】1.函数的极值;2.一元二次函数的最值.14.已知函数.(Ⅰ)若在上的最大值为,求实数的值;(Ⅱ)若对任意,都有恒成立,求实数的取值范围;(Ⅲ)在(Ⅰ)的条件下,设,对任意给定的正实数,曲线上是否存在两点,使得是以(为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在轴上?请说明理由.【答案】(Ⅰ).(Ⅱ).(Ⅲ)对任意给定的正实数,曲线上总存在两点,,使得是以(为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在轴上.【解析】(Ⅰ)由,得,令,得或.当变化时,及的变化如下表:由,,,即最大值为,. 4分(Ⅱ)由,得.,且等号不能同时取,,即恒成立,即. 6分令,求导得,,当时,,从而,在上为增函数,,. 8分(Ⅲ)由条件,,假设曲线上存在两点,满足题意,则,只能在轴两侧,不妨设,则,且.是以为直角顶点的直角三角形,,,是否存在,等价于方程在且时是否有解. 10分①若时,方程为,化简得,此方程无解;②若时,方程为,即,设,则,显然,当时,,即在上为增函数,的值域为,即,当时,方程总有解.对任意给定的正实数,曲线上总存在两点,,使得是以(为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在轴上. 14分【考点】利用导数研究函数的单调性、最值。
极值点不等式构造 高考数学模拟试题与解析

专题3极值点不等式构造如果函数)(x f 的零点为)321( ,,=i x i ,某个极值点为0x ,如果出现证n x m i <<,我们称之为找点不等式,而一旦出现m x x <+212或者m x x >12之类,我们称之为零点不等式,这个内容我们上一讲已经通过构造比值函数解决,当出现n x f m <<)(0时,我们称之为极值点不等式,本文就介绍这一系列极值点不等式的构造方法.由于此类型题目众多,我们还是以高考题为参考来进行解读.2021年浙江卷,最后一问证明:2212ln e 2e b b x x b>+,这一类问题我们在之前的找点部分已经阐述,无论是极值点的不等式还是零点的不等式,找点就是标配,正应了那句话,“不找点,无导数”。
考点一外争与内斗:如果)(0x f 是函数)(x f y =的极小值,则在证明不等式n x f m <<)(0中,n x f <)(0可以直接从函数中找点获得,这属于函数“内斗”,而)(0x f m <,一个比极小值还要小的值,必须要将0)(0='x f 的关系式做隐零点代换,构造新的函数)(0x g 来最值,这就属于“外争”;同理,)(0x f 是函数)(x f y =的极大值,则在证明不等式n x f m <<)(0中,)(0x f m <属于“内斗”,n x f <)(0则属于“外争”。
【例1】(2017•新课标II)已知函数2()ln f x ax ax x x =--,且()0f x .(1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且220e ()2f x --<<.【例2】(2023•哈尔滨模拟)已知223()(1),042x f x x lnx a x a =--->.(1)若()f x 在区间(1,)+∞上有且仅有一个极值点m ,求实数a 的取值范围;(2)在(1)的条件下,证明:23()44e f m <<.【例3】(2023•山东模拟)已知函数2()(1)()x f x a x e a R =+-∈.(1)当12a =时,判断函数()f x 的单调性;(2)若()f x 有两个极值点1x ,212()x x x <,证明:111()2f x e -<<-.【例4】(2022•5月份模拟)已知函数()(1)x f x x a e =--,其中e 为自然对数的底数,a R ∈.(1)求函数()f x 的单调区间;(2)设()()x g x e f x =,当1a =时,证明:函数()g x 有且仅有一个极小值点0x ,且0211()4g x e-<<-.【例5】(2022•南充模拟)已知()x f x e ax =-,()cos g x ax x =-.(1)当0a >时,求()f x 在[1,2]上的最小值;(2)若()()()()2F x f x g x x π=+-,证明:()F x 存在唯一的极值点0x 且01()1F x -<<.【例6】(2022•炎德英才模拟)已知函数21()2x f x ax x e =+-.(1)若1a =,求不等式()1f lnx >-的解集;(2)当1a >时,求证函数()f x 在(0,)+∞上存在极值点m ,且3()2m f m ->.注意:涉及3()2m f m ->这一类()()f m g m >的,只能外争,所以我们再看下一题.【例7】(2023•浙江期末)已知函数2()2()f x xlnx ax x a R =--∈.(Ⅰ)求证:2()(2)3f x a x x --;(Ⅱ)若0x 为函数()f x 的极值点,①求实数a 的取值范围;②求证:02012x e ax >+.注意:本题似乎就是找点有一点技术含量,这也是为什么,模拟题技术含量不如高考真题的原因.考点二极值点外争不等式的放缩选取方案我们会发现,当关于极值点0x 不等式出现涉及00()()f x g x >的,只能外争,因为0)(0='x f ,能得出隐零点关系式后代入不等式00()()f x g x >,这里就会涉及隐零点关系式选取问题,以及不等式放缩问题,那么这个问题本质是什么呢?我们通过例题来说明.【例8】(2023•长沙县月考)已知函数()ln()1x f x ae x a =-+-.(1)若()f x 的极小值为0,求实数a 的值;(2)当0a >时,证明:()f x 存在唯一极值点0x ,且00()2||0f x x +.注意:双变量问题一直是一个难点,因为不知道抓哪一个,本题我们需要根据参数的范围来判断,发现目标式012)ln(000>-++-x a x ae x 当中,由于a 的范围决定了0x 范围,故我们应该把0x 作为参数,隐零点代换的本质除了替换函数,还有一个更重要的就是单调性替换,我们分析原函数,0x ae 单调递增,)ln(0a x +-单调递减,所以原函数无法直接参与放缩构造,①当01a <<时,极值点01(0,x a ∈,我们通过ax ae x +=010一替换,就能发现000001()2||()21()f x x ln x a x h a x a+=-++-=+,这样就能形成关于a 的单调递减函数)(a h ,从而得到一个放缩式0001()(1)ln(1)2101h a h x x x >=-++->+;②当1a >时,极值点01(0)x a a ∈-,,由于)(a h 递减,我们不可能采用0001()ln()210h a x x x >-+∞-->+∞,只能寻找另外的隐零点代换形式,根据001x ae x a=⇒+00ln )ln(x a a x --=+,所以00()ln 1x h a ae a x =+--,这里就是一个关于a 的单调增函数,即000000()2||ln 110x x f x x e a x e x +>+-->-->.如果回头来看这题解析,我们能发现两种构造的区别就是利用⎪⎩⎪⎨⎧>><<+>+=)1()10(11100000a e ae a x a x ae x x x 不同放缩式,决定采用不同代换的,其本质其实是隐零点代换后关于参数a 的新函数)(a h 单调性来决定的.问题探讨到了这个深度,我们可以来还原一下浙江高考题的庐山真面目了.【例9】(2020•浙江)已知12a <,函数()x f x e x a =--,其中 2.71828e =⋯为自然对数的底数.(Ⅰ)证明:函数()y f x =在(0,)+∞上有唯一零点;(Ⅱ)记0x 为函数()y f x =在(0,)+∞上的零点,证明:0x ;(ⅱ)00()(1)(1)x x f e e a a --.看了此题我们才能明白,高考真题的含金量确实是远超平常模考题,因为模考题都是按照高考真题的套路来的,接下来我们走近极值点和零点的双变量不等式内容的研究,还是那句,找点先行,构造单调放缩函数在后,把握变量主元.考点三极值点和零点混合双变量不等式问题极值点和零点混合双变量不等式问题,本质还是找点,我们来看看这道经典的天津高考题.【例10】(2019•天津文)设函数()ln (1)e x f x x a x =--,其中a R ∈.(I)若0a ,讨论()f x 的单调性;(II)若10ea <<,(i)证明()f x 恰有两个零点;(ⅱ)设0x 为()f x 的极值点,1x 为()f x 的零点,且10x x >,证明:0132x x ->.注意:方案一显然更简单,但是必须建立在11(1ln )x a∈,和10x x >基础之上,这里三变量,参数是纽带,但也做不了主元,这也是上一问找点所给我们带来的提示,方案二就适合那些直接用无穷大而绕开找点的同学们提供的方案,这些极值点和零点的不等式充分说明了,找点永远是导数的重要支柱.【例11】(2022•南昌三模)已知函数21()1(0,)2x f x e ax x x a R =--->∈.(1)当1a =时,判断()f x 的单调性;(2)若1a >时,设1x 是函数()f x 的零点,0x 为函数()f x 极值点,求证:1020x x -<.注意:一道极值点与零点不等式问题,硬是活生生变成了找点的题,其实也是逼着大家不能用极限去避开找点,我们来看一下导数和三角综合的零点不等式问题.【例12】(2023•广东月考)已知函数2()x f x ae x -=-,()sin x g x xe a x =-,其中a R ∈.(1)若0a >,证明()f x 在(0,)+∞上存在唯一的零点;(2)若1a e <,设1x 为()f x 在(0,)+∞上的零点,证明:()g x 在(0,)π上有唯一的零点2x ,且1232x x ->.注意:选择方案一的是真正做明白了这类题,一个好的找点方案决定一道压轴问的走向.考点四找点之双参数问题双参数问题,基本上涉及切线找点和主元选取,不同主元选取导致问题的难度有着天壤之别,限于篇幅,此类问题我们会在《高中数学新思路》系列3中再来详细叙述,本文我们仅以2018年浙江高考题来呈现此类问题.【例13】(2018•浙江)已知函数()ln f x x =-.(1)若()f x 在1x x =,212()x x x ≠处导数相等,证明:12()()88ln 2f x f x +>-;(2)若34ln 2a ≤-,证明:对于任意0k >,直线y kx a =+与曲线()y f x =有唯一公共点.注意:一道高考好题,将数形结合体现得淋漓尽致,这个双变量,k 一直为主体,a 为辅助,隐零点代换也是将k 换成了1x ,最后还是需要找点,综合来看,单调性极值得分析,隐零点代换+找点,这条主线才是双变量导数的核心,我们后面将讲到极值点偏移了,这个内容本质也跟找点有关联吗?达标训练1.(2023•广东月考)已知函数()f x lnx ax a =-+.(1)若函数()f x 的最大值是f (1),求实数a 的值;(2)设函数()()h x xf x =,在(1)的条件下,证明:()h x 存在唯一的极小值点0x ,且01()4h x >-.2.(2022•上杭县开学)已知曲线()(3)(2)x f x x e a lnx x =-+-(其中e 为自然对数的底数)在1x =处切线方程为(1)y e x b =-+.(Ⅰ)求a ,b 值;(Ⅱ)证明:()f x 存在唯一的极大值点0x ,且021()5e f x --<<-.3.(2022•贵阳模拟)已知函数()sin (0)x f x e a x a =->,曲线()y f x =在(0,(0))f 处的切线也与曲线22y x x =-相切.(1)求实数a 的值;(2)若0x 是()f x 的最大的极大值点,求证:0131()2f x <<.4.(2022•东区月考)已知()(1)()(1)1x f x x e a aln x =+--++,a R ∈.(1)若1a =,判断()f x 的单调性;(2)若1a >,且()f x 的极值点为0x ,求证:0()()f x f x 且0()1f x <.5.(2022•成都期中)已知函数()()x a f x lnx e +=-(其中 2.718e = 为自然对数的底数).(Ⅰ)若曲线()y f x =在点(1,f (1))处的切线与x 轴交于点(2,0),求a 的值;(Ⅱ)求证:11a e >-时,()f x 存在唯一极值点0x ,且010x e<<.6.(2022•长沙模拟)已知112b <<,函数()2x f x e x b =--,其中 2.71828e =⋯为自然对数的底数.(1)求函数()y f x =的单调区间;(2)记0x 为函数()y f x =在(0,)+∞0x <<7.(2022•南京三模)已知函数2()(1)3x f x x x e =-+-,()()x f x g x xe x=-,e 为自然对数的底数.(1)求函数()f x 的单调区间;(2)记函数()g x 在(0,)+∞上的最小值为m ,证明:3e m <<.8.(2022•北碚区期中)已知函数()21()f x lnx ax a R =--∈.(1)讨论()f x 的单调性;(2)若函数()()F x xf x =存在极值点0x ,求证:02021x e ax ->.9.(2022•浙江模拟)已知函数()()x f x ln x a ae =+-.(1)当1a =时,求()f x 极值;(2)设0x 为()f x 的极值点,证明:001()2||1f x x --.10.(2022•日照期末)设函数()(1)x f x lnx a x e =--,其中a R ∈.(1)若1a =,求曲线()y f x =在点(1,f (1))处的切线方程;(2)若10a e <<.①证明:函数()f x 恰有两个零点;②设0x 为函数()f x 的极值点,1x 为函数()f x 的零点,且10x x >,证明:1002x x lnx <+.11.(2022•西城区三模)已知函数()(1)x f x e mlnx =+,其中0m >,()f x '为()f x 的导函数.(1)当1m =,求()f x 在点(1,f (1))处的切线方程;(2)设函数()()x f x h x e '=,且5()2h x 恒成立.①求m 的取值范围;②设函数()f x 的零点为0x ,()f x '的极小值点为1x ,求证:01x x >.12.(2019•天津理)设函数()cos x f x e x =,()g x 为()f x 的导函数.(Ⅰ)求()f x 的单调区间;(Ⅱ)当[4x π∈,]2π时,证明()()()02f x g x x π+-;(Ⅲ)设n x 为函数()()1u x f x =-在区间(24n ππ+,2)2n ππ+内的零点,其中n N ∈,证明:20022sin cos n n e n x x x πππ-+-<-.。
高考数学《极值点偏移》精品复习资料

高考数学《极值点偏移》精品复习资料第 一 节 极值点偏移初探值点偏移问题是最近几年数学的江湖红人,题目灵活多变,具有较大的难度和思考量,很受各地模拟卷命题人的青睐,具有很好的区分度。
很多同学对这类问题一筹莫展,找不到切入点。
那何为极值点偏移?又该从何入手?接下来的五节中,我们将逐渐渗透解决此类问题的三种普遍方法,并将不等式放缩法作为阅读材料,供有兴趣的读者阅读揣摩。
例3.1.1 已知函数x x x f ln )(-=。
(I )若)(x f 在)(,2121x x x x x ≠=处导数相等,证明:2ln 88)()(21-+>x f x f ;(II )略。
思路分析 )(x f 定义域()+∞=,0f D ,其导函数x x x f 22)(-='。
由题意可知22112222x x x x -=-。
题设条件转化后就只有这个式子,那我们来看往证结论:2ln 88)()(21-+>x f x f 。
带入)(x f 表达式有:-+=+2121)()(x x x f x f21ln x x 。
显然,这是一个有约束条件....的二元..不等式证明问题。
但是麻烦在于21x x +和21x x 是两个不同的组成元件,看起来并无联系,如果我们能将表达式统一由一个组件构成,那我们就有可能通过函数单调性进行证明! 唯一能进行转化的只有导数值相等的式子,那就尝试变形:去分母得12121222x x x x x x -=-,因此有2)(2)(121221=-=-x x x x x x))((1212x x x x -+,即有)(21221x x x x +=,那代入有212121ln 2)()(x x x x x f x f -=+。
将21x x 看作一个整体,我们可以引入函数t t t ln 221)(-=ϕ,往证2ln 88)(->t ϕ。
通过试验我们发现)16(2ln 88ϕ=-,那我们进一步来考察它的单调性:当16>t 时,0221)(>tt -='ϕ,)(t ϕ在),16(+∞上单调递增。
极值点偏移问题--对数不等式法 专题

极值点偏移问题--对数不等式法我们熟知平均值不等式:第2关:参数范围问题—常见解题6法求解参数的取值范围是一类常见题型.近年来在各地的模拟试题以及高考试题中更是屡屡出现.学生遇到这类问题,较难找到解题的切入点和突破口,下面介绍几种解决这类问题的策略和方法.一、确定“主元”思想常量与变量是相对的,一般地,可把已知范围的那个看作自变量,另一个看作常量.例1.对于满足0的一切实数,不等式x2+px>4x+p-3恒成立,求x的取值范围.分析:习惯上把x当作自变量,记函数y= x2+(p-4)x+3-p,于是问题转化为当p时y>0恒成立,求x的范围.解决这个问题需要应用二次函数以及二次方程实根分布原理,这是相当复杂的.若把x 与p两个量互换一下角色,即p视为变量,x为常量,则上述问题可转化为在[0,4]内关于p的一次函数大于0恒成立的问题.解:设f(p)=(x-1)p+x2-4x+3,当x=1时显然不满足题意.由题设知当0时f(p)>0恒成立,∴f(0)>0,f(4)>0即x2-4x+3>0且x2-1>0,解得x>3或x<-1.∴x的取值范围为x>3或x<-1.二、分离变量对于一些含参数的不等式问题,如果能够将不等式进行同解变形,将不等式中的变量和参数进行分离,即使变量和参数分别位于不等式的左、右两边,然后通过求函数的值域的方法将问题化归为解关于参数的不等式的问题。
例2.若对于任意角总有成立,求的范围.分析与解:此式是可分离变量型,由原不等式得,又,则原不等式等价变形为恒成立.根据边界原理知,必须小于的最小值,这样问题化归为怎样求的最小值.因为即时,有最小值为0,故.评析:一般地,分离变量后有下列几种情形:①f(x)≥g(k) [f(x)]min≥g(k)②f(x)> g(k) g(k) < [f(x)] min③f(x)≤g(k) [f(x)] max≤g(k)④f(x)<g(k) [f(x)] max < g(k)三、数形结合对于含参数的不等式问题,当不等式两边的函数图象形状明显,我们可以作出它们的图象,来达到解决问题的目的.例3.设,若不等式恒成立,求a的取值范围.分析与解:若设函数,则,其图象为上半圆.设函数,其图象为直线.在同一坐标系内作出函数图象如图,依题意要使半圆恒在直线下方,只有圆心到直线的距离且时成立,即a的取值范围为.四、分类讨论当不等式中左、右两边的函数具有某些不确定因素时,应用分类讨论的方法来处理,分类讨论可使原问题中的不确定因素变成确定因素,为问题的解决提供新的条件。
导数压轴题分类(2)---极值点偏移问题(含答案)

导数压轴题分类(2)---极值点偏移问题(含答案)极值点偏移问题是在求解函数的极值点时,由于函数表达式的特殊性质,导致极值点位置发生偏移,需要采用特殊的解决方法。
常见的处理方法有以下几种:1.构造一元差函数F(x)=f(x)-f(2x-x)或F(x)=f(x+x)-f(x-x),其中x为函数y=f(x)的极值点。
2.利用对数平均不等式ab<a-b+a+b。
3.变换主元等方法lna-lnb^2<ln(a-b^2)。
接下来,我们以一个具体的例子来说明极值点偏移问题的解决方法。
题目:设函数f(x)=-alnx+x-ax(a∈R),试讨论函数f(x)的单调性;若f(x)=m有两解x1,x2(x12a。
解析:1.讨论函数f(x)的单调性由f(x)=-alnx+x-ax可知:f'(x)=-a/x+1-a=-(a/x+a-1)因为函数f(x)的定义域为(0,+∞),所以:①若a>0时,当x∈(0,a)时,f'(x)0,函数f(x)单调递增。
②若a=0时,当f'(x)=1/x>0在x∈(0,+∞)XXX成立,函数f(x)单调递增。
③若a0,函数f(x)单调递增。
2.求证x1+x2>2a因为f(x)=m有两解x1,x2(x1<x2),所以:alnx1+x1-ax=m,-alnx2+x2-ax=m将两式相减,整理得:lnx1-lnx2+ln(x1-x2)=a根据对数平均不等式,有:ln(x1-x2)<(lnx1-lnx2)/2代入上式得:a>-[(lnx1-lnx2)/2]化XXX:x1-x2<2e^-2a因为x1+x2>2x2>a,所以:x1+x2>2a综上所述,极值点偏移问题的解决方法包括构造一元差函数、利用对数平均不等式和变换主元等方法。
在具体求解中,需要根据函数表达式的特殊性质,选择合适的方法进行处理。
2(t-1)x2-1)/(4(t-1)2+1)为减函数,且在(1,∞)上递增,所以原不等式得证。
极值点偏移问题

(1)令 ,讨论 的单调性并求极值;
(2)令 ,若方程 有两个实根 , ,且 ,证明:
4.(2022届江西省智学联盟体高三上学期第一次联考)已知函数 有两个极值点x1,x2.
(1)求实数m的取值范围;
(2)证明:x1x2<4.
口诀:极值偏离对称轴,构造函数觅行踪已知函数 .
(Ⅰ)求函数 的单调区间与极值;
(Ⅱ)若 ,且 ,证明: .
三.教学过程
类型一:通过对称化构造新函数破解极值点偏移问题
例1.(2021新高考1卷)已知函数 .
(1)讨论 的单调性;
(2)设 , 为两个不相等的正数,且 ,证明: .
练习:已知 , .若 有两个极值点 , ,且 ,求证:
类型二:巧引变量消元(齐次、比差值换元)解决极值点偏移问题
例2.已知 , .若 有两个极值点 , ,且 ,求证: (e为自然对数 底数).
限时训练.
(2022届江苏省百校联考高三上学期第一次考试)已知函数 ( )有两个零点.
(1)证明: .
(2)若 的两个零点为 , ,且 ,证明: .
专题: 极值点偏移问题
一.学习目标
1.构造辅助函数利用函数单调性解决极值点偏移问题。
2.通过引入变量消元解决极值点偏移问题。
二.课前预习
1.极值点偏移现象
(1)已知函数 的图象的极值点为 ,若 的两根的中点刚好满足 即极值点在两根的正中间,此时极值点没有偏移,函数 在 两侧,函数值变化快慢相同,如图(1).
(2)若 ,则极值点偏移,此时函数 在 两侧的函数值变化快慢不同,如图(2)(3).
2.证明方法:构造偏移函数解决极值点偏移.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于极值点与零点的几个题一.解答题(共7小题)1.已知函数.(1)若y=f(x)在(0,+∞)恒单调递减,求a的取值围;(2)若函数y=f(x)有两个极值点x1,x2(x1<x2),求a的取值围并证明x1+x2>2.2.已知函数f(x)=xlnx﹣x2﹣x+a(a∈R)在定义域有两个不同的极值点(1)求a的取值围;(2)记两个极值点x1,x2,且x1<x2,已知λ>0,若不等式x1•x2λ>e1+λ恒成立,求λ的取值围.3.已知函数f(x)=ln﹣ax2+x,(1)讨论函数f(x)的极值点的个数;(2)若f(x)有两个极值点x1,x2,证明:f(x1)+f(x2)>3﹣4ln2.4.已知函数f(x)=(e为自然对数的底数).(1)若a=,求函数f(x)的单调区间;(2)若f(1)=1,且方程f(x)=1在(0,1)有解,数a的取值围.5.已知函数f(x)=lnx﹣ax.(Ⅰ)若函数f(x)在(1,+∞)上单调递减,数a的取值围;(Ⅱ)当a=1时,函数有两个零点x1,x2,且x1<x2.求证:x1+x2>1.6.已知f(x)=ln(mx+1)﹣2(m≠0).(1)讨论f(x)的单调性;(2)若m>0,g(x)=f(x)+存在两个极值点x1,x2,且g(x1)+g(x2)<0,求m的取值围.7.已知函数f(x)=x(lnx﹣ax)(a∈R),g(x)=f′(x).(1)若曲线y=f(x)在点(1,f(1))处的切线与直线3x﹣y﹣1=0平行,数a 的值;(2)若函数F(x)=g(x)+x2有两个极值点x1,x2,且x1<x2,求证:f(x2)﹣1<f(x1)关于极值点的几个题目------有点难参考答案与试题解析一.解答题(共7小题)1.(2017•达州模拟)已知函数.(1)若y=f(x)在(0,+∞)恒单调递减,求a的取值围;(2)若函数y=f(x)有两个极值点x1,x2(x1<x2),求a的取值围并证明x1+x2>2.【分析】(1)求出函数的导数,问题转化为,令,根据函数的单调性求出g(x)的最大值,从而求出a的围即可;(2)求出函数f(x)的导数,令F(x)=f'(x)=lnx﹣ax+1,求出函数F(x)的导数,通过讨论a的围求出a的围,证明即可.【解答】解:(1)因为f'(x)=lnx﹣ax+1(x>0),所以由f'(x)≤0在(0,+∞)上恒成立得,令,易知g(x)在(0,1)单调递增(1,+∞)单调递减,所以a≥g(1)=1,即得:a≥1…(5分)(2)函数y=f(x)有两个极值点x1,x2(x1<x2),即y=f'(x)有两个不同的零点,且均为正,f'(x)=lnx﹣ax+1(x>0),令F(x)=f'(x)=lnx﹣ax+1,由可知1)a≤0时,函数y=f(x)在(0,+∞)上是增函数,不可能有两个零点.2)a>0时,y=F(x)在是增函数在是减函数,此时为函数的极大值,也是最大值.当时,最多有一个零点,所以才可能有两个零点,得:0<a<1…(7分)此时又因为,,,令,φ(a)在(0,1)上单调递增,所以φ(a)<φ(1)=3﹣e2,即综上,所以a的取值围是(0,1)…(8分)下面证明x1+x2>2由于y=F(x)在是增函数在是减函数,,可构造出构造函数则,故m(x)在区间上单调减.又由于,则,即有m(x1)>0在上恒成立,即有成立.由于,,y=F(x)在是减函数,所以所以成立…(12分)【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,是一道综合题.2.(2017•天心区校级一模)已知函数f(x)=xlnx﹣x2﹣x+a(a∈R)在定义域有两个不同的极值点(1)求a的取值围;(2)记两个极值点x1,x2,且x1<x2,已知λ>0,若不等式x1•x2λ>e1+λ恒成立,求λ的取值围.【分析】(1)由导数与极值的关系知可转化为方程f′(x)=lnx﹣ax=0在(0,+∞)有两个不同根;再转化为函数y=lnx与函数y=ax的图象在(0,+∞)上有两个不同交点;(2)原式等价于>,令t=,t∈(0,1),则不等式lnt<在t∈(0,1)上恒成立.令h(t)=lnt﹣,t∈(0,1),根据函数的单调性求出即可.【解答】解:(1)由题意知,函数f(x)的定义域为(0,+∞),方程f′(x)=0在(0,+∞)有两个不同根,即方程lnx﹣ax=0在(0,+∞)有两个不同根;转化为函数y=lnx与函数y=ax的图象在(0,+∞)上有两个不同交点,如图示:,可见,若令过原点且切于函数y=lnx图象的直线斜率为k,只须0<a<k.令切点A(x0,lnx0),故k=y′|x=x0=,又k=,故=,解得,x0=e,故k=,故0<a<;(2)因为e1+λ<x1•x2λ等价于1+λ<lnx1+λlnx2.由(1)可知x1,x2分别是方程lnx﹣ax=0的两个根,即lnx1=ax1,lnx2=ax2所以原式等价于1+λ<ax1+λax2=a(x1+λx2),因为λ>0,0<x1<x2,所以原式等价于a>,又由lnx1=ax1,lnx2=ax2作差得,ln =a(x1﹣x2),所以原式等价于>,因为0<x1<x2,原式恒成立,即ln<恒成立.令t=,t∈(0,1),则不等式lnt<在t∈(0,1)上恒成立.令h(t)=lnt﹣,t∈(0,1),又h′(t)=,当λ2≥1时,可见t∈(0,1)时,h′(t)>0,所以h(t)在t∈(0,1)上单调增,又h(1)=0,h(t)<0在t∈(0,1)恒成立,符合题意.当λ2<1时,可见t∈(0,λ2)时,h′(t)>0,t∈(λ2,1)时h′(t)<0,所以h(t)在t∈(0,λ2)时单调增,在t∈(λ2,1)时单调减,又h(1)=0,所以h(t)在t∈(0,1)上不能恒小于0,不符合题意,舍去.综上所述,若不等式e1+λ<x1•x2λ恒成立,只须λ2≥1,又λ>0,所以λ≥1.【点评】本题考查了导数的综合应用及分类讨论,转化思想,数形结合的思想方法的应用,是一道综合题.3.(2017•模拟)已知函数f(x)=ln﹣ax2+x,(1)讨论函数f(x)的极值点的个数;(2)若f(x)有两个极值点x1,x2,证明:f(x1)+f(x2)>3﹣4ln2.【分析】(1)求出函数的导数,通过讨论a的围,得到函数的单调区间,从而求出函数的极值的个数;(2)根据x1,x2是方程2ax2﹣x+1=0的两根,得到,,求出f(x1)+f(x2),根据函数的单调性证明即可.【解答】解:(1)由,得:,(ⅰ)a=0时,,x∈(0,1),f′(x)<0,x∈(1,+∞),f′(x)>0,所以x=1,f(x)取得极小值,x=1是f(x)的一个极小值点.(ⅱ)a<0时,△=1﹣8a>0,令f′(x)=0,得显然,x1>0,x2<0,∴,f(x)在x=x1取得极小值,f(x)有一个极小值点.(ⅲ)a>0时,△=1﹣8a≤0即时,f′(x)≤0,f(x)在(0,+∞)是减函数,f(x)无极值点.当时,△=1﹣8a>0,令f′(x)=0,得当x∈(0,x1)和x∈(x2,+∞)f′(x)<0,x∈(x1,x2)时,f′(x)>0,∴f(x)在x1取得极小值,在x2取得极大值,所以f(x)有两个极值点.综上可知:(ⅰ)a≤0时,f(x)仅有一个极值点;(ⅱ)当时,f(x)无极值点;(ⅲ)当时,f(x)有两个极值点.(2)证明:由(1)知,当且仅当a∈(0,)时,f(x)有极小值点x1和极大值点x2,且x1,x2是方程2ax2﹣x+1=0的两根,∴,,===,设,,∴时,g(a)是减函数,,∴,∴f(x1)+f(x2)>3﹣4ln2.【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论数思想,是一道综合题.4.(2016•校级三模)已知函数f(x)=(e为自然对数的底数).(1)若a=,求函数f(x)的单调区间;(2)若f(1)=1,且方程f(x)=1在(0,1)有解,数a的取值围.【分析】(1)若a=,求函数的导数,利用函数单调性和导数之间的关系即可求函数f(x)的单调区间;(2)根据函数与方程之间的关系转化为函数存在零点问题,构造函数,求函数的导数,利用函数极值和函数零点之间的关系进行转化求解即可.【解答】解:(1)若a=,f(x)=(x2+bx+1)e﹣x,则f′(x)=(2x+b)e﹣x﹣(x2+bx+1)e﹣x=﹣[x2+(b﹣2)x+1﹣b]e﹣x=﹣(x﹣1)[x﹣(1﹣b)]e﹣x,由f′(x)=0得﹣(x﹣1)[x﹣(1﹣b)]=0,即x=1或x=1﹣b,①若1﹣b=1,即b=0时,f′(x)=﹣(x﹣1)2e﹣x≤0,此时函数单调递减,单调递减区间为(﹣∞,+∞).②若1﹣b>1,即b<0时,由f′(x)=﹣(x﹣1)[x﹣(1﹣b)]e﹣x>0得(x ﹣1)[x﹣(1﹣b)]<0,即1<x<1﹣b,此时函数单调递增,单调递增区间为(1,1﹣b),由f′(x)=﹣(x﹣1)[x﹣(1﹣b)]e﹣x<0得(x﹣1)[x﹣(1﹣b)]>0,即x <1,或x>1﹣b,此时函数单调递减,单调递减区间为(﹣∞,1),(1﹣b,+∞),③若1﹣b<1,即b>0时,由f′(x)=﹣(x﹣1)[x﹣(1﹣b)]e﹣x>0得(x﹣1)[x﹣(1﹣b)]<0,即1﹣b<x<1,此时函数单调递增,单调递增区间为(1﹣b,1),由f′(x)=﹣(x﹣1)[x﹣(1﹣b)]e﹣x<0得(x﹣1)[x﹣(1﹣b)]>0,即x <1﹣b,或x>1,此时函数单调递减,单调递减区间为(﹣∞,1﹣b),(1,+∞).(2)若f(1)=1,则f(1)=(2a+b+1)e﹣1=1,即2a+b+1=e,则b=e﹣1﹣2a,若方程f(x)=1在(0,1)有解,即方程f(x)=(2ax2+bx+1)e﹣x=1在(0,1)有解,即2ax2+bx+1=e x在(0,1)有解,即e x﹣2ax2﹣bx﹣1=0,设g(x)=e x﹣2ax2﹣bx﹣1,则g(x)在(0,1)有零点,设x0是g(x)在(0,1)的一个零点,则g(0)=0,g(1)=0,知函数g(x)在(0,x0)和(x0,1)上不可能单调递增,也不可能单调递减,设h(x)=g′(x),则h(x)在(0,x0)和(x0,1)上存在零点,即h(x)在(0,1)上至少有两个零点,g′(x)=e x﹣4ax﹣b,h′(x)=e x﹣4a,当a≤时,h′(x)>0,h(x)在(0,1)上递增,h(x)不可能有两个及以上零点,当a≥时,h′(x)<0,h(x)在(0,1)上递减,h(x)不可能有两个及以上零点,当<a<时,令h′(x)=0,得x=ln(4a)∈(0,1),则h(x)在(0,ln(4a))上递减,在(ln(4a),1)上递增,h(x)在(0,1)上存在最小值h(ln(4a)).若h(x)有两个零点,则有h(ln(4a))<0,h(0)>0,h(1)>0,h(ln(4a))=4a﹣4aln(4a)﹣b=6a﹣4aln(4a)+1﹣e,<a<,设φ(x)=x﹣xlnx+1﹣e,(1<x<e),则φ′(x)=﹣lnx,令φ′(x)=﹣lnx=0,得x=,当1<x<时,φ′(x)>0,此时函数φ(x)递增,当<x<e时,φ′(x)<0,此时函数φ(x)递减,则φ(x)max=φ()=+1﹣e<0,则h(ln(4a))<0恒成立,由h(0)=1﹣b=2a﹣e+2>0,h(1)=e﹣4a﹣b>0,得<a<,当<a<时,设h(x)的两个零点为x1,x2,则g(x)在(0,x1)递增,在(x1,x2)上递减,在(x2,1)递增,则g(x1)>g(0)=0,g(x2)<g(1)=0,则g(x)在(x1,x2)有零点,综上,实数a的取值围是(,).【点评】本题主要考查函数单调性和单调区间的求解和判断,利用函数单调性的性质以及函数单调性和导数之间的关系是解决本题的关键.综合性较强,难度较大.5.(2016•宁城县模拟)已知函数f(x)=lnx﹣ax.(Ⅰ)若函数f(x)在(1,+∞)上单调递减,数a的取值围;(Ⅱ)当a=1时,函数有两个零点x1,x2,且x1<x2.求证:x1+x2>1.【分析】(Ⅰ)求出函数的导数,根据函数的单调性,分离参数a,问题转化为:当x>1时恒成立,解出即可;(Ⅱ)求出个零点x1,x2,得到.构造函数,根据函数的单调性证明即可.【解答】解:(I)因为f(x)=lnx﹣ax,则,若函数f(x)=lnx﹣ax在(1,+∞)上单调递减,则1﹣ax≤0在(1,+∞)上恒成立,即当x>1时恒成立,所以a≥1.(5分)(II)证明:根据题意,,因为x1,x2是函数的两个零点,所以,.两式相减,可得,(7分)即,故.那么,.令,其中0<t<1,则.构造函数,(10分)则.因为0<t<1,所以h'(t)>0恒成立,故h(t)<h(1),即.可知,故x1+x2>1.(12分)【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及函数恒成立问题,考查不等式的证明,是一道综合题.6.(2016•三模)已知f(x)=ln(mx+1)﹣2(m≠0).(1)讨论f(x)的单调性;(2)若m>0,g(x)=f(x)+存在两个极值点x1,x2,且g(x1)+g(x2)<0,求m的取值围.【分析】(1)求出函数的导数,通过讨论m的围,确定函数的单调性;(2)求出g(x)的导数,通过讨论m的围,求出函数的单调区间,从而求出函数的最值,判断是否符合题意,从而判断出m的围即可.【解答】解:(1)由已知得mx+1>0,f′(x)=,①若m>0时,由mx+1>0,得:x>﹣,恒有f′(x)>0,∴f(x)在(﹣,+∞)递增;②若m<0,由mx+1>0,得:x<﹣,恒有f′(x)<0,∴f(x)在(﹣∞,﹣)递减;综上,m>0时,f(x)在(﹣,+∞)递增,m<0时,f(x)在(﹣∞,﹣)递减;(2)g(x)=ln(mx+1)+﹣2,(m>0),∴g′(x)=,令h(x)=mx2+4m﹣4,m≥1时,h(x)≥0,g′(x)≥0,g(x)无极值点,0<m<1时,令h(x)=0,得:x1=﹣2或x2=2,由g(x)的定义域可知x>﹣且x≠﹣2,∴﹣2>﹣且﹣2≠﹣2,解得:m≠,∴x1,x2为g(x)的两个极值点,即x1=﹣2,x2=2,且x1+x2=0,x1•x2=,得:g(x1)+g(x2)=ln(mx1+1)+﹣2+ln(mx2+1)+﹣2=ln(2m﹣1)2+﹣2,令t=2m﹣1,F(t)=lnt2+﹣2,①0<m<时,﹣1<t<0,∴F(t)=2ln(﹣t)+﹣2,∴F′(t)=<0,∴F(t)在(﹣1,0)递减,F(t)<F(﹣1)<0,即0<m<时,g(x1)+g(x2)<0成立,符合题意;②<m<1时,0<t<1,∴F(t)=2lnt+﹣2,F′(t)=<0,∴F(t)在(0,1)递减,F(t)>F(1)=0,∴<m<1时,g(x1)+g(x2)>0,不合题意,综上,m∈(0,).【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及函数恒成立问题,考查分类讨论思想,是一道综合题.7.(2016•模拟)已知函数f(x)=x(lnx﹣ax)(a∈R),g(x)=f′(x).(1)若曲线y=f(x)在点(1,f(1))处的切线与直线3x﹣y﹣1=0平行,数a 的值;(2)若函数F(x)=g(x)+x2有两个极值点x1,x2,且x1<x2,求证:f(x2)﹣1<f(x1)【分析】(1)利用导数的几何意义求切线斜率,解a;(2)利用极值点与其导数的关系求出a的围,进一步求出f(x)的解析式,通过求导判断其单调性以及最值.【解答】解:(1)∵f′(x)=ln x﹣2ax+1,∴f′(1)=1﹣2a因为3x﹣y﹣1=0的斜率为3.依题意,得1﹣2a=3;则a=﹣1.…(4分)(2)证明:因为F(x)=g(x)+x2=ln x﹣2ax+1+x2,所以F′(x)=﹣2a+x=(x>0),函数F(x)=g(x)+x2有两个极值点x1,x2且x1<x2,即h(x)=x2﹣2ax+1在(0,+∞)上有两个相异零点x1,x2.∵x1x2=1>0,∴∴a>1.…(6分)当0<x<x1或x>x2时,h(x)>0,F′(x)>0.当x1<x<x2时,h(x)<0,F′(x)<0.所以F(x)在(0,x1)与(x2,+∞)上是增函数,在区间(x1,x2)上是减函数.因为h(1)=2﹣2a<0,所以0<x1<1<a<x2,令x2﹣2ax+1=0,得a=,∴f(x)=x(ln x﹣ax)=xln x﹣x3﹣x,则f′(x)=ln x﹣x2+,设s(x)=ln x﹣x2+,s′(x)=﹣3x=,…(8分)①当x>1时,s′(x)<0,s(x)在(1,+∞)上单调递减,从而函数s(x)在(a,+∞)上单调递减,∴s(x)<s(a)<s(1)=﹣1<0,即f′(x)<0,所以f(x)在区间(1,+∞)上单调递减.故f(x)<f(1)=﹣1<0.又1<a<x2,因此f(x2)<﹣1.…(10分)②当0<x<1时,由s′(x)=>0,得0<x<.由s′(x)=<0,得<x<1,所以s(x)在[0,]上单调递增,s(x)在[,1]上单调递减,∴s(x)≤s max=ln<0,∴f(x)在(0,1)上单调递减,∴f(x)>f(1)=﹣1,∵x1∈(0,1),从而有f(x1)>﹣1.综上可知:f(x2)<﹣1<f(x1).…(12分)【点评】本题考查了导数的几何意义以及利用导数求函数的单调区间和最值;考查了讨论的数学思想,属于难题.。