计量经济学报告

合集下载

计量经济学实验报告

计量经济学实验报告

计量经济学实验报告1. 引言计量经济学是应用数学和统计学方法来研究经济现象的一门学科。

实验是计量经济学研究中常用的方法之一,通过设计和实施实验,可以帮助我们理解经济现象背后的因果关系。

本文将对一项计量经济学实验进行详细描述和分析,以展示实验的设计、数据分析和结论。

2. 实验设计2.1 实验目的本次实验的目的是研究市场供需关系对商品价格的影响。

具体而言,我们希望通过改变商品的市场供给量,观察商品价格如何变化,并分析供给弹性的大小。

2.2 实验假设在实验设计阶段,我们需要制定实验假设来指导实验的进行。

在本次实验中,我们假设市场供给量的变动会对商品价格产生影响,而且供给弹性的大小会决定价格的变动幅度。

2.3 实验步骤本次实验包括以下几个步骤:1.设定实验组和对照组:我们将随机选择一些参与者,并将其分为两组,一组作为实验组,一组作为对照组。

实验组将面临市场供给量变动的情况,而对照组则不受干扰。

2.确定商品和市场:我们选择一个特定的商品,并确定一个特定的市场来进行实验。

这样可以使实验更加具体和可控。

3.设定实验条件:在实验组中,我们逐步调整市场供给量,并记录下不同供给量下的商品价格。

对照组则保持市场供给量不变。

4.数据收集:在每次实验条件设定完毕后,我们将记录实验组和对照组的商品价格,并对数据进行整理和存储。

2.4 实验风险和伦理考虑在设计实验时,我们需要考虑实验可能存在的风险,并确保实验过程符合伦理要求。

具体而言,我们需要确保参与者的权益得到保护,并在可能对参与者造成负面影响的情况下停止实验。

3. 数据分析在实验进行完毕后,我们对数据进行分析,以验证实验假设并得出结论。

3.1 数据整理首先,我们将实验组和对照组的数据整理成表格形式,方便后续分析。

由于文档要求不能包含表格,这里无法展示具体的数据。

3.2 数据分析方法我们采用的数据分析方法主要包括描述统计分析和回归分析。

描述统计分析用于描述数据的基本特征,包括平均值、标准差、最小值和最大值等。

计量经济学报告

计量经济学报告

计量经济学报告计量经济学报告计量经济学是经济学中的一个重要分支,它通过使用经济数据和数理统计方法,研究经济现象和经济理论之间的关系。

本报告将介绍计量经济学的基本概念和方法,以及计量经济学在实践中的应用。

首先,计量经济学主要研究经济数据的性质和规律。

经济数据可以分为时间序列数据和截面数据两类。

时间序列数据是在一段时间内收集的数据,例如一个国家的GDP变化;截面数据是在某个时间点上收集的数据,例如不同地区的失业率。

通过对这些数据进行分析,计量经济学可以揭示经济现象的特征和规律。

计量经济学的方法主要包括回归分析和假设检验。

回归分析是用来研究因变量和自变量之间关系的一种方法,例如通过分析收入和消费之间的关系来研究消费者行为;假设检验则是用来检验某个经济理论是否成立的方法,例如检验货币供应量和物价之间的关系。

这些方法可以帮助经济学家找到经济模型的参数估计值,从而更好地理解经济现象和预测未来的趋势。

在实践中,计量经济学有广泛的应用。

首先,计量经济学可以用来评估政策的效果。

例如,通过对某个政策的实施前后的数据进行回归分析,可以评估该政策对经济的影响。

其次,计量经济学可以用来预测未来的经济趋势。

例如,通过对历史数据进行回归分析,可以预测未来的股票价格和房价。

此外,计量经济学还可以用来研究经济理论的有效性。

例如,通过对经济理论中的假设进行检验,可以评估该理论是否能够准确解释实际经济现象。

总之,计量经济学是经济学中的重要分支,它通过使用经济数据和数理统计方法,研究经济现象和经济理论之间的关系。

计量经济学的方法主要包括回归分析和假设检验,其应用广泛,可以用来评估政策效果、预测经济趋势和研究经济理论的有效性。

通过计量经济学的研究,我们可以更好地理解经济现象,为经济决策提供科学依据。

计量经济实验报告多元(3篇)

计量经济实验报告多元(3篇)

第1篇一、实验目的本次实验旨在通过多元线性回归模型,分析多个自变量与因变量之间的关系,掌握多元线性回归模型的基本原理、建模方法、参数估计以及模型检验等技能,提高运用计量经济学方法解决实际问题的能力。

二、实验背景随着经济的发展和社会的进步,影响一个变量的因素越来越多。

在经济学、管理学等领域,多元线性回归模型被广泛应用于分析多个变量之间的关系。

本实验以某地区居民消费支出为例,探讨影响居民消费支出的因素。

三、实验数据本实验数据来源于某地区统计局,包括以下变量:1. 消费支出(Y):表示居民年消费支出,单位为元;2. 家庭收入(X1):表示居民家庭年收入,单位为元;3. 房产价值(X2):表示居民家庭房产价值,单位为万元;4. 教育水平(X3):表示居民受教育程度,分为小学、初中、高中、大专及以上四个等级;5. 通货膨胀率(X4):表示居民消费价格指数,单位为百分比。

四、实验步骤1. 数据预处理:对数据进行清洗、缺失值处理和异常值处理,确保数据质量。

2. 模型设定:根据理论知识和实际情况,建立多元线性回归模型:Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + ε其中,Y为因变量,X1、X2、X3、X4为自变量,β0为截距项,β1、β2、β3、β4为回归系数,ε为误差项。

3. 模型估计:利用统计软件(如SPSS、R等)对模型进行参数估计,得到回归系数的估计值。

4. 模型检验:对估计得到的模型进行检验,包括以下内容:(1)拟合优度检验:通过计算R²、F统计量等指标,判断模型的整体拟合效果;(2)t检验:对回归系数进行显著性检验,判断各变量对因变量的影响是否显著;(3)方差膨胀因子(VIF)检验:检验模型是否存在多重共线性问题。

5. 结果分析:根据模型检验结果,分析各变量对因变量的影响程度和显著性,得出结论。

五、实验结果与分析1. 拟合优度检验:根据计算结果,R²为0.812,F统计量为30.456,P值为0.000,说明模型整体拟合效果较好。

计量经济学实验报告1

计量经济学实验报告1

计量经济学实验报告1计量经济学实验报告1引言:计量经济学是经济学中的一个重要分支,通过运用统计学和数学方法来研究经济现象。

实验是计量经济学中常用的研究方法之一,通过对实际数据的收集和分析,可以验证经济理论的有效性和预测能力。

本实验报告旨在介绍我所进行的计量经济学实验,并对实验结果进行分析和讨论。

实验目的:本次实验的目的是研究某地区居民消费支出与个人收入之间的关系。

通过收集一定数量的样本数据,建立经济模型,以探究消费支出与个人收入之间的相关性,并验证是否存在所谓的“边际消费倾向”。

实验设计:为了收集样本数据,我设计了一份问卷调查,涵盖了个人收入、家庭人口、教育水平、职业等多个方面的信息。

通过随机抽样的方式,我在某地区抽取了300个样本,并对这些样本进行了调查。

在调查过程中,我还请教了一些经济学专家,以确保问卷设计的合理性和可靠性。

实验结果:通过对样本数据的分析,我得出了以下几个重要的实验结果:1. 个人收入与消费支出呈正相关关系:根据统计分析,我发现个人收入与消费支出之间存在显著的正相关关系。

也就是说,个人收入越高,消费支出也越高。

这与经济学理论中的边际消费倾向相一致,即收入增加一单位时,消费支出增加的单位。

2. 家庭人口对消费支出的影响:我发现,家庭人口对消费支出有一定的影响。

在其他条件相同的情况下,家庭人口较多的家庭,其消费支出较高。

这可能是因为家庭人口较多,生活成本较高,因此需要更多的消费支出。

3. 教育水平与消费支出的关系:通过数据分析,我发现教育水平与消费支出之间存在一定的正相关关系。

受过高等教育的人群,其消费支出相对较高。

这可能是因为受过高等教育的人更有可能获得较高的收入,从而有更多的消费能力。

实验讨论:通过本次实验,我得出了一些对于经济学理论的验证和解释。

首先,个人收入与消费支出之间的正相关关系,说明了边际消费倾向的存在。

这对于经济学理论的解释和政策制定具有重要意义。

其次,家庭人口和教育水平对消费支出的影响,也提醒我们在研究经济现象时,需要考虑到个体背景和环境因素的影响。

计量经济学实验报告1(共6篇)

计量经济学实验报告1(共6篇)

篇一:计量经济学实验报告 (1)计量经济学实验基于eviews的中国能源消费影响因素分析学院:班级:学号:姓名:基于e views的中国能源消费影响因素分析一、背景资料能源消费是指生产和生活所消耗的能源。

能源消费按人平均的占有量是衡量一个国家经济发展和人民生活水平的重要标志。

能源是支持经济增长的重要物质基础和生产要素。

能源消费量的不断增长,是现代化建设的重要条件。

我国能源工业的迅速发展和改革开放政策的实施,促使能源产品特别是石油作为一种国际性的特殊商品进入世界能源市场。

随着国民经济的发展和人口的增长,我国能源的供需矛盾日益紧张。

同时,煤炭、石油等常规能源的大量使用和核能的发展,又会造成环境的污染和生态平衡的破坏。

可以看出,它不仅是一个重大的技术、经济问题,而且以成为一个严重的政治问题。

在20世纪的最后二十年里,中国国内生产总值(gdp)翻了两番,但是能源消费仅翻了一番,平均的能源消费弹性仅为0.5左右。

然而自2002年进入新一轮的高速增长周期后,中国能源强度却不断上升,经济发展开始频频受到能源瓶颈问题的困扰。

鉴于此,研究能源问题不仅具有必要性和紧迫性,更具有很大的现实意义。

由于我国目前面临的所谓“能源危机”,主要是由于需求过大引起的,而我国作为世界上最大的发展中国家,人口众多,所需能源不可能完全依赖进口,所以,研究能源的需求显得更加重要。

二、影响因素设定根据西方经济学消费需求理论可知,影响消费需求的因素有:商品的价格、消费者收入水平、相关商品的价格、商品供给、消费者偏好以及消费者对商品价格的预期等。

对于相关商品价格的替代效应,我们认为其只存在能源品种内部之间,而消费者偏好及消费者对商品价格的预期数据差别较大,不容易进行搜集整理在此暂不涉及。

另外,发展经济学认为,来自知识、人力资本的积累水平所体现的技术进步不仅可以带动劳动产出的增长,而且会通过外部效应可以提高劳动力、自然资源、物质资本与生产要素的生产效率,消除其中收益递减的内在联系,带来递增的规模收益。

计量经济学实训报告心得

计量经济学实训报告心得

一、前言计量经济学作为一门应用性极强的学科,在经济学、管理学、统计学等领域具有广泛的应用。

为了更好地学习和掌握计量经济学知识,我参加了为期一个月的计量经济学实训。

在此期间,我通过实际操作,对计量经济学有了更深入的理解和认识,现将实训心得总结如下。

二、实训内容1. 实训目的通过本次实训,我旨在:(1)熟悉计量经济学的基本理论和方法;(2)掌握计量经济学软件的使用技巧;(3)提高运用计量经济学方法解决实际问题的能力。

2. 实训内容(1)理论学习:系统学习了计量经济学的基本概念、假设、模型、估计方法和检验方法等;(2)软件操作:掌握了计量经济学软件EViews的基本操作,包括数据导入、模型建立、参数估计、模型检验等;(3)案例分析:针对实际经济问题,运用计量经济学方法进行模型建立、参数估计和模型检验。

三、实训心得1. 理论与实践相结合在实训过程中,我深刻体会到理论联系实际的重要性。

通过理论学习,我掌握了计量经济学的基本知识,但在实际操作中,我遇到了很多困难。

在老师的指导下,我逐渐学会了如何将理论知识应用于实际问题,提高了自己的实际操作能力。

2. 学会了如何使用计量经济学软件在实训过程中,我学习了EViews软件的基本操作,包括数据导入、模型建立、参数估计、模型检验等。

通过实际操作,我掌握了EViews软件的使用技巧,为今后的学习和研究奠定了基础。

3. 提高了运用计量经济学方法解决实际问题的能力在实训过程中,我针对实际经济问题,运用计量经济学方法进行了模型建立、参数估计和模型检验。

通过这个过程,我学会了如何根据实际问题选择合适的模型,如何进行参数估计和模型检验,提高了自己的实际操作能力。

4. 培养了团队协作精神在实训过程中,我与同学们一起完成了案例分析,共同探讨问题,共同解决问题。

在这个过程中,我学会了如何与团队成员沟通、协作,提高了自己的团队协作能力。

5. 认识到自己的不足在实训过程中,我发现自己在理论知识和实际操作方面还存在很多不足。

计量经济综合实验报告

计量经济综合实验报告

一、实验背景随着经济全球化和信息技术的发展,计量经济学作为一门重要的应用经济学分支,在各个领域都得到了广泛的应用。

本实验旨在通过综合运用计量经济学方法,对某一经济问题进行实证分析,从而加深对计量经济学理论和方法的理解,提高实际操作能力。

二、实验目的1. 掌握计量经济学的基本理论和方法;2. 学会使用计量经济学软件(如EViews)进行数据处理和模型分析;3. 培养分析实际经济问题的能力;4. 提高论文写作和报告表达能力。

三、实验内容1. 数据收集与处理本次实验以我国某城市居民消费水平为例,选取以下变量:- 居民可支配收入(X1)- 居民消费支出(Y)- 居民储蓄(X2)- 居民教育程度(X3)- 居民年龄(X4)数据来源于某城市统计局和相关部门。

在收集数据后,对数据进行整理和清洗,确保数据质量和准确性。

2. 模型设定根据实际情况和理论依据,选择以下模型:Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + ε其中,Y为居民消费支出,X1为居民可支配收入,X2为居民储蓄,X3为居民教育程度,X4为居民年龄,β0为常数项,β1、β2、β3、β4分别为各变量的系数,ε为误差项。

3. 模型估计使用EViews软件对模型进行估计,得到以下结果:Y = 5.23 + 0.83X1 - 0.16X2 + 0.15X3 - 0.02X4 + ε4. 模型检验(1)残差分析:对残差进行检验,发现残差基本服从正态分布,不存在明显的异方差。

(2)自相关检验:对残差进行自相关检验,发现残差不存在自相关。

(3)拟合优度检验:计算R²值,得到R² = 0.89,说明模型拟合效果较好。

5. 模型解释根据模型结果,可以得出以下结论:(1)居民可支配收入对消费支出有显著的正向影响,即收入越高,消费支出越高。

(2)居民储蓄对消费支出有显著的负向影响,即储蓄越高,消费支出越低。

(3)居民教育程度对消费支出有显著的正向影响,即教育程度越高,消费支出越高。

计量经济学实验报告

计量经济学实验报告

计量经济学实验报告学院:班级姓名:学号:一、经济学理论概述1、需求是指消费者家庭在某一特定时期内,在每一价格水平时愿意而且能够购买的某种商品量;需求是购买欲望与购买能力的统一;2、需求定理是说明商品本身价格与其需求量之间关系的理论;其基本内容是:在其他条件不变的情况下,一种商品的需求量与其本身价格之间成反方向变动,即需求量随着商品本身价格的上升而减少,随商品本身价格的下降而增加;3、需求量的变动是指其他条件不变的情况下,商品本身价格变动所引起的需求量的变动;需求量的变动表现为同一条需求曲线上的移动;二、经济学理论的验证方法在此次试验中,我运用了Eviews和Excel软件对相关数据进行处理和分析;1、拟合优度检验——可决系数R2统计量回归平方和反应了总离差平方和中可由样本回归线解释的部分,它越大,参差平方和越小,表明样本回归线与样本观测值的拟合程度越高;2、方程总体线性的显着性检验——F检验1方程总体线性的显着性检验,旨在对模型中被解释变量与解释变量之间的线性关系在总体上是否显着成立作出判断;2给定显着性水平α,查表得到临界值Fαk,n-k-1,根据样本求出F统计量的数值后,可通过F>Fαk,n-k-1 或F≤Fαk,n-k-1来拒绝或接受原假设H0,以判定原方程总体上的线性关系是否显着成立;3、变量的显着性检验——t检验4、异方差性的检验——怀特检验怀特检验不需要排序,对任何形式的异方差都适用;5、序列相关性的检验——图示法和回归检验法6、多重共线性的检验——逐步回归法以Y为被解释变量,逐个引入解释变量,构成回归模型,进行模型估计;三、验证步骤1、确定变量1被解释变量“货币流通量”在模型中用“Y”表示;2解释变量①“货币贷款额”在模型中用“X”表示;1②“居民消费价格指数”在模型中用“X”表示;2③把由于各种原因未考虑到和无法度量的因素归入随机误差项,在模型中用“ ”;2、建立计量经济学模型根据各相关变量之间的关系,假定:Y=0β+1βX 1+2βX 2+μ3、数据描述和处理中国货币流通量、贷款额和居民消费价格指数历史数据年度 货币流量Y 亿元居民消费价格指数P1990年=100贷款额X 亿元 1978 212 1850 1979 1980 1981 1982 1983 54 1984 1985 1986 1987 1988 2134 1989 2344 97 1990 100 1991 1992 4336 110 1993 1994 39976 1995 1996 8802 1997 1998 1999 2000 2001 2002 17278 2003 19746 2004 2005 2006 2007资料来源:中国统计年鉴2008、中国统计资料50年汇编 4、多元线性计量经济学模型的初步估计与分析用Eviews 软件检测分析:Dependent Variable: Y Method: Least Squares Date: 12/30/11 Time: 14:03 Sample: 1978 2007 Included observations: 30Variable CoefficientStd. Error t-StatisticProb.X1 X2 CR-squaredM ean dependent var Adjusted R-squared . dependent var . of regression A kaike info criterionSum squared resid 7049108. S chwarz criterionLog likelihood H annan-Quinn criter. F-statistic D urbin-Watson statProbF-statistic普通最小二乘法估计结果如下:Y ∧= -+++μ-=R2=R 20.996769 F=回归结果表明,在1978——2007年间,Y 变化的%可由其他两 个变量的变化来解释;根据表上F 统计量对应的P 值可以看出,每个 P 值都小于5%,拒绝原假设,表明模型的线性关系在95%的置信水平下显着成立;5、异方差检验从普通最小二乘回归得到的残差平方项与X1的散点图看,图二上的点总体上呈单调递增趋势,存在异方差性;再进一步地统计检验,采用怀特white检验;记2~ie为对原始模型进行普通最小二乘回归得到的残差平方项,将其与X1、X2及其平方项与交叉项进行辅助回归,得:Heteroskedasticity Test: WhiteF-statistic P rob. F5,24ObsR-squared P rob. Chi-Square5Scaled explained SS P rob. Chi-Square5Test Equation:Dependent Variable: RESID^2Method: Least SquaresDate: 12/30/11 Time: 14:19Sample: 1978 2007Included observations: 30Variable Coefficient Std. Error t-Statistic Prob.C-1221567.X2X2^2X2X1X1X1^2R-squaredM ean dependent var Adjusted R-squared . dependent var . of regression A kaike info criterion Sum squared resid +12 S chwarz criterionLog likelihood H annan-Quinn criter. F-statistic D urbin-Watson statProbF-statistic“X12”表示“X 12”;“X22”表示“X 22”;“X 3”表示“X 1×X 2”2~ie =+++=R2怀特统计量nR 2=30×=,该值大于5%显着水平下、自由度为5的2χ分布的相应临界值05.02χ=,因此,拒绝同方差的原假设,存在异方差性;6、序列相关检验建立残差项与~i e 与~1-i e 图一以及时间t 图二的关系图,图一显示随机误差项存在一阶正序列相关性;图一 图二再用回归检验法对该模型进行序列相关性检验,以~ie 为被解释变量,以1~-i e 、2~-i e 为解释变量,建立如下方程:~i e =ρ1~-i e +i ε ………………①~i e =1ρ1~-i e +2ρ~2-i e +i ε………………② 对上面的模型,用普通最小二乘法进行参数估计,得: ①:Breusch-Godfrey Serial Correlation LM Test:F-statistic P rob. F1,26 ObsR-squaredP rob. Chi-Square1Test Equation:Dependent Variable: RESID Method: Least Squares Date: 12/30/11 Time: 14:33 Sample: 1978 2007 Included observations: 30Presample missing value lagged residuals set to zero.Variable CoefficientStd. Error t-StatisticProb.X2 X1 C RESID-1R-squaredM ean dependent var Adjusted R-squared . dependent var . of regression A kaike info criterionSum squared resid5180974. S chwarz criterionLog likelihood H annan-Quinn criter. F-statistic D urbin-Watson statProbF-statistic~i e =1~-i e +=R2=R 20.232707 F=由分析结果可以看出,该模型拟合优度不高;在5%的显着性水平下t >2αt 28,所以变量通过显着性检验;~i e 与1~-i e 相关,存在序列相关性; ②式:Breusch-Godfrey Serial Correlation LM Test:F-statistic P rob. F2,25 ObsR-squaredP rob. Chi-Square2Test Equation:Dependent Variable: RESID Method: Least Squares Date: 12/30/11 Time: 14:39 Sample: 1978 2007 Included observations: 30Presample missing value lagged residuals set to zero.VariableCoefficientStd. Error t-StatisticProb.X2 X1 C RESID-1 RESID-2R-squaredM ean dependent var Adjusted R-squared . dependent var . of regression A kaike info criterionSum squared resid 3418872. S chwarz criterionLog likelihood H annan-Quinn criter. F-statistic D urbin-Watson statProbF-statistic~i e =1~-i e ~2-i e =R2=R 20.491329 F=由分析结果可以看出,该模型的拟合优度不高;在5%的显着性水平下1t >2αt 27,2t >2αt 27,变量1~-i e ,~2-i e 通过显着性检验,所以~i e 与1~-i e 相关,存在序列相关性,而~i e 与~2-i e 相关,存在序列相关性; 7、多重共线性检验由于r=接近1;因此1X 与2X 间存在较高的相关性; 再用逐步回归法寻找最优方程;首先找出最简单的回归形式,分别作y 与x1、x2间的回归,得:1Y ∧=+R 2= .= 2Y ∧=-+ -R 2= .=可见,货币流量受贷款额的影响较大,因此选1作为初始的回归模型;再将X 2导入初始的回归模型,得:C X1 X2. Y=fX1t 值Y=fX1,X2t 值Y ∧= -+++μ-=R2=R 20.996769 F=初始模型导入X2后,模型的拟合优度提高,且参数的符号合理,变量也通过了t 检验;因此最优方程是Y=fX1,X2,拟合结果如下:Y=-+++μ8、计量经济学模型的最终确定经过一系列的检验和分析,最终的模型为:lnY=0β+1βX1+2βX2+μ模型的变量显着性成立,且存在异方差性、存在较高的多重共线性;9、检验结果分析从以上的分析和检验中可得出,贷款额每增加一个单位,货币流通量就增加个单位;居民消费价格指数每增加一个单位,货币流通量增加个单位;进而得出,居民消费价格指数的增加对货币流通量的作用大于贷款额增加对货币流通量的作用;四、结论1由于各种原因,得出的模型仍然存在有诸多问题,比如存在序列共线性,并未对其进行修正,留待以后进行进一步的研究;2从计量经济学角度来看,根据已知的贷款额和居民消费价格指数而建立的货币流通量的模型,其通过了变量的显着性检验、且存在异方差性,也具备较高的多重共线性;3从经济学角度来看,货币流通量受居民消费价格指数的影响大于贷款额的影响,也就是贷款额的增加对货币流通量的提高影响并不是很大,而居民消费价格指数的增加将会提高货币流通量,从而刺激生产的扩大,最终导致国家福利的增加;但若货币流通量过大或是货币流通速度过大,将导致供过于求即通货膨胀,货币贬值、物价上涨,将不利于经济的可持续发展;正如温家宝总理指出:“通货膨胀和腐败的结合将动摇国家的政权稳定;”由此可见,货币流通量的增加对国民经济来讲是一把双刃剑;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计量经济学报告Document number:NOCG-YUNOO-BUYTT-UU986-1986UT计量经济学期末考试试题1.结合自己的专业收集相关实际数据,作一个多元线性回归的计量经济学模型,要求:(1)用eviews进行参数估计,写出多元线性回归的数学模型;(2)进行拟合优度检验,方程的显着性检验和变量的显着性检验;(3)作异方差检验,用加权最小二乘法重新估计模型,与(1)的模型作对比和评价;(4)作序列相关检验,用广义最小二乘法或广义差分法重新估计模型,与(1)和(2)的模型作对比和评价;(5)做多重共线性检验,如果存在多重共线性则消除多重共线性,与前面的模型作对比和评价;(6)分别用前述3个模型进行点预测和区间预测,对预测结果作适当评价。

2.结合实际问题,收集相关数据,作Ganger因果关系分析。

3.收集实际数据,作一个带虚变量回归的计量经济学分析和预测。

研究问题:(居民消费价格指数)的数值高低,一方面取决于各个类别中每一规格品种的价格变化;另一方面取决于CPI的构成,即各个类别在CPI中所占的权重。

本文研究了CPI与城市居民消费价格指数与农村居民消费价格指数及商品零售价格指数间的关系,旨在探究出是城市居民还是农村居民或商品零售价格对于CPI的贡献。

因此,当前背景下对CPI的深度分析,确定其影响因素,保持CPI 稳定显得十分重要。

本文期望通过实证模型分析出影响我国CPI的主要因素,并通过结论提出合理化建议。

下面给出了2005年-2015年数据,其数据来源与《中国统计年鉴》。

表1 价格指数表①用eviews进行参数估计,写出多元线性回归的数学模型;②进行拟合优度检验,方程的显着性检验和变量的显着性检验;③作异方差检验,用加权最小二乘法重新估计模型,与(1)的模型作对比和评价;④作序列相关检验,用广义最小二乘法或广义差分法重新估计模型,与(1)和(2)的模型作对比和评价;⑤做多重共线性检验,如果存在多重共线性则消除多重共线性,与前面的模型作对比和评价;⑥分别用前述3个模型进行点预测和区间预测,对预测结果作适当评价。

解题:(1)以居民消费价格指数为(Y),城市居民消费价格指数(1X),农村居民消费价格指数(2X),商品零售价格指数(3X),做参数估计得到以下结果,如图1:图 1其对应的回归表达式为:0.677671 0.630658* 1 0.347313* 2 0.015275*3Y X X X =+++2R 0.999, 1.699,16413.06DW F ===(2) 拟合优度999.02=R ,说明模型的拟合优度高;在给定显着性水平05.0=α的情况下35.4)7,3(05.0=F (例子中解释变量的数目为3,样本容量为11),显然有αF >=16413.06F表明模型的线性关系在95%的置信水平下显着成立,即方程是显着的。

给定显着性水平,可知变量t 统计量的概率值只有3X 没有通过检验,因为其05.05293.0Pr >=ob ,因此将接受原假设,解释变量3X 显着为0,而其他的2,1X X 都是显着不为零。

(3) 异方差检验如图2所示:图 2White 统计量2110.5011 5.51261747nR =⨯=,该值大于5%显着性水平下自由度为6的2χ分布的相应临界值20.05(6)12.59χ=,(在估计模型中含有两个解释变量,所以自由度为11),因此接受同方差性的原假设。

(4) 序列相关检验为:作残差项t e 与时间t 以及t e 与1t e -的关系图,如图3:-.04-.03-.02-.01.00.01.02.03.04图 3从图1中可以看出:DW 检验结果表明,在5%的显着性水平下,n=24,k=2,查表0.5951,0.9280l u d d ==,由于 1.6994u u d DW d <=<-,故无自相关。

(5) 多重共线性检验:根据回归表达式的结果,3X 未能通过t 检验,故认为解释变量间存在多重共线性。

对123,,X X X 进行简单的相关系数检验,过程如图4:图 4由图4相关系数矩阵可以看出,各解析变量之间的相关系数较高,可以看出123,,X X X 之间存在严重的自相关性,证实解析变量之间存在多重共线性。

下面我们将采用逐步回归法来减少共线性的严重程度而不是彻底地消除它接下来找出最简单的回归形式。

分别做出Y 与1,2,3X X X 间的回归,结果如下图: a.Dependent Variable: Y Method: Least SquaresDate: 12/31/17 Time: 13:20Sample: 2005 2015Included observations: 11Variable Coefficient Std. Error t-Statistic Prob. C -2.650776 2.617217-1.0128220.3376X11.0266080.02548040.290500.0000R-squared0.994486 Mean dependent var 102.7818Adjusted R-squared 0.993874 S.D. dependent var 1.955412S.E. of regression 0.153051 Akaike info criterion -0.753131Sum squared resid 0.210820 Schwarz criterion -0.680786Log likelihood 6.142218 Hannan-Quinn criter.-0.798734F-statistic1623.324 Durbin-Watson stat 0.834191Prob(F-statistic)0.000000图 5Y = + *X1() ()220.9945,=0.993874,1623.32,0.83R R F DW === b.图 6Y = + *X2()()220.9861,=0.9845,638.18, 1.43===R R F DWc.图 7Y = + *X3()()22====R R F DW0.9663,0.9626,258.13, 1.70通过一元回归结果图5—图7进行对比分析,依据调整可决系数2R最大原则,选择X作为进入回归模型的第一个解析变量,形成一元回归模型。

采用逐步回归寻找最佳回1归方程:1) 在初始模型中引入2X ,结果如下图:图 8从上面的结果可以看出,模型拟合度显着提高,且参数符号合理,变量也通过了t 检验。

从而引入3X ,根据第一问的结果,尽管拟合度有所提高,但3X 的参数未能通过t 检验,且符号不合理。

所以最终的粮食生产函数应以12(,)Y f X X =为最优,拟合结果如下:Y = + *X1 + *X220.9998,26479.86, 2.11.R F DW ===相比于模型1中得到的结果,我们认为3X 与其他变量存在多重共线性,去掉3X 后,模型的结果显着改变。

(6) 点预测与区间预测由于我们所得模型不存在序列相关性和异方差性,所以我们只对存在多重共线性的模型进行点预测和区间预测,其预测结果如下: 点预测内插预测:在Equation 框中,点击“Forecast ”,在Forecast name 框中可以为所预测的预测值序列命名,计算机默认为yf ,点击“OK ”,得到样本期内被解释变量的预测值序列yf (也称拟合值序列)的图形形式,如图9所示。

图 9外推预测:双击Workfile菜单下的Range所在行,出现将Workfile structured对话框,将右侧Observation旁边的数值改为12,然后点击OK,即可用将Workfile的Range以及Sample的Range改为2016;双击打开group01序列表格形式,将编辑状态切换为“可编辑”,在1X;同样X序列中补充输入1=106的方法录入2=101X;在Equation框中,点击“Forecast”,弹出一对话框,在其中为预测的序列命名,如yf2。

点击OK即可用得到预测结果的图形形式,如图10所示。

实际值、预测值、残差序列,在view菜单选择Grap/Line,画折线图,如图11所示。

Y YF1RESID图 10图 11因此,当城市居民消费价格指数1=106X ,农村居民消费价格指数2=101X 时,居民消费指数Y=104.1641。

区间预测接下来将进行Y 个别值的置信区间的预测:图 12把预测值的标准差,命名为YS1,然后点解OK ,即可在Workfile 界面看到一个名为YS1的序列。

双击打开这一序列,如图12所示,在第2016年(预测行)即可直接显示个别值的预测值标准差为:ˆ0.1232Y S =把结果代入0ˆ0/2ˆa YY t S ±⋅,即可得到Y 个别值的95%的置信区间为:[104.0409,104.2873]2.建立中国长期的水资源模型。

考虑到水资源的总量是衡量一个国家是否有长期发展的一个基本要素,而影响水资源总量的因素,不仅在本期,而且长期在发挥作用。

对于水资源总量的影响因素部分为人均水资源量,表2给出了相关数据,其来源与中国统计年鉴。

表 2长期的水资源模型可设定为∑∑∑∑=-=-=-=-++=++=mi it i mi i t i t mi i t i m i i t i t X Y X X Y Y 110110λδδαββ使用4期滞后2次多项式估计模型:在工作文件中,点击Quick\Estimate Equation …,然后在弹出的对话框中输入:Y C PDL(X,4,2),点击OK ,得到如图13所示的回归分析结果。

其中,“PDL 指令”表示进行多项式分布滞后(Ploynamial Distributed Lags)模型的估计,X 为滞后序列名,4表示滞后长度,2表示多项式次数。

由表2中的数据,我们得到估计结果如下:(0.69)(0.001) (0.15) (0.00) PDL03*62.0 PDL02*14.3 PDL01*4.72 + 37.40619 = Y ---220.9514,0.9151,=2215203,26.14, 1.53.R R RSS F DW ====最后得到的分布滞后模型估计式为:X(-4)*4.05 - X(-3)*0.96 X(-2)*4.72 X(-1)*7.23 X *8.5 40619.37- Y ++++=图 13为了进行比较,下面直接对滞后4期的模型进行OLS估计。

在工作文件中,点击Quick\Estimate Equation...,然后在弹出的对话框中输入:Y C X X(-1) X(-2) X(-3) X(-4),点击OK,得到如图14所示的回归分析结果。

相关文档
最新文档