显示设备种类全解析

显示设备种类全解析
显示设备种类全解析

显示设备种类全解析

2014-09-26

说起显示器,相信绝大部分人头脑中第一印象就是电脑桌上大大的液晶显示器。这并没有错,目前应用最广的也是这种显示器,但是,它只是显示器的一部分,目前世界上还存在着多种其它的显示器产品。在本文中,笔者就来为大家盘点一下目前拥有哪些种类的显示器,以及未来将会如何的发展。

液晶也已经快过时?显示设备种类全解析

在介绍各种显示器之前,我们首先要弄清楚显示器的概念。显示器,也常常被称作监视器,顾名思义,就是输入并显示画面的设备。其实,它不仅仅只是电脑的一部分,只是一台完整的电脑不可缺少它而已。在这个台机已经普遍开始萎缩的时代,显示器自然也就被赋予了更多的职能,意义也就更加的广泛,从笔记本的扩展显示设备,到

手机、平板等移动平台的显示终端等等,都有涉及。总之,显示器的概念是很大的,这也就是本文盘点显示器种类的意义所在。

显示器概念

广义:所有能够显示的设备,如电脑用显示器、电视等等

狭义:电脑的显示工具

已经基本淘汰的CRT显示器

CRT显示器很多人都是非常的熟悉,它基本上是大部分人接触电脑开始最先用到的一种显示器。它的最大的特点就是有一个大大的屁股,这样也就决定了它占有的空间比较的大,直接造成了其与轻薄的液晶显示器的竞争中逐渐的开始被淘汰。

CRT显示器已经基本被淘汰

虽然,CRT在普通应用领域基本上被淘汰,在市场上也已经基本见不到在售的产品,但是,这并不表示CRT显示器就是一无是处,和目前最流行的液晶显示器相比,它反而有一些优势。

CRT显示器和液晶显示器对比

劣势:1、体积大,辐射大,耗电量大

2、由于是显像管发光,所以画面是通过刷新实现的,会存在画面闪烁的问题

优势:1、在理论上,CRT可以达到无限色彩,所以,它在色彩上可以比液晶更优秀。

2、响应速度快,基本没有延迟。因此,在画面显示上,也基本不存在拖影的情况

至于在其它的方面,如寿命等上面,现在的液晶显示器经过长期的发展,已经基本上可以与之相媲美,所以,也就不存在优劣势可言了。

总之,CRT显示器还是有一定的用武之地的,特别是对那些对色彩要求很高或者极致游戏发烧用户而言。

几乎统治全球的液晶显示器

液晶显示器,是一种以液晶为材料,并利用液晶的光学特性来实现色彩显示的显示设备,也就是我们常说的LCD,它是我们目前应用最为广泛的一种显示设备。它的出现,让目前市面上的CRT显示器基本上被淘汰,之所以会造成这种结果,是与液晶显示器的所拥有的优势分不开的。

液晶显示器特点

1、机身可以做到很薄,非常节省空间。这是液晶显示器能够取得现在的地位的最根本原因所在。

2、功耗低,省电,而且,发热量低。

3、辐射低,比较健康。当然,这并不代表它没有辐射,作为一种电子设备,要想完全没有辐射,几乎是不可能的。

4、画面比较柔和,眼睛看起来比较舒服。

当然,液晶显示器也有一些劣势,如响应速度的慢,基本上无法杜绝拖影的产生等等。虽然随着技术的进步,液晶显示器越来越优秀,一些瑕疵对于普通用户而言,也基本上根本察觉不到。但是,缺点摆在那里,是无法掩盖的。所以,为了解决这些缺陷,各大显示品牌开始出现了两种解决方案。

一个是继续优化液晶技术,以期达到最接近完美显示的效果;另外一种,则是完全抛弃液晶,开发新一代的显示技术,其实,最具代表性的便是LED显示技术。

生死纠结的LED显示器

首先要明确一点的是,目前市面上所说的LED显示器并不是真正意义上的LED显示器,它只不过是采用了LED背光的液晶显示器而已。

LED已经被应用的非常广泛

真正意义的LED显示屏是一种通过控制半导体发光二极管的方式来显示画面信息。我们经常见到的广场广告牌等等,就是一种LED 显示屏,它已经完全摆脱了液晶的存在,是一种全新意义上的显示屏幕。相对于液晶而言,它具有很多的优势。

LED显示屏的优势

1、功耗更低,几乎只有LCD的十分之一左右

2、响应速度极快,能够基本上解决液晶的拖影问题

3、亮度高,在极高亮度的环境下,也能够看清显示的内容

4、低温环境适应能力强

5、理论上可以做的很薄、很轻和显示素质非常优异的产品

6、可制造出可弯曲的产品

不过,目前的LED虽然已近应用非常广泛,但是,要想进入到家庭和日常的应用显示领域,还比较困难。其中最具代表性的就是OLED。

生死纠结的OLED

虽然目前业界都比较看好OLED,世界上几大面板品牌也在不遗余力的开发OLED面板,不过,到目前为止,OLED的价格和技术的不成熟,都大大限制了它的普及。总之,OLED虽然前景光明,但是,目前来看,它普及开来还有很多问题函待解决。而且,由于技术难度比较大,很多投资OLED的品牌都开始在其和LCD之间摇摆,OLED正站在生和死之间的十字路口。

虚拟现实显示器发展现状和方向

另外,在显示器上,目前所能够预见的最终极的目标便是模拟现实。要想达到模拟现实的目标,主要有两种思路,一种是实现真正的3D显示,另外一种就是控制眼睛看到的环境。

虚拟现实

科幻的3D显示器

真正的3D立体显示是人们在显示领域一直追求的目标,特别是各种科幻片甚至是国内的神话大片中的立体显示场景,让人们憧憬不已。其实,3D立体显示设备,目前就已经有被制造出来,不过,它的成熟度非常低,要达到科幻片中的那种完美程度,更是相去甚远。

全息投影是未来显示的重要方向,但是还遥不可及

目前,实现全息3D显示的方式,主要有三种。

全息3D投影实现方式

1、空气投影。这种投影方式利用的是海市蜃楼的原理,世界上第一台全息投影设备就是采用的这种方式。不过,这种方式的不稳定性,注定了它在未来无法再进一步发展。

2、激光束投影。利用气体在空气中不断的小爆炸形成全息图像。

3、360度全息显示屏。将图像投影到高速旋转的镜子上实现全息影像。

不管是哪一种方式,从目前来看,都还处于试验阶段,离实际应用都还非常的遥远。虽然已经有相关的产品,但是,它仍然只是一种科幻类的东西存在于想象之中。

3D立体眼镜

实现身临其境的显示效果的另外一种方式,就是对眼镜所能够看到的环境进行控制了。目前,我们所能够看到的产品,就是头戴式立体眼镜了。

头戴式显示设备最早出现其实是在军事领域,是为了满足便携式显示的需求。不过,目前已经延伸到了民用的领域,而且,多个品牌都已经推出了相关的产品,如索尼就推出了一款超强的头戴式3D显示产品HMZ-T1,可以模拟20米距离观看750寸屏幕的影院级效果。

索尼头戴式立体3D眼镜

而最具代表性的便是虚拟现实游戏头盔了,它其实也是一种头戴式立体3D眼镜,配合着虚拟现实3D游戏,能够让玩家获得身临其

境的感受。不过,目前这种头盔非常的昂贵,基本上都是几万元美元以上。这也是它没有能够实现普及的真正的原因。

虚拟现实游戏头盔

但是,相对于全息3D而言,目前这种方式可以说是最接近虚拟现实目标的了。而且,相信通过技术的进步和改良,成本一定可以逐渐的将下来,而且,结合别的各种模拟现实的硬件和软件等,效果也会越来越好。

总结:从目前来看,液晶由于各种瑕疵,人们已经开始寻找替代的技术来,而LED显示屏则是目前看来最好的选择。当然,它的技术还不成熟,成本非常高,还远远没有达到能够普及的程度。另外,从未来来看,虚拟现实的显示设备无疑是终极的发展方向,目前主要是通过头戴式立体3D眼镜来实现,不过,全息3D投影在未来注定会发展起来。

人类之所以能够感受到世界的丰富多彩,最重要的便是眼睛的视觉感官。相信通过显示器的不断发展,人们可以获得越来越优秀,越来越真实的感受。

计算机硬件显示器分类

计算机硬件显示器分类-----------------------作者:

-----------------------日期:

第七节、计算机硬件显示器 一、显示器的分类 1.按照显示器的显示管分类分为: 传统的显示器,也就采用电子枪产生图像的CRT (cathode-ray-tube阴极显示管)显示器和液晶显示器LCD(Liquid Crystal Display)。 2.按显示色彩分类分为: 单色显示器和彩色显示器;单 色显示器已经成为历史。 3.按显示屏幕大小分类: 以英寸单位(1英寸 =2.54cm),通常有14寸、 15寸、17寸和20寸,或者更大。 二、CRT显示器 1.CRT显示器工作原理

显示器的显示系统和电视机类似,主要部件是显像管 (电子枪)。在彩色显示器中,通常是3个电子枪,索尼Trinitron 的三个电子枪在一起,也称为单枪。显示管的屏幕上涂有一层荧光粉,电子枪发射出的电子击打在屏幕上,使被击打位置的荧光粉发光,从而产生了图像,每一个发光点又由“红”“绿”“蓝”三个小的发光点组成,这个发光点也就是一个象素。 2.CRT显示器种类 显示器之间最大的差别其实在于显示器所采用的显像管的差别,在相同的可视面积下,显像管的品质是决定显示器性能是否优越最关键的因素。显像管按照其外观构造可分为以下几种类型: (1)球面屏幕 是指在水平和垂直两个方向弯曲的球形断面屏幕,图象随屏幕的形态而弯曲。14英寸的显示器多采用这种显象管。随着大屏幕显示器的流行,采用这种显像管的显示器早已退出主流市场。 (2)平面直角屏幕(FST) 其屏幕表面接近平面,曲率半径大于2000毫米,四个角都是直角。所以相对于球面显像管来说,这种显像管比传统的球面显像管看上去要平坦很多,同时在防止光线的反射和眩光方面也有了不少改进。但还不是真正的平面显像管。 (3)柱面屏幕

液晶屏分类与区别

简述液晶屏的分类和区别 第一种分类: TN:黑白模式,适用于路数小于8路的产品,视角相对较小 HTN:介于TN和STN之间,多用于8~32路产品。 黄绿模:背景:黄绿/ 前景:蓝黑 STN:蓝模:背景:灰白色/ 前景:深蓝色不可彩色化最多可以显示到16灰阶,灰模:背景:蓝色/ 前景:白色 FSTN:STN 黑白模式:背景:白色/ 前景:黑色 TFT:可以显示彩色图像。彩色化要求的比较高,可以显示256K色 第二种分类: 段式segment:适用于现实内容固定的图案和简单变化的图案,如8字等。 字符型character:适用于现实西文字符和阿拉伯数字等,不可显示图片和文字。 图型graphic:内容可以显示字符,图片,文字等,内容任意度很高 1.试列出几种JHD的特殊工艺液晶屏,及其特点 (a)丝印产品:有两种,一种外丝印,优点:丝印工艺简单,效果一般,容易脱落。 一种是内丝印,优点:效果好,不会出现脱落,缺点:丝印工艺复杂,成本高。 (b)CH-LCD(双稳态): 双稳态液晶具有一旦写入,就不需要额外能源来保持的特点,很适合 作为电子纸张,同时也可以用在柔软的材质上 (c)CS-LCD:可以显示出8种色彩(Red, Green, Blue, Yellow, Pink, Cyan, White, Black),可以达 到140°的宽视角。对比度很高,响应速度也很高。 2.简述在不良现象中造成彩虹的可能原因是什么? Ans:彩虹即LCD的色彩不均勻,多数出现在COB产品中,部分原因为,如果我们的铁框如果跟LCD的尺寸不是很合,当LCD装入铁框内时会收到四面来的压力,LCD此时就会受到来自四面的压力,它一旦受力,即出现不同LCD原色的多色,分布位置不一,特别是蓝模式的LCD看的更加明显。 3.LCD 使用注意事项 Ans:a.防止加压过大 LCD表面不能加压过大,以免破坏定向层,万一加压过大,或用手按压了LCD中部,需放置起码一小时后再通电。 b.防止玻璃破损 LCD是易碎品,尤其在边角处易崩缺,须小心取放。 c.保护插脚 金属管脚在焊接时,避免温度过高,推荐的焊接温度在260℃--300℃,时间不能超过5秒,不要使用回流焊、波峰焊。如果是插脚式LCD,则LCD应该装在锯距线路板2mm 或更远的地方,而且不能受力过大,受热过高,以免破坏连接。连接处最大耐温不得超过80℃。管脚处不得用洗涤剂,因为在日光下洗涤剂会分解出Cl2,吸水后形成盐酸从而腐蚀电极。 d.防止施加直流电 驱动电压直流成份越小越好,最好不超过50mV,长时间施加过大的直流成份会使电极产生电化学反应而老化。在段形显示时,常在振荡电路中引入二分频电路,以保证方波的对称。 e.偏光片使用注意 偏光片切勿沾上有机溶剂;因偏光片材质较软,在装机使用过程中,避免硬物顶伤、压伤

LCD发展简史

液晶及液晶显示器的发展简史 热致液晶的发现 1888年奥地利植物学家F r i e d r i c h R e i n i t z e r在加热苯酸脂晶体时发现:当温度升到145.5°C时晶体融化成为乳白色粘稠的液体。再继续加热到178.5°C 时乳白粘稠的液体变成完全透明的液体。后经德国卡尔斯吕爱大学教授O t t o L e h m a n n研究,这种乳白粘稠的液体具有光学各向异性,因而建议称之为液体晶体(L i q u i d C r g s t a l)。 液晶的合成和分类 二十世纪二十年代,德国H e i d e l b e r g大学的L u d w i g G a t t e r m a n n首先合 H a l l e大学的D a n i e l V o r l a n d e r则先后合成了300多种液晶,并指出液晶分子 是棒状的分子。在此基础上,法国的G e o r g e F r i e d e l及 F.G r a n d-j e a n等对液晶的结构及光学性能作了详细的研究,并于1922年完成了液晶分类的工作,将液晶划分为:近晶相、向列相和胆甾相。 液晶的物理性能研究 1917年M a n g u i n发明了摩擦定向法,用以制作单畴液晶和研究光学各向异性。1909年 E.B o s e建立了攒动(S w a r m)学说,并得到L.S.O r m s t e i n及 F.Z e r n i k e 等人的实验支持(1918年),后经d e G e n n e s论述为统计性起伏。G.W.O s e e n和H.Z o c h e r1933年创立连续体理论,并得到 F.C.F r a n k完善(1958年)。M.B o r n (1916年)和K.L i c h t e n n e c k e r(1926年)发现并研究了液晶的介电各向异性。1932年,W.K a s t据此将向列相分为正、负性两大类。1927年,V.F r e e d e r i c k s z 和V.Z o l i n a o发现向列相液晶在电场(或磁场)作用下,发生形变并存在电压阈值(F r e e d e r i c h s z转变)。这一发现为液晶显示器的制作提供了依据。 液晶在液晶显示器方向的应用研究 ?1968年美国RCA公司R.Williams发现向列相液晶在电场作用下形成条纹畴,并有光散射现象。 G.H.Heilmeir随即将其发展成动态散射显示模式,并制成世界上第一个液晶显示器(LCD)。 ?1968年美国Heilmeir等人还提出了宾主效应(GH)模式。 ?1969年Xerox公司提出Ch-N相变存储模式。 ?1971年M.F.Schiekel提出电控双折射(ECB)模式,T.L.Fergason等提出扭曲向列相(Twisted Nematic:TN)模式,1980年N.Clark等提出铁电液晶模式(FLC),1983~1985年T.Scheffer 等人先后提出超扭曲向列相(Super Twisred Nematic:STN)模式。 ?1986年Nagata提出用双层盒(DSTN)实现黑白显示技术;之后又有用拉伸高分子膜实现黑白显示的技术(FSTN)。 ?1996年以后,又提出采用单个偏光片的反射式TN(RTN)及反射式STN(RSTN)模式。 液晶显示器产业的形成、发展及布局

显卡与显示器试题及答案

显卡与显示器试题及答案 一、填空 1、显示内存也称为_______ ,它用来存储________ 所要处理的数据. 2、显示器的种类按显示屏幕的形状大致可分为 ________ 、_______ 、_______ 、_______ 和、等几种。 3、显卡主要由______ 、_______ 、______ 、_______ 、_______ 、_______ 和_______ 等几部分组成。 4、分辨率是指显卡能在显示器上描绘点数的最大数量,通常以 __________ 表示。 5、彩色CRT显示器的三原色包括:______ 、______ 、_______ 3种颜色。 6、液晶显示器的可视面积指的是______ 。 7、刷新频率是指______ ,也即屏幕上的图像每秒钟岀现的次数,它的单位是Hz (赫兹)。 8、显卡中显存的用途主要是用来______ 。 9、显示器的点距越小,显示图形越清晰、细腻,分辨率和图像质量也就越___________ 。屏幕越大,点距对视觉效果影响越________ 。 10、RAMDA的作用是将 ____ 中的_______ ■转换成能够在____ 上直接显示的_______ 。数模转换 的工作频率直接影响着显卡的________ 及其 ______ 。 11、按显示元件分类,显示器可分为______ 和______ 两大类。 12、显卡与主板的接口有______ 、______ 和_______ 接口几种。目前最流行的是 _______ 接口。 13、显卡的主要技术规格和性能基本上取决于________ 。 14、行频= ______ X______ 。 15、就目前来看,非阴极射线管显示器主要是

液晶屏的等级分类

液晶屏的等级分类 1: A+屏是指无斑,没有亮点和暗点,显示稳定无抖动,在TFT-LCD专业测试软件下 % L7 s-g3 a5 a/ k2 J符合上述标注; 2、A 屏: 是指无斑,亮点和暗点2个以内,显示稳定无抖动,在TFT-LCD专业测试软 0 v* h%K7 N& W- h& M7 B& D2 B1 u4 k- f/ m! _0 d! N 件下符合上述标注; 3、B 屏: 业界普遍把超过2个以上亮点的称为B屏; 4、C 屏: 带有亮线的A屏称为C屏。 # @/ n/ I. ]3 M ! ~ u* e J |+ E) F8 ' J *. 所谓亮点: 在液晶显示器开机状态下有一个像素没有工作一直发亮 5 W; y7 L1 i7 Z: y, W0 |& f;1 H) u6 ?!d3 R. B8 w+ l$ j+ u4 y" ~( V5 w0 q1 w *.所谓暗点: 在液晶显示器开机状态下看不到,在TFT-LCD专业测试软件下可以看到;:k/ p' n' e4 @. }

*.所谓有斑: 在TFT-LCD专业测试软件下会有明显的表现,一般使用中 9 C3 O A- H0 D7r% K ) z9 f, i2 G9 U$ y# Y7 Y$ o4 G 不太明显; *. 所谓亮线:液晶显示器的色彩是由横竖扫描线扫描产生的,每根线大约是0."03 毫米宽,它们的哪一一根线出现短路和开路现象那就是亮线。 9 q0 i5 L T( P7 q4 Q7 R _1 E: L5 L7 G1 v4 W9 J 液晶显示屏在生产过程中都会有亮线和亮点出现,这种现象是无法避免的,但除此之外其他性能均符合行业标准 " i) G9 C, k4 t5 P 8 c& o2 J; p+ f; B# [0 o! l7 d 以下是各品牌液晶屏原厂等级从高到低依次排列次序参考:AUO: Z-P-N-V-B;$ t* H P3 J$ }1 [5 c9 N+ |% c5 a CMO: A -A-(A-)-B;4 b' }+ Y% c+ l+ F, v CPT: A-Y-D-Z;6 i7 p6 N" w$ E4 n

LCD发展历程

使用液晶可以制造超薄显示屏”。40多年前的1968年5月,美国RCA公司在纽约召开的液晶显示屏新闻发布会上的发言震惊了全世界。发现液晶可用于显示的是RCA公司的George Heilmeier,他甚至还表示,“梦想中的壁挂式电视只需数年即可实现”。自那之后,日本、英国、瑞士、德国的显示屏研发人员都开始参与液晶面板的开发工作,全球性开发的帷幕正式拉开。 经历4个阶段发展为液晶电视 但是,液晶显示屏的实用化并不容易(见图1)。当时,液晶的使用寿命和可靠性等基本问题都未能解决,使用不到1个小时显示就会消失,更别提要用液晶制造电视了。 图1液晶显示屏的发展历经4个阶段 之所以会存在使用寿命和可靠性方面的问题,主要是因为将直流电压加载到液晶上时,液晶材料及电极会发生氧化还原反应而变质。虽然也可以采用交流电来驱动液晶,但是显示性能较差。最终解决这一问题的是夏普公司。该公司发现,如果在液晶材料中加入离子性杂质,使其导电率升高,就可以采用交流驱动获得良好的显示特性。利用这项技术,1973年5月,夏普公司推出全球首款液晶应用产品——使用液晶显示屏作为显示部件的小型计算器EL-805。 夏普公司的液晶计算器上采用的液晶显示屏是由RCA公司生产的DSM(动态散射模式)液晶,而不是目前常见的TN(扭曲向列)模式液晶。但是,要采用DSM制造液晶电视是很困难的,这是因为DSM的点阵显示扫描线在数量方面存在一定的限制。1971年出现的TN模式解决了这个问题。TN

液晶能起到快门的作用,通过使液晶分子在电场中移动,就可以控制光的开/关。目前,几乎所有液晶显示屏都在采用这个工作原理。 虽然TN模式可使点阵显示的扫描线数量大为增加,但当扫描线增加到60条左右时,图像就会发生变形。对于这个问题,最初找出原因并提出解决方案的是日立制作所的川上英昭。他发现,扫描线的最大数量取决于电压-透过率曲线的上升沿。于是,各机构开始竞相研究如何提高电压-透过率曲线的上升沿。随之出现了将液晶的扭曲角从TN模式下的90度增大到270度的STN(超扭曲向列)模式。1982年,英国皇家信号与雷达研究院(RSRE)发明了STN液晶。1985年,瑞士Brown Boveri公司(BBC)试制出扫描线数量达到135条的STN液晶显示屏。 然而,即使引入STN模式,还是很难制造液晶电视,这是因为STN液晶仍然存在对比度较低、很难显示细微灰阶的问题。突破这一壁垒的,是通过TFT(薄膜场效应晶体管)来控制各像素的有源矩阵驱动技术。与以往的单纯矩阵驱动不同,有源矩阵驱动技术可以独立控制各像素,从而防止因受到周围像素的影响而产生的交调失真,因此可以显示高对比度与细微灰阶。 与彩色CRT竞争的时代 要想制造TFT液晶电视,在大面积玻璃基板上形成硅膜的技术和彩色显示技术都不可或缺。 在硅膜的形成技术方面,为太阳能电池开发的非晶硅(a-Si)在当时已经实用化。那时,石油危机将导致能源危机的说法十分流行,所以太阳能电池作为能源电池备受关注,非晶硅的开发非常活跃。继英国邓迪大学于1979年宣布试制出非晶硅TFT之后,日本及欧洲的企业及研究机构纷纷发布了非晶硅TFT驱动显示屏的开发成果。 在彩色显示技术方面,日本东北大学的内田龙男于1981年发布了并置加法混色法,通过有序排列的三色滤光片来实现彩色显示,也就是彩色滤光片方式。在这些开发成果的推动下,1986年,3英寸非晶硅TFT彩色液晶电视上市,1988年,业界开始开发用于14英寸电视的非晶硅TFT彩色液晶显示屏。特别是夏普公司推出的14英寸液晶屏,实际验证了实现大屏幕非晶硅TFT液晶屏的可能性,引起众多厂商纷纷对此进行投资。 如上所述,虽然TFT液晶已经开始朝着“梦想的壁挂式电视”迈进,但它的全面应用却是从PC的彩色显示器开始起步的。1988年出现了用于IBM公司与东芝公司的PC产品的10.4英寸TFT液晶屏。

显示器的种类和优缺点

显示器的种类及优缺点 一:显示器的种类:CRT显示器、LCD显示器、PDP显示器、OLED显示器 二:各类显示器优缺点 CRT显示器优点: 高对比度 高响应速度 大尺寸 使用寿命长 色域宽、颜色响应准确,非常适合出版、绘图等应用。 缺点 体积大、重量大 某些CRT存在几何畸变现象 功耗较大 运作时会释出少量X射线,有辐射。 长时间使用令人眼部不适,容易造成近视 含有铅,丢弃后会严重污染环境 易受外来磁场干扰而出现色斑 假如长时间显示同一画面,该画面会永久以残影形式留在画面。 ?? LCD显示器:优点:LCD与CRT相比拟有工作电压低、功耗小,用电比传统CRT显示器的耗电量少70%,散热小、没有丝毫辐射、对人体健康无损害、完全平面、能精确还原图像、无失真、可视面积大、款式新颖多样、能大量节省空间、抗干扰能力强、显示字符锐利、画面稳定不闪烁、屏幕调节方便。 缺点:显示色域不够宽,颜色重现不够逼真 早期产品可视角度不够广 响应速度偏低,玩游戏或播放影片时或出现残影 假如长时间显示同一画面,该画面会永久以残影形式留在画面。 长时间使用可能会产生了亮点、暗点、坏点 长时间使用寿命不及CRT ??? PDP显示器:超大屏幕:传统电视的屏幕最大尺寸只能做到40英寸,而PDP屏幕可以做到80英寸以上; 超宽视角:PDP的视角超过160度,因此可以容纳更多人同时观看; 纯平面无失真:PDP完全是纯平面显示,且各个发光单元的结构都相同,因此不会出现显像管电视常见的梯形失真、线性失真和枕形失真等几何失真现象; 不受电磁干扰:由于PDP本身没有电磁结构,因此不会受电磁的干扰,喇叭、高压电、甚至磁场都不会对其产生任何干扰,这样就能够获得更稳定的画质;

液晶屏的种类

液晶屏,液晶屏的种类,液晶屏的原理作者:佚名来源:https://www.360docs.net/doc/4b16176315.html, 发布时间:2010-3-27 13:25:10 [收藏] [评论] 液晶屏,液晶屏的种类,液晶屏的原理 一个液晶显示器的好坏首先要看它的面板,因为面板的好坏直接影响到画面的观看效果,并且液晶电视面板占到了整机成本了一半以上,是影响液晶电视的造价的主要因素,所以要选一款好的液晶显示器,首先要选好它的面板。液晶面板可以在很大程度上决定液晶显示器的亮度、对比度、色彩、可视角度等非常重要的参数。液晶面板发展的速度很快,从前些年的三代,迅速发展到四代、五代,然后跳过六代达到七代,而更新的第八代面板也在谋划之中。目前生产液晶面板的厂商主要为三星、LG-Philips、友达等,由于各家技术水平的差异,生产的液晶面板也大致分为机种不同的类型。常见的有TN面板、MVA和PV A等VA类面板、IPS面板以及CPA面板。 1、TN面板 TN全称为TwistedNematic(扭曲向列型)面板,低廉的生产成本使TN成为了应用最广泛的入门级液晶面板,在目前市面上主流的中低端液晶显示器中被广泛使用。目前我们看到的TN面板多是改良型的T N+film,film即补偿膜,用于弥补TN面板可视角度的不足,目前改良的TN面板的可视角度都达到160°,当然这是厂商在对比度为10∶1的情况下测得的极限值,实际上在对比度下降到100:1时图像已经出现 失真甚至偏色。 作为6Bit的面板,TN面板只能显示红/绿/蓝各64色,最大实际色彩仅有262.144种,通过“抖动”技术可以使其获得超过1600万种色彩的表现能力,只能够显示0到252灰阶的三原色,所以最后得到的色彩显示数信息是16.2M色,而不是我们通常所说的真彩色16.7M色;加上TN面板提高对比度的难度较大,直接暴露出来的问题就是色彩单薄,还原能力差,过渡不自然。 TN面板的优点是由于输出灰阶级数较少,液晶分子偏转速度快,响应时间容易提高,目前市场上8 ms以下液晶产品基本采用的是TN面板。另外三星还开发出一种B-TN(Best-TN)面板,它其实是TN面板的一种改良型,主要为了平衡TN面板高速响应必须牺牲画质的矛盾。同时对比度可达700∶1,已经可以和MVA或者早期PVA的面板相接近了。台湾很多面板厂商生产TN面板,TN面板属于软屏,用手轻轻划会出现类似的水纹,另外仔细看屏幕大致是这样的: 2、VA类面板 VA类面板是现在高端液晶应用较多的面板类型,属于广视角面板。和TN面板相比,8bit的面板可以提供16.7M色彩和大可视角度是该类面板定位高端的资本,但是价格也相对TN面板要昂贵一些。VA 类面板又可分为由富士通主导的MVA面板和由三星开发的PVA面板,其中后者是前者的继承和改良。V A类面板的正面(正视)对比度最高,但是屏幕的均匀度不够好,往往会发生颜色漂移。锐利的文本是它 的杀手锏,黑白对比度相当高。 富士通的MVA技术(Multi-domainVerticalAlignment,多象限垂直配向技术)可以说是最早出现的广视角液晶面板技术。该类面板可以提供更大的可视角度,通常可达到170°。通过技术授权,我国台湾省的奇美电子(奇晶光电)、友达光电等面板企业均采用了这项面板技术。改良后的P-MVA类面板可视角度可达接近水平的178°,并且灰阶响应时间可以达到8ms以下三星Samsung电子的PVA(PatternedVerticalAlignment)技术同样属于VA技术的范畴,它是MVA技术的继承者和发展者。其综合素质已经全面超过后者,而改良型的S-PVA已经可以和P-MVA并驾齐驱,获得极宽的可视角度和越来越快的响应时间。PVA采用透明的ITO电极代替MVA中的液晶层凸

AA大屏幕分类与特点

大屏幕产品区别与联系 目前市场有大屏幕的种类有:DLP、LCD、LED、液晶DID、等离子拼接 ●DLP背投电视墙: 技术原理(产品卖点):DLP投影机采用全数字化信号处理技术,以DMD(DIGITAL MICROMIRROR DEVICE)数字微反射器作为光阀成像器件,采用数字光处理技术调制视频信号,驱动DMD光路系统,通过投影透镜获得大屏幕图像,具有色彩鲜艳,画面清晰、锐利和无烧坏死、免维护等特点,核心部件寿命超过10万小时,使得DLP 现在已成为大屏幕显示系统的主流机型。目前单台DLP投影机可支持SVGA/XGA等显示分辨率,多台组合拼接分辨率叠加还可实现超高分辨率的显示。分辨率高、拼接缝小、亮度高、无限拼接 技术特点:支持7 X 24 X 365天长期稳定工作;无静电无灼烧现象;核心寿命高达10万小时;多台拼接后可组成一个超高分辨率的模拟屏;拼接缝非常小,只有0.5mm。 适用场所:各行业的监控中心、调度室、信息中心、学术报告厅、监播室等 ●LCD液晶电视墙: 技术原理:LCD( Liquid Crystal Display)投影机分为液晶板投影机和液晶光阀投影机两类。液晶是介于液体和固体之间的物质,本身不发光,工作性质受温度影响很大,其工作温度为-55oC~+77oC。投影机利用液晶的光电效应,即液晶分子的排列在电场作用下发生变化,影响其液晶单元的透光率或反射率,从而影响它的光学性质,产生具有不同灰度层次及颜色的图像。 三块LCD板设计的则把强光通过分光镜形成R、G、B三束光,分别透射过R、G、B三色液晶板;信号源经过模数转换,调制加到液晶板上,控制液晶单元的开启、闭合,从而控制光路的通过,再经镜子合光,由光学镜头放大,显示在大屏幕上。

如何识别液晶电视屏幕种类

如何识别液晶电视屏幕种类? 液晶电视的屏幕称之为液晶面板,现在市面上的液晶屏分为三大阵营:一、夏普屏;二、日韩厂商的液晶屏,如三星索尼(S-LCD)液晶屏和LGD液晶屏(原为LPL,飞利浦已撤资);三、台湾厂商生产的屏,如友达和奇美。下面来介绍几种常见的液晶面板的辨别方法。 一、夏普屏 夏普屏,顶级液晶面板,夏普屏采用的ASV技术型和NEC推出的ExtraView型的液晶面板,其特点是色彩还原真实、可视角度优秀,被称之为“液晶之父”夏普屏的像素是蜂窝状或者六角形,很有特点,仔细辨认很容易看出来。夏普原装日本进口屏为日本龟山生产,夏普原装屏指的是台湾厂商利用夏普技术生产出来的液晶屏,可通过电视型号以及广告语识别。 二、日韩屏 三星索尼屏S-LCD面板: 三星索尼屏是由三星及索尼合作研发,一般称为三星屏。软屏类面板是现在高端液晶应用较多的面板类型,16.7M色彩数和大的可视角度是该类面板定位高端的资本,同时VA类又可分为MVA面板和PVA面板。 1、MVA(Multi-domain Vertical Alignment)模式的液晶面板,其液晶分子长轴在未加电时不像TN模式那样平行于屏幕,而是

垂直于屏幕,并且每个像素都是由多个这种垂直取向的液晶分子组成。 2、PVA(Patterned Vertical Alignment,垂直取向构型)广视角技术,PVA广视角技术同样属于VA技术的范畴,可以说是MVA 的一种变形。PVA采用透明的ITO电极代替MVA中的液晶层凸起物,透明电极可以获得更好的开口率,最大限度减少背光源的浪费。S-LCD面板就是PVA面板,三星主推的PVA模式广视角技术,由于其强大的产能和稳定的质量控制体系。仔细看是半象素的鱼鳞状象,线条较细。S-LCD面板采用PVA技术,该技术采用透明的ITO 电极层,因此其更高的开口率可获得优于MVA的亮度输出;PVA技术还具有500:1的高对比能力以及高达70%的原色显示能力。 LGD屏原称为LPL面板: IPS(In Plane Switching平面控制模式)广视角技术的最大卖点就是它的两极都在同一个面上,而不象其它液晶模式的电极是在上下两面,立体排列。由于电极在同一平面上,不管在何种状态下液晶分子始终都与屏幕平行,会使开口率降低,减少透光率,所以IPS应用在LCD TV上会需要更多的背光灯。 LGD最大的特点就是在技术方面采用了IPS的广视角技术,优势是可视角度高、响应速度快,色彩还原准确,价格便宜;不过缺点是有漏光问题,黑色纯度不够。 LGD面板的鱼鳞状象素方向朝左,而且LGD的屏与普通液晶屏不同,用手不容易按出梅花指纹。

LED显示屏发展历程30年回顾.

LED 显示屏发展历程 30年回顾 1970年代最早的 GaP 、 GaAsP 同质结红、黄、绿色低发光效率的 LED 已开始应用于指示灯、数字和文字显示。从此 LED 开始进入多种应用领域,包括宇航、飞机、汽车、工业应用、通信、消费类产品等,遍及国民经济各部门和千家万户。到 1996年 LED 在全世界的销售额已达到几十亿美元。尽管多年以来 LED 一直受到颜色和发光效率的限制, 但由于 GaP 和 GaAsP LED具有长寿命、高可靠性 , 工作电流小、可与 TTL 、 CMOS 数字电路兼容等许多优点因而却一直受到使用者的青眯。最近十年, 高亮度化、全色化一直是 LED 材料和器件工艺技术研究的前沿课题。超高亮度 (UHB是指发光强度达到或超过 100mcd 的 LED ,又称坎德拉 (cd 级 LED 。高亮度 A1GaInP 和 InGaN LED的研制进展十分迅速,现已达到常规材料GaA1As 、 GaAsP 、 GaP 不可能达到的性能水平。 1991年日本东芝公司和美国HP 公司研制成 InGaA1P 620nm 橙色超高亮度 LED , 1992年 InGaA1p590nm 黄色超高亮度 LED 实用化。同年,东芝公司研制 InGaA1P 573nm 黄绿色超高亮度 LED ,法向光强达 2cd 。 1994年日本日亚公司研制成 InGaN 450nm 蓝 (绿色超高亮度LED 。至此,彩色显示所需的三基色红、绿、蓝以及橙、黄多种颜色的 LED 都达到了坎德拉级的发光强度,实现了超高亮度化、全色化, 使发光管的户外全色显示成为现实。我国发展 LED 起步于七十年代, 产业出现于八十年代。全国约有 100多家企业, 95%的厂家都从事后道封装生产,所需管芯几乎全部从国外进口。通过几个“五年计划”的技术改造、技术攻关、引进国外先进设备和部分关键技术, 使我国LED 的生产技术已向前跨进了一步。 二、超高亮度 LED 的性能 : 超高亮度红 A1GaAsLED 与 GaAsP-GaP LED相比, 具有更高的发光效率, 透明衬低 (TSA1GaAs LED(640nm的流明效率已接近 10lm/w, 比红色 GaAsP-GaP LED 大 10倍。超高亮度 InGaAlP LED提供的颜色与 GaAsP-GaP LED相同包括 :绿黄色(560nm、浅绿黄色 (570nm、黄色 (585nm、浅黄 (590nm、橙色 (605nm、浅红(625nm深红 (640nm。透明衬底 A1GaInP LED发光效率与其它 LED 结构及白炽光源的比较, InGaAlP LED吸收衬底 (AS的流明效率为 101m/w,透明衬底 (TS为

显示器技术的种类

2、新興電機科學技術 科技發展日新月異,現代電機技術益趨多元與深化。人類在日常生活環境中,無一不與電機科技產業相關,舉凡電力、電子、電腦、網路、半導體、通訊、控制等等電機相關技術,早已進入每一辦公室與每一家庭。透過先進的電機科技,給人類帶來更方便與更舒適的生活。並從實作中認識上述各種新興電機科學技術,期能讓學生更進一步了解與掌握新與電機科學技術的發展趨勢。 2-1顯示器技術的種類 2-1-1液晶顯示器的基本原理 由於液晶顯示器是以液晶分子材料為基本要素,將這白濁的液晶分子夾在經過配向處理的兩片玻璃板之間,即可組合成目前熱門而且與我們日常生活息息相關的液晶顯示器件。 這個介於固態與液態之間的中間態分子,不但具有液體易受外力作用而流動的特性,亦具有晶體特有的光學異方向性質,所以能夠利用外加電場來驅使液晶的排列狀態改變至其他指向,造成光線穿透液晶層時的光學特性發生改變,此即是利用外加的電場來產生光的調變現象,我們稱之為液晶的光電效應。利用此效應可製作出各式的液晶顯示器,如扭轉向列型液晶顯示器、超扭轉向列型液晶顯示器、及薄膜電晶體液晶顯示器等。 我們舉扭轉向列型液晶顯示器的構造來加以說明。扭轉向列型液晶顯示器的基本構造為:上下兩片導電玻璃基板,在導電膜上塗布一層經由摩擦而形成極細溝紋的配向膜,當向列型液晶灌注入上下兩片玻璃之間隙時,由於液晶分子具有液體的流動特性,因此很容易順著溝紋方向排列。在接近基板溝紋位置時,液晶分子所受的束縛力較大,所以會沿著上下基板溝紋方向排列,而中間部分的液晶分子束縛力較小,在液晶盒內會形成扭轉排列。因為在液晶盒內的向列型液晶分子共扭轉90度,故稱此工作模式為扭轉向列型。另外,上下基板外側各加上一片偏光板。 圖表 1:液晶顯示器示意圖

led显示屏的八大分类

LED显示屏正处在一个高速发展与成长崛起的阶段,现如今LED显示屏市场呈现出巨大的变化,除了传统的信息展示等作用外,在外形上的要求也在进一步提升,使其更好的适应环境的整体结构和使用要求,随之产生了LED异形显示屏。 LED异形屏是在LED显示屏的基础上改造成的特殊形状的LED显示屏,不同于常规LED显示屏矩形、平面板状的外形,它的形状各异,有圆弧、曲面、四方六面体、字母以及其他不规则的造型。以形状区分,LED异形屏大致有以下几类: 一、LED球形屏 LED球形屏360°全可视角度,全方位播放视频,任何角度都能感受到良好的视觉效果,无平面视角问题。同时它也可以根据需要把球形物体如地球,足球等直接影射到显示屏上,让人感觉惟妙惟肖,广泛应用于博物馆、科技馆、展览馆。 二、LED视频标识 LED视频标识采用不同规格的特制的LED模组组装而成,不受屏体大小限制,可以灵活拼装成客户任意需要的文字、图形及LOGO等,应用于大楼楼顶、知名企业、银行证券、市政建设、地标建筑等,可提升企业的商业价值。 三、LED DJ台 这一两年来,LED DJ台成为一些顶级酒吧和夜店的标配。LED DJ台能和DJ搭配出最亮眼的效果,让音乐和视觉完美搭配。通过搭配定制化的视频,DJ台和LED大屏幕幕融为一体,可以独立播放,可以结合大屏播放,也可以叠加播放,让舞台更有层次感。

四、LED魔方 LED魔方通常由六个LED面组合成立方体,也可以异形拼接为几何造型,面与面之间实现了最小缝隙化完美连接。可以在周围任何角度进行观看,摆脱了传统平面显示屏的观感,适合安装在酒吧、酒店或者商业地产的中庭位置,能够给观众全新视觉体验。 五、圆弧形LED显示屏 显示屏显示面为圆柱曲面的一部分,其展开图为矩形。 六、不规则形显示屏 显示屏显示面为一不规则的平面,例如圆形、三角形或完全不规则的平面。

液晶显示屏种类

TN、 Twisted Nematic 扭曲向列。液晶分子的扭曲取向偏转90° TN产品属于LCM产品中的一类,主要优点是电力低耗和产品显示数据的丰富 产品适用于MP3、手机、工业显示模块、掌上电子游戏机、计算器、万年历、电子表、电子宠物、BP机、电子称、汽车时钟、电话机、空调、万用表、电子记事本、汽车液晶遥控器、收音机、电子仪表、对讲机、CD、VCD及汽车音响。家用电器、工业仪表显示,如数字万用表,电子辞典,移动电话,计算器,传真机,mp3 ,ipod的,掌上电脑 HTN、 HTN(高扭曲向列型) 向列型液晶分子被夹在两块透明玻璃之间,在两层玻璃之间,液晶分子的取向偏转110~130度。 这种类型LCD的特点是对比度高、功耗低、驱动电压低、动态驱动性能不够好,但视角比TN型的要宽 STN、 STN(Super Twisted Nematic)是用电场改变原为180度以上扭曲的液晶分子的排列从而改变旋光状态,外加电场通过逐行扫描的方式改变电场,在电场反复改变电压的过程中,每一点的恢复过程较慢,因而产生余辉。它的好处是功耗小,具有省电的最大优势。彩色STN的显示原理是在传统单色STN液晶显示器上加一彩色滤光片,并将单色显示矩阵中的每一像素分成三个子像素,分别通过彩色滤光片显示红、绿、蓝三原色,就可显示出彩色画面。和TFT不同STN属于无源Passive型LCD,一般最高能显示65536种色彩。 STNLCD、 STN-LCD彩屏模块的内部结构,它的上部是一块由偏光片、玻璃、液晶组成的LCD屏,其下是白光LED和背光板,还包括LCD的驱动IC,和给LCD驱动IC提供一个稳定电源的低压差稳压器(LDO),二到八颗白光LED,LED驱动的升压稳压IC。 显示模组 TFT、 Thin Film Transistor (薄膜场效应晶体管),是指液晶显示器上的每一液晶象素点都是由集成在其后的薄膜晶体管来驱动。从而可以做到高速度高亮度高对比度显示屏幕信息。TFT属于有源矩阵液晶显示器。 补充:TFT(ThinFilmTransistor)是指薄膜晶体管,意即每个液晶像素点都是由集成在像素点后面的薄膜晶体管来驱动,从而可以做到高速度、高亮度、高对比度显示屏幕信息,是目前最好的LCD彩色显示设备之一,其效果接近CRT显示器,是现在笔记本电脑和台式机上的主流显示设备。TFT的每个像素点都是由集成在自身上的TFT来控制,是有源像素点。因此,不但速度可以极大提高,而且对比度和亮度也大大提高了,同时分辨率也达到了很高水平。 TFT ( Thin film Transistor,薄膜晶体管)屏幕,它也是目前中高端彩屏手机中普遍采用的屏幕,分65536 色及26 万色,1600万色三种,其显示效果非常出色。 FSTN、 FSTN(格式化超扭曲向列型)。 FSTN型LCD是STN型LCD的一种,与普通STN的主要区别在于使用的偏光片不同。 FSTN型LCD除了可以具有普通STN型LCD的动态驱动性能良好及视角宽以外,可以实现黑白显示,且具有较好的对比度。 TN LCM LCM(LCD Module)即LCD显示模组、液晶模块,是指将液晶显示器件,连接件,控制与驱动等外围电路,PCB 电路板,背光源,结构件等装配在一起的组件。

浅析LED显示屏分类及封装技术要求

浅析LED显示屏分类及封装技术要求 近几年随着北京奥运会、上海世博会、广州亚运会的举办,LED显示屏的身影随处可见。led显示屏可以显示变化的数字、文字、图形图像;不仅可以用于室内环境还可以用于室外环境,具有投影仪、电视墙、液晶显示屏无法比拟的优点。 LED受到广泛重视并得到迅速发展,与它本身所具有的优点密不可分。这些优点概括起来是:亮度高、工作电压低、功耗小、小型化、寿命长、耐冲击和性能稳定。LED的发展前景极为广阔,目前正朝着更高亮度、更高耐气候性、更高的发光密度、更高的发光均匀性,可靠性、全色化方向发展。 一、LED显示屏的种类 1、根据颜色分类 单基色显示屏:单红或单绿;双色显示屏:红和绿双基色,256级灰度、可以显示65536种颜色;全彩显示屏:红、绿、蓝三基色,256级灰度的全彩色显示屏可以显示1600多万种色。 2、根据组成像素单元分类 数码显示屏:显示像素为7段数码管,适于制作时钟屏、利率屏等; 图文显示屏:显示像素为点阵模块,适于播放文字、图像信息; 视频显示屏:显示像素由许多发光二极管组成,可以显示视频、动画等各种视频文件。 3、根据使用位置分类 户内显示屏:发光点小,像素间距密集,适合近距离观看; 半户外显示屏:介于户内和户外之间,不防雨水,适合在门楣作信息引导等用; 户外显示屏:发光点大,像素间距大,亮度高,可在阳光下工作,具有防风、防雨、防水功能,适合远距离观看。 4、按驱动方式有静态、横向滚动、垂直滚动和翻页显示等。 二、显示屏用LED种类及优缺点 根据显示屏的分类,所使用的像素LED也可以分为以下几种: 1、点阵模块 优点:成本低、加工工艺成熟、品质稳定;缺点:亮度、颜色一致性不好控制,容易出现马赛格现象; 2、直插灯

液晶显示器的分类

液晶显示器的分类 液晶显示器按照控制方式不同可分为被动矩阵式LCD及主动矩阵式LCD两种。 1. 被动矩阵式LCD在亮度及可视角方面受到较大的限制,反应速度也较慢。由于画面质量方面的问题,使得这种显示设备不利于发展为桌面型显示器,但由于成本低廉的因素,市场上仍有部分的显示器采用被动矩阵式LCD。被动矩阵式LCD又可分为TN-LCD(Twisted Nematic-LCD,扭曲向列LCD)、STN-LCD(Super TN-LCD,超扭曲向列LCD)和DSTN-LCD(Double layer STN-LCD,双层超扭曲向列LCD)。 2. 目前应用比较广泛的主动矩阵式LCD,也称TFT-LCD(Thin Film Transistor-LCD,薄膜晶体管LCD)。TFT液晶显示器是在画面中的每个像素内建晶体管,可使亮度更明亮、色彩更丰富及更宽广的可视面积。与CRT显示器相比,LCD显示器的平面显示技术体现为较少的零件、占据较少的桌面及耗电量较小,但CRT技术较为稳定成熟。 液晶显示器的工作原理 我们很早就知道物质有固态、液态、气态三种型态。液体分子质心的排列虽然不具有任何规律性,但是如果这些分子是长形的(或扁形的),它们的分子指向就可能有规律性。于是我们就可将液态又细分为许多型态。分子方向没有规律性的液体我们直接称为液体,而分子具有方向性的液体则称之为“液态晶体”,又简称“液晶”。液晶产品其实对我们来说并不陌生,我们常见到的手机、计算器都是属于液晶产品。液晶是在1888年,由奥地利植物学家Reinitzer发现的,是一种介于固体与液体之间,具有规则性分子排列的有机化合物。一般最常用的液晶型态为向列型液晶,分子形状为细长棒形,长宽约1nm~10nm,在不同电流电场作用下,液晶分子会做规则旋转90度排列,产生透光度的差别,如此在电源ON/OFF下产生明暗的区别,依此原理控制每个像素,便可构成所需图像。 1. 被动矩阵式LCD工作原理 TN-LCD、STN-LCD和DSTN-LCD之间的显示原理基本相同,不同之处是液晶分子的扭曲角度有些差别。下面以典型的TN-LCD为例,向大家介绍其结构及工作原理。 在厚度不到1厘米的TN-LCD液晶显示屏面板中,通常是由两片大玻璃基板,内夹着彩色滤光片、配向膜等制成的夹板? 外面再包裹着两片偏光板,它们可决定光通量的最大值与颜色的产生。彩色滤光片是由红、绿、蓝三种颜色构成的滤片,有规律地制作在一块大玻璃基板上。每一个像素是由三种颜色的单元(或称为子像素)所组成。假如有一块面板的分辨率为1280×1024,则它实际拥有3840×1024个晶体管及子像素。每个子像素的左上角(灰色矩形)为不透光的薄膜晶体管,彩色滤光片能产生RGB三原色。每个夹层都包含电极和配向膜上形成的沟槽,上下夹层中填充了多层液晶分子(液晶空间不到5×10-6m)。在同一层内,液晶分子的位置虽不规则,但长轴取向都是平行于偏光板的。另一方面,在不同层之间,液晶分子的长轴沿偏光板平行平面连续扭转90度。其中,邻接偏光板的两层液晶分子长轴的取向,与所邻接的偏光板的偏振光方向一致。在接近上部夹层的液晶分子按照上部沟槽的方向来排列,而下部夹层的液晶分子按照下部沟槽的方向排列。最后再封装成一个液晶盒,并与驱动IC、控制IC与印刷电路板相连接。 在正常情况下光线从上向下照射时,通常只有一个角度的光线能够穿透下来,通过上偏光板导入上部夹层的沟槽中,再通过液晶分子扭转排列的通路从下偏光板穿出,形成一个完整的光线穿透途径。而液晶显示

LCD液晶显示屏不良现象的原因具体分析

LCD液晶显示屏不良现象的原因分析 电性不良: 1. 短路:客户称为开机长鸣、鸣叫、交短、漏光。它是因为LCD 中不该连在一起的拉线却连在一起,伴随大电流无穷大(电测扫描会叫),在模组中显示字节某些比较淡或缺划。 2. 大电流:在模组上的表现为显示淡,模糊或电池损耗快,如果电源供电则可视为正常,电测时电流较大。 3. 断路:客户称这之为少划、缺划、断字,实际上是ITO 被刮伤断开,模组上看到的也是缺划。 4. 蚀刻不足:客户称之为黑点、多点,模组或电测机上表现为多了一块图案。 5. 蚀刻过渡:客户称之为字细、字变形,模组或电测机上显示的为某个字节的一部分缺掉。 6. 字淡:指Voff 电压较高.客户一般叫字淡、色淡;分为两种( 1@局部字淡:由大电流引起的; 2 @整体字淡:与液晶配比或制程条件有关。)判定方法:厂内为电测时在同样频率下,同样的视向与样品对比样品字体黑度,在黑度同时,电压差异大於一定范围时,厂内判NG。模组上则是显示模糊才能说字淡。 7. 鬼影:即字深在同样的电压下,同样的视向与样品比对字估较样品深一些,在模组上显示就是不该出现的字节在不点亮时也隐隐约约看见,影响了对比度。 8. 漏光:显示字节有的较其它字节要淡。不显示的字节鬼影程度不一致,也就是字节不均。 9. 导电不良:客户称之为闪烁、字节闪烁、字节模糊不清、接触不良、晃动、显示不全、半显、缺划……原因是导电性不好,电测时正常电压下显示为苛个字节或某一部份字节显示不稳定,在点模糊或不显示。但将电测机测试,电压调高时,又可以正常显示,这是与“断路"的区别。 10. 表面不均:客户一般称灰度不均、显示不均、字节不均、白点、黑点、污点……电测时显示显示某个字了节上会有白色或黑色的小点点,而且这些小点点一般会随着电测机频率的高低和电压的大小而缩小或扩大,模组显示亦是如此,故判断表面不均是模组的频率输出电压对工厂来说很重要。 11. 图白:客户称之为字缺、字节缺少一部分。 外观不良: 1. 内污:客户称之为黑点、污点、纤维。指LCD 内有纤维。 2. 内刮:客户称之为黑线、白线,PI 被刮伤表现为线条刮伤。

相关文档
最新文档