小学奥数 有余数的除法
优选小学奥数有余数的除法ppt(共16张PPT)

例题讲练4
【例4】在算式( )÷( )=( )……4中,除数和商相 等,被除数最小是几?
【思路导航】题目中告诉我们余数是4,除数和商相等, 因为余数必须必除数小,所以除数必须比4大,但题中 要求最小的被除数,因而除数应填5,商也是5, 5×5+4=29,所以被除数最小是29.
练一练
1、在算式( 8)÷7=( 1)……( )1 中,商和余数
课前操菇
每份5个,可以分成几份?
□÷□=□(份)
每份6个,最多可以分成几份,还多几 个?
□÷□=□(份)……□(个)
每份7个,最多可以分成几份,还多几 个?
□÷□=□(份)……□(个)
圈一圈,填一填。
共15个蘑菇
每份5个,可以分成几份?
□÷□=□(份)
每份6个,最多可以分成几份,还多几个?
每份6个,最多可以分成几份,还多几个? 【思路导航】根据“被除数=商×除数+余数”,可以得知“除数×商=被除数-余数”,所以本题中商×除数=28-2=24.
□÷□=□(份)……□(个) 每份6个,最多可以分成几份,还多几个? (1)22÷( )=( )……4
□÷□=□(份)……□(个) 每份5个,可以分成几份?
(1)22÷( )=( 7)…×…43+3=24 7×6+6=48
即被除数可以是8,16,24,32,40,48.
练一练
1、下列算式中,商和余数相同,被除数可以是哪些?
(1)( ) ÷6=( ) … …( )
(2)( ) ÷5=( ) … …( )
2、一个三位数除以15,商和余数相等,请你写出
五个这样的除法算式。
(1)( ) ÷6=( ) … …( ) (3) 商×除数+余数=被除数 □÷4=7……□ 【例1】在算式 ÷6=8…… 中,根据余数写出被除数最大是几?最小是几?
四年级数学上册奥数-除法中的错中求解

12.小明在计算除法时,把除数540末尾的“0”漏写了,结果商是60,正确的商应该时多少?
13.方方在计算除法时,在除数末尾多写了一个的“0”,结果的80,正确的商应该是多少?
14.小玲在计算除法时,把除数65写成56,结果得到的商是13还余52,正确的商是多少?
4.小红在计算一道除法题时,把被除数291错看成了219,结果得到的商是3,且没有余数,那么正确的结果应该是多少?
5.明明在做一道除法题时,把除数56看成了65,结果得到的商是12,余数是43,算一算,正确的结果应该是多少?
6.小马虎在计算一道除法题时,把被除数268个位上的8错看成了6,结果得到的商是12,余数是14,正确的结果应该是多少?数或除数是多少?
19.小林在计算有余数的除法时,把被除数131错看成了113,结果商比正确的结果小了2,但余数恰好相同。正确的结果是多少?
错中求解(有余数的除法)
1.小丽在计算除法时,把被除数458个位上。的8错写成了0,结果得到的商是9,那么正确的商是多少?余数是多少?
2.两个数相除,得到的商是6,余数是20,如果被除数和除数同时除以2,商是多少,余数是多少?
3.小伟在计算一道除法题时,把被除数244写成了124,商就减少了5,而余数不变。除数是多少?
7.在一道有余数的除法中,商是16,余数是18被除数与商的差是626,被除数和除数各是多少?
8.在一道有余数的除法算式里,已知被除数比除数的9倍多12,被除数与商的和是246。除数是多少?
9.在一道有余数的除法算式中,商是8,余数比商要大7,被除数、商、余数的和是318。被除数和除数分别是多少?
五年级下册数学试题奥数—有余数的除法

有余数的除法一、知识点定义 设b a ,为正整数,由除法得r q b a ,其中q 是商,r 是余数, b r 0.我们称为带余除法. 被除数=除数 商+余数,或者被除数-余数==除数 商性质 (1)余数小于除数;(2)如果b a ,除以m 的余数相同,则b a 是m 的倍数,我们称b a ,对模m 同余,记作:)(mod m b a ;(3)a 与b 的和除以m 的余数等于与a 、b 分别除以m 的余数之和(或者这个和除以m 的余数)(4)a 与b 的积除以m 的余数等于与a 、b 分别除以m 的余数之积(或者这个积除以m 的余数)(5)若)(mod ),(mod m d c m b a ,则)(mod m d b c a ,)(mod m d b c a ,)(mod m d b c a .二、例题例1 用一个奇数去除255和197,所得余数都是23,求这个奇数.例2 有一个不等于1的整数,它除967,1000,2001得到相同的余数,这个数是多少?例3 求乘积199354128 被13除的余数.例4 从1—100这100个数中最多选出多少个数,使选出来的中每两个的和都不能被3整除?例5 一个正整数被8除余1,所得商被8除也余1,再把第二次所得商除8后余7,最后商是a .又这个数被17除余4,所得商被17除余15,最后得到的商是a 的2倍,求这个正整数.例6 一个正整数除以3余2,除以5余4,除以7余5,求满足条件的最小正整数.例7 20022001除以4的余数是_________.三、练习1.5197104 的积除以11的余数是__________.2.两数相除所得商为23,余数为6,被除数、除数、商、余数之和为779,那么被除数是_________,除数是__________.3.若34和56除以m的余数相同,且m为奇质数,则m除72的余数为__________.4.实验小学五年级有三百多人,将总人数减去5能被6整除,减去6能被7整除,减去7能被8整除,则五年级共有_________人.3107 的余数是_________.5.76.有一个大于1的正整数除314,257,447所得余数相同,则2002除以这个数余数是_______.。
二年级奥数:巧用余数(一)教案含解析答案

练习3
1.慢羊羊把54张扑克牌依次发给喜洋洋、美羊羊、沸羊羊和懒羊羊,问:第24张扑克牌发给谁?谁会拿到最后一张扑克牌?
2.学校大门上挂有一串彩灯,按“红、绿、白、黄”的规律排列起来,请你算一算,第18只彩灯是什么颜色?第25只彩灯是什么颜色?
3.植树节那天,同学们按一棵松树,2棵香樟树和3棵广玉兰的顺序依次栽树,那么第15棵是什么树?第31棵是什么树?
解:余数可以是1、2、3、4、5,最大余数是5.
练习2
1.()÷7 =()……(),余数可以是(),最大余数是()
2.()÷5 =()……(),余数可以是(),最大余数是()
3.()÷6 = 5……(),余数取最大时,被除数是()。
【例题3】
新年快到了,青青草原上挂起了彩灯,按“红、黄、蓝、白、绿、紫”的顺序挂,一共挂了50盏彩灯,第50盏彩灯是什么颜色?红色的彩灯一共有多少盏?
要解决除数最小,余数最大的问题,就要理解除数和余数之间的关系,余数必须比除数小,即除数必须比余数大,掌握了这一点才能找到准确答案。
要求平均分给几位小朋友,平均每人种多少棵树等类型的问题时,应该首先从总数里去掉多余的部分,使得能够除尽,这样就能符合题意,求出问题的结果。
【例题1】
,除数最小是几?
思路导航:根据余数一定要比除数小的道理,现在余数是4,那么除数的范围就比4大,比4大的数有很多,最小的是几呢?答案是5,因为最小的除数只要比余数大1就可以了。
【例题4】
一张纸很整齐的写着下面这样的两行字:
喜羊羊与灰太狼喜羊羊与灰太狼喜羊羊与灰太狼……
青青草原青青草原青青草原……
如果我们把同一列的上下两个字称为一组,第一组的两个字是(喜,青),第二组的两个字是(羊,青)……那么第25组的两个字是(,)。
三年级奥数第08讲-有余数的除法(学)

学科教师辅导讲义学员编号:年级:三年级课时数:3学员姓名:辅导科目:奥数学科教师:授课主题第08讲-有余数的除法授课类型T同步课堂P实战演练S归纳总结教学目标解有余数的除法这类题的关键是要先确定余数,如果余数已知,就可以确定除数,然后再根据被除数与除数、商和余数的关系求出被除数。
授课日期及时段T(Textbook-Based)——同步课堂1、在整数除法运算中,分为“能整除”和“不能整除”两种情况,不能整除就产生余数。
如:26÷4的商是6,余数是2,可以记作:26÷4=6……2。
2、被除数、除数、商、余数之间的基本数量关系是:被除数÷除数=商……余数被除数=除数×商+余数除数=(被除数-余数)÷商3、在有余数的除法里,余数必须比除数小。
解这类题的关键是要先确定余数,如果余数已知,就可以确定除数,然后再根据被除数与除数、商和余数的关系求出被除数。
知识梳理典例分析例10、下面算式中,除数和商相等,被除数最小是几?①[ ]÷[ ]=[ ]......6 ②[ ]÷[ ]=[ ] (8)③[ ]÷[ ]=[ ] (3)例11、被除数是77,比除数的8倍还多5,除数是多少?P(Practice-Oriented)——实战演练实战演练➢课堂狙击1、下面题中被除数最大可填________,最小可填_______。
[ ]÷4=7……[ ]2、下面算式中商和余数相等,被除数最小是几?①[ ]÷[ ]=3……[]②[ ]÷[ ]=6……[]3、算式[ ]÷8=[ ]……[]中,商和余数都相等,那么被除数最大是几?4、下列算式中,商和余数相等,被除数可以是哪些数?①[ ]÷4=[ ]……[ ] ②[ ]÷3=[ ]……[ ]5、下面算式中,除数和商相等,被除数最小是几?①[ ]÷[ ]=[ ]......9②[ ]÷[ ]=[ ] (7)6、除数是7,商是4,被除数可以是哪些数?(请写出所有情况)8、余数是12,除数比余数大6,是商的2倍,被除数是多少?(Summary-Embedded)——归纳总结名师点拨在有余数的除法中,要记住:(1)余数必须小于除数;(2)被除数=商×除数+余数。
四年级奥数有余数的除法

补充:有余数的除法讲义知识点拨:一、定义回顾:一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r,也就是:a=b×q+r,( 0≤r<b)我们称上面的除法算式为一个带余除法算式。
二、定理:1.余数的加法定理a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。
例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。
例如:23,19除以5的余数分别是3和4,故23+19=42除以5的余数等于3+4=7除以5的余数,即2.2.余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c 所得的余数。
例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。
当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。
例如:23,19除以5的余数分别是3和4,所以23×19除以5的余数等于3×4除以5的余数,即2.例题精讲:【模块一:带余除法的定义和性质】【例 1】 (第五届小学数学报竞赛决赛)用某自然数a去除1992,得到商是46,余数是r,求a和r.【变式】一个两位数除310,余数是37,求这样的两位数。
【例 2】 (2003年全国小学数学奥林匹克试题)有两个自然数相除,商是17,余数是13,已知被除数、除数、商与余数之和为2113,则被除数是多少?【变式】两个整数相处商是12,余数是6,已知被除数,除数商与余数的差是204,除数是多少?【例 3】 (2000年“祖冲之杯”小学数学邀请赛试题)三个不同的自然数的和为2001,它们分别除以19,23,31所得的商相同,所得的余数也相同,这三个数是_______,_______,_______。
【变式】 (2004年福州市“迎春杯”小学数学竞赛试题)一个自然数,除以11时所得到的商和余数是相等的,除以9时所得到的商是余数的3倍,这个自然数是_________.【例 4】 (1997年我爱数学少年数学夏令营试题)有48本书分给两组小朋友,已知第二组比第一组多5人.如果把书全部分给第一组,那么每人4本,有剩余;每人5本,书不够.如果把书全分给第二组,那么每人3本,有剩余;每人4本,书不够.问:第二组有多少人?【变式】一个两位数除以13的商是6,除以11所得的余数是6,求这个两位数.【模块二:定理的应用】【例 5】有一个整数,除39,51,147所得的余数都是3,求这个数.【变式1】两位自然数ab与ba除以7都余1,并且ab,求abba.【变式2】学校新买来118个乒乓球,67个乒乓球拍和33个乒乓球网,如果将这三种物品平分给每个班级,那么这三种物品剩下的数量相同.请问学校共有多少个班?【变式3】 (2000年全国小学数学奥林匹克试题)在除13511,13903及14589时能剩下相同余数的最大整数是_________.【例 7】 (2003年南京市少年数学智力冬令营试题) 20032与22003的和除以7的余数是________.【巩固】 (2004年南京市少年数学智力冬令营试题)在1995,1998,2000,2001,2003中,若其中几个数的和被9除余7,则将这几个数归为一组.这样的数组共有______组.【例 8】 (2005年全国小学数学奥林匹克试题)有一个整数,用它去除70,110,160所得到的3个余数之和是50,那么这个整数是______.【巩固】 (2002年全国小学数学奥林匹克试题)用自然数n去除63,91,129得到的三个余数之和为25,那么n=________【巩固】号码分别为101,126,173,193的4个运动员进行乒乓球比赛,规定每两人比赛的盘数是他们号码的和被3除所得的余数.那么打球盘数最多的运动员打了多少盘?【例 9】 (2002年《小学生数学报》数学邀请赛试题)六名小学生分别带着14元、17元、18元、21元、26元、37元钱,一起到新华书店购买《成语大词典》.一看定价才发现有5个人带的钱不够,但是其中甲、乙、丙3人的钱凑在一起恰好可买2本,丁、戊2人的钱凑在一起恰好可买1本.这种《成语大词典》的定价是________元.。
小升初数学-数论-奥数篇- 余数专题解析 必考知识点

a1. 2.例2. 20080808除以9的余数是多少?除以8和25的余数是多少?除以11的余数是多少?例2. 有一个整数,用它去除160 ,110 ,70 得到的三个余数之和是50,则这个整数是多少?1.用自然数n去除63 ,91 ,129,得到的三个余数之和是25,那么n 是多少?2.一个自然数用它分别去除63 ,90 ,130都有余数,三个余数的和是25.这三个余数中最小的一个是多少?3. 把63个苹果,90个橘子,130个梨平均分给一些同学,最后一共剩下25个水果,没有分出去,请问:剩下个数最多的水果剩下多少个?二余数定理1. 余数加法定理a与b的和除以c的余数,等于①23和16除以5②23和19除以5例1. 两个数被13除分别余7和10,那么这两个数的和被13除余()1. 4个运动员进行乒乓球比赛,他们的号码分别是101,126,173,193,规定每两人间比赛的盘数是他们号码的和除以3所得的余数。
请问:他们各比赛了多少盘?2. 余数乘法定理a与b的乘积除以c的余数,等于①23和16除以5②23和19除以5例1. 418×814×1616除以13所得的余数是多少?1. 15×38×412×541除以13所得的余数是多少?2. 31453×68765×987657的积,除以4的余数是多少?例2.某工厂有128名工人生产零件,他们每个月工作23天,在工作期间每人每天可以生产300个零件,月底将这些零件按17个一包的规格打包,发现最后一包不够17个,请问:最后一包有多少个零件?1. 一年有365天,轮船制造厂每天可以生产零件1234个,年终将这些零件按19个一包的规格打包,最后一包不够19个。
问?最后一包有多少个零件?3.同余定理若两个数a,b除以同一个数m得到的余数相同则a,b的差例1. 100和84除以同一个数,得到的余数相同,但是余数不为0,这个除数可能是多少?例1.用一个大于0的自然数,分别去除35 ,59和123,所得的余数相同,则这个数是多少?1.三个数23 ,51 ,72分别除以同一个大于1的数,得到同一个余数,这个余数是多少?2.一个大于1的自然数去除300 ,243 ,205 时,得到相同的余数,则这个自然数是()3.有一个大于1的整数,除45,59,101所得的余数相同,求这个数。
(完整word版)四年级奥数专题之整除与余数

四年级奥数整除与余数【导言】我们学习的除法算式有两种情况,一种是被除数除以除数以后,余数为0,即数的整除性;另一种是被除数除以除数以后,余数不为0,即有余数的除法。
一个有余数的除法包括四个数:被除数÷除数=商……余数。
这个关系也可以表示为:被除数=除数×商+余数。
下面来总结一下整除和有余数除法的特征:1、整除:(1)能被2整除的特征:如果一个数的个位数字是偶数,那么这个数能被2整除。
(2)能被3整除的特征:如果一个数的各位数字之和能被3整除,那么这个数能被3整除。
(3)能被4(或25)整除的特征:如果一个数的末两位数能被4(或25)整除,那么这个数能被4(或25)整除。
(4)能被5整除的特征:如果一个数的个位数字是0或5,那么这个数能被5整除。
(5)能被8(或125)整除的特征:如果一个数的末三位数能被8(或125)整除,那么这个数能被8(或125)整除。
(6)能被9整除的特征:如果一个数的各位数字之和能被9整除,那么这个数能被9整除。
(7)能被11整除的特征:如果一个数奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除。
2、有余数的除法:(1)一个数除以4的余数,与它的末两位除以4的余数相同。
(2)一个数除以8的余数,与它的末三位除以8的余数相同。
(3)一个数除以9的余数,与它的各位数字之和除以9的余数相同。
(4)一个数除以11的余数,与它的奇数位上的数字之和与偶数位上的数字之和的差除以11的余数相同。
(如果奇位上的数字之和小于偶数位上的数字之和,可用偶数位数字之和减去奇数位数字之和,再除以11,所得的余数与11的差即为所求)。
【经典例题1】已知一个6位数14A52B能被5和9整除,求这个6位数。
【解题步骤】能被5整除的数的末位是0或5,能被9整除的末位是各位上的数字之和能被9整除,即1+4+A+5+2+B能被9整除。
当B=0时,A取6;当B=5时,A取1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12
练一练
1、下列算式中,商和余数相同,被除数可以是 哪些? (1)( ) ÷6=( ) … …( )
(2)( ) ÷5=( ) … …( )
2、一个三位数除以15,商和余数相等,请你 写出五个这样的除法算式。
2021/3/9
13
例题讲练4
【例4】在算式( )÷( )=( )……4中,除数和 商相等,被除数最小是几?
□÷□=□(份)
每份6个,最多可以分成几份,还多 几个?
□÷□=□(份)……□(个)
每份7个,最多可以分成几份,还多 几个?
□÷□=□(份)……□(个)
2021/3/9
4
圈一圈,填一填。
共15个蘑菇
每份5个,可以分成几份?
□÷□=□(份)
每份6个,最多可以分成几份,还多 几个?
□÷□=□(份)……□(个)
12÷5=2……2 12÷5=2……2 12÷5=2……2 12÷5=2……2 12÷5=2……2 12÷5=2……2 而当除数是5和10时,余数相同,所以不同的余数有2,5,4,3,1, 共五个。
2021/3/9
16
练一练
不同的余数有1、2、3、 4、5、6、7、8,共8个
9×9+8=89
2021/3/9
2021/3/9
2
课前操练: 圈一圈,填一填
共15个蘑菇
每份5个,可以分成几份?
□÷□=□(份)
每份6个,最多可以分成几份,还多 几个?
□÷□=□(份)……□(个)
每份7个,最多可以分成几份,还多 几个?
□÷□=□(份)……□(个)
2021/3/9
3
圈一圈,填一填。
共15个蘑菇
每份5个,可以分成几份?
被除
除
商
数数
余 数
2021/3/9
7
例题讲练1
【例1】在算式 ÷6=8…… 中,根据余数写 出被除数最大是几?最小是几?
【思路导航】除数是6,根据余数比除数小,余数 可填1,2,3,4,5,根据除数×商+余数=被除数, 已知商、除数、余数,可求出最大的被除数为 6×8+5=53,最小的被除数为6×8+1=49.
【思路导航】题目中告诉我们余数是4,除数和商 相等,因为余数必须必除数小,所以除数必须 比4大,但题中要求最小的被除数,因而除数应 填5,商也是5,5×5+4=29,所以被除数最小是
29.
2021/3/9
14
练一练
1、在算式( 8)÷7=(1 )……(1 )中,商和 余数相等,被除数最小是几?
2、有一个除法算式,它的余数是9,除数和商 相等,被除数最小是几? 109÷10=10……9
有余数的除法
2021/3/9
1
• 【知识点睛】 • 解这类题的关键是要先确定余数,如果余数已知,
就可以确定除数,然后再根据被除数与除数、商和余 数的关系求出被除数。 • 在有余数的除法中,要记住: • (1)余数必须小于除数;
• (2)被除数÷除数=商……余数 • (3) 商×除数+余数=被除数 • (4)(被除数- 余数) ÷除数=商 • (5)(被除数-余数) ÷ 商=除数
2021/数最大可填几?最小可填几? □÷8=3……□
31
7
25
1
2、你能写出下列算式中最大的被除数和最小的被 除数吗?
□÷4=7……□
31
3
29
1
2021/3/9
9
例题讲练2
【例2】算式28÷( )=( )……4中,除数和商 各是多少?
【思路导航】根据“被除数=商×除数+余数”, 可以得知“除数×商=被除数-余数”,所以本 题中商×除数=28-2=24.商和除数可能是1和24、 2和12、3和8、4和6,又因为余数为4,因此除 数可以是24,12,8,6,商分别是1,2,3,4.
2021/3/9
15
例题讲练5
【例5】在算式12÷( )=( )……( )中,不同 的余数有几个?
【思路导航】这是一道关于被除数是12的有余数除法。我们知道,12 除以1,2,3,4,6,12时均没有余数,所以本题中的除数只能是 5,7,8,9,10,11.相应地写出这六道除法算式,便可知道有多少个不同 的余数。
【思路导航】题目中告诉我们除数是7,商和余数相等, 因为余数必须比除数小,所以余数和商可为1,2,3,4, 5,6,这样被除数就可以求得了。 7×1+1=8 7×4+4=32 7×2+2=16 7×5+5=40 7×3+3=24 7×6+6=48 即被除数可以是8,16,24,32,40,48.
2021/3/9
每份7个,最多可以分成几份,还多 几个?
□÷□=□(份)……□(个)
2021/3/9
5
正好分完
15÷3=5(份)
15÷5=3(份)
分后有剩余
15÷4=3(份)……3(个) 15÷6=2(份)……3(个) 15÷7=2(份)……1(个)
…
2021/3/9
余 数
6
15÷7=2(份)······1(个)
17
放映结束 感谢各位的批评指导!
谢 谢!
让我们共同进步
2021/3/9
18
即除数和商分别是24,1;12,2;8,3;6,4.
2021/3/9
10
练一练
1、填空题 (1)22÷( 6 )=( 3 )……4
(2)65÷(9 )=(7 )……2
2、 149除以一个两位数,余数是5,请写出 所有这样的两位数。
149 ÷12=12……5
2021/3/9
11
例题讲练3
【例3】在算式( )÷7=( )……( )中,商和余 数相等,被除数可以是哪些数?